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Abstract

Integrity constraints are the primary means to ensure that data is an accurate representation
of reality, which is vital to organizational success in today’s economy. The most fundamental
types of integrity constraints are keys and foreign keys, irrespective of the data model used.
Keys and foreign keys establish meaningful connections between real world entities and their
representations in data (data entities) on the basis of entity properties.

With the adoption of the eXtensible Markup Language (XML) as the standard for data
exchange over the internet and its increasing usage as format for the permanent storage
of data, the importance of studying keys and foreign keys in the XML data model has
increased in recent years. The design of XML integrity constraints is challenging because of
the hierarchical and semi-structured nature of XML data which allows data entities to have
multiple or absent values for an entity property. In previous proposals to XML integrity
constraints, multiple or absent property values lead to counter-intuitive results in checking
the satisfaction of a constraint in an XML document. In contrast, XML keys (XKeys) and
foreign keys (XFKeys) as proposed in this thesis handle multiple or absent property values
in a way intuitively expected by the application developer.

It is shown that XKeys and XFKeys preserve the semantics of relational keys and foreign
keys when relational data is mapped to XML, as frequently required in data exchange sce-
narios. Moreover, the consistency and implication problems related to XKeys and XFKeys
are discussed in the context of ‘complete’ XML documents, which generalize complete rela-
tions. It is shown that every set of XKeys or XFKeys is consistent, and that there are sound
and complete sets of inference rules for both XKey and XFKey implication.
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This chapter gives a general introduction to the topics of this thesis, starting with the
motivation in Section 1.1. Section 1.2 describes its main challenges and Section 1.3 reviews
related work. Section 1.4 introduces the objectives pursued in this thesis together with the
proposed approach and the main contributions. Finally, Section 1.5 outlines the overall
structure of this thesis.
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6 CHAPTER 1. INTRODUCTION

1.1 The Demand for XML Integrity Constraints

Organizations heavily rely on corporate data in operational and also decision making pro-
cesses, which makes corporate data a key strategic asset to organizations in today’s informa-
tion age [1, 2]. For correct organizational decisions to be made, corporate data is required to
be an unbiased representation of reality. The quality of data in this regard is vital to organi-
zational success [1]. This has been pinpointed for instance in the report on data quality by
the Data Warehousing Institute [3]. Based on interviews with industry experts, leading edge
customers, and survey data from 647 respondents, the Data Warehousing Institute estimates
that data quality problems cost United States businesses 600 billion dollar annually.

Database systems ensure the quality of data by requiring the data to be consistent with
semantic assertions called integrity constraints [1]. In addition to ensuring the quality of
data, database systems utilize integrity constraints also in order to accomplish essential tasks
like automatic schema design and query optimization [4]. The study of integrity constraints
has a long tradition in database theory starting approximately in the mid 1970’s. The
ongoing efforts in the development of integrity constraints yield a plethora of different types
of integrity constraints for all major data models, including the relational, nested relational,
and object-oriented data model. It has been estimated for instance that about 100 different
types of integrity constraints have been developed for the relational data model alone.

With the adoption of the eXtensible Markup Language (XML) [5] as the industry stan-
dard for data interchange over the internet [6], and its increasing usage as format for the
permanent storage of data in database systems [7], a new data model became more and
more popular in recent years: the XML data model. In order to ensure the quality of XML
data and to facilitate essential tasks of XML database systems, it is necessary to develop
and study XML integrity constraints. Besides the traditional database tasks of automatic
schema design and query optimization, XML integrity constraints are also useful in several
new areas such as data exchange [8] and data integration [9] that have no parallels in the
relational setting. For this reason, it has been argued that the development and study of
integrity constraints is even more important for the XML data model than for the relational
data model [10].

The most fundamental types of integrity constraints, irrespective of the data model used,
are key and foreign key constraints. The reason for this is that keys and foreign keys establish
meaningful connections between real world entities and their relationships on the one side,
and data entities1 and references between data entities on the other side. In general, keys
facilitate the identification of data entities based on distinguished combinations of values.
The rationale behind a key is that if some properties identify an entity in reality, then the
values of these properties should identify the corresponding data entity in a database. A key
makes this connection between real world entities and their representations in data explicit.
In particular, the semantic assertion of a key is that no two distinct data entities have the
same combination of values with respect to those properties that identify the represented
real world entities.

The purpose of a foreign key is to represent relationships between real world entities
by means of references between data entities. The reference to a data entity is thereby

1We use the term ‘data entity’ to denote the representation of a real world entity in a database.
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established by referencing the combination of values that identify this data entity. In par-
ticular, the semantic assertion of a foreign key is that if certain combinations of values in a
designated set of data entities are references to data entities in some other designated set of
data entities, then each of these combinations of values identifies one data entity in the set
of referenced data entities. A foreign key hence essentially demands a subset relationship
between distinguished combinations of values of two designated sets of data entities.

The purpose of this thesis is to investigate the notions of value-based identification of
data entities and value-based references between data entities for the XML data model.
The aim of this thesis is therefore to develop and study XML keys and XML foreign keys.
Developing XML keys and XML foreign keys poses a couple of challenges which we now
illustrate.

1.2 Challenges in Developing Keys and Foreign Keys
for XML

In developing XML keys and foreign keys one has to bear in mind two issues. First of
all, XML keys and foreign keys must accommodate characteristics of XML data such that
the notions of value-based identification of data entities and value-based references between
data entities are adequately realized. We detail on this issue in Section 1.2.1. The second
issue is that XML is the defacto standard for data exchange over the internet. XML data
is therefore often generated from data that originally resides in a data model other than
XML. In such a scenario, XML keys and foreign keys must allow for expressing original data
semantics. We detail on this issue in Section 1.2.2.

1.2.1 Characteristics of XML Data

XML data is available in form of documents written in the eXtensible Markup Language,
which has been developed by the World Wide Web Consortium [5]. XML data is hence
basically text that contains markup. The tags in an XML document are required to form
pairs of a start tag and a matching end tag. Also, the pairs of tags, called XML elements,
are demanded to be properly nested. An XML element may have associated a set of at-
tribute/value pairs, which we call XML attributes in the following. The XML elements in
an XML document form a tree structure because of the requirement on XML elements to be
properly nested. In terms of a logical data model, an XML document is therefore represented
as a tree of labeled nodes, and so the XML data model is a hierarchical data model. Three
kinds of nodes are distinguished in the XML data model. In particular, element nodes and
attribute nodes represent XML elements and XML attributes, respectively. The label of an
element node corresponds to the start tag of the represented XML element, and the label of
an attribute node corresponds to the name of the represented XML attribute. Text that is
enclosed by XML elements is represented by text nodes in an XML tree. Individual labels
for text nodes cannot be derived from the text in an XML document, and so text nodes all
have the same distinguished label. A sequence of node labels is said to be a path.
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Example 1.1 (XML document and XML tree) Suppose that a phone company stores
information about customers and their cell phones using XML. A sample customer record
representing customer Jones and his/her cell phone 0660/1010 is depicted in Figure 1.1a in
form of an XML document. The XML elements in this document are <Customer>, <Phone>
and <Status>, where matching end tags are indicated by the symbol ‘/’. XML element
<Customer> has associated XML attribute name with value Jones . Likewise, XML element
<Phone> has associated XML attributes code and no, representing the code 0660 and number
1010 of the phone of customer Jones . Whereas XML element <Status> does not have
associated any XML attribute, it encloses the text ‘premium’, meaning that customer Jones

is a premium customer.
Figure 1.1b depicts the tree representation of the XML document depicted in Figure 1.1a.

The element nodes and attribute nodes as well as their arrangement in the XML tree directly
correspond to the XML elements and attributes in the XML document. The text ‘premium’ is
however represented by a separate node which has the distinguished label S (String) assigned
and is a child node of the element node Status. A path in the XML tree in Figure 1.1b
is for example the sequence of labels Customer.name. This path leads to the attribute node
representing the name of customer Jones .

<Customer name="Jones">

</Customer>

<Phone code="0660" no="1010"/>

<Status>premium</Status>
Phone

Customer

0660

code
1010

no
Jones

name Status

premium

S

(b)(a)

Figure 1.1: A customer record represented as XML document and as XML tree.

Apart from the organization of data in form of a tree of nodes, the structure of data is
not further constrained in the XML data model since XML documents do not necessarily
have to conform to a-priori schemas like an XML Schema (XSD) [11–13] or a Document
Type Definition (DTD) [5]. This is in sharp contrast to the relational data model, where
data always conforms to a rigid schema. The flexible structure of data is what makes the
XML data model a semi-structured data model, and is probably also the primary reason
for the adoption of XML as the standard format for data exchange over the internet where
heterogenous data naturally occurs.

The hierarchical and semi-structured nature of XML data poses a couple of challenges
for the design of XML keys and foreign keys. In order to illustrate these challenges, we first
render the notions of keys and foreign keys in the XML data model more precisely. Given
that the primary data structure in the XML data model is a tree of nodes, real world entities
as well as properties of real world entities are represented by nodes in XML trees. In order
to distinguish nodes that represent real world entities from nodes that represent properties
of real world entities, we call the former entity nodes and the latter property nodes. The
purpose of an XML key is then to identify entity nodes on the basis of values of distinguished
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property nodes. Analogously, the purpose of an XML foreign key is to establish references
to entity nodes on the basis of values of property nodes that identify these entity nodes.

Example 1.2 (entity nodes and property nodes) Suppose that no two customers of
the phone company own the same cell phone, and so that customers are identified by their
cell phones. With respect to the layout of customer records illustrated in Example 1.1 this
means in terms of an XML key that Customer nodes are identified by the values in related
code and no nodes. In this example Customer nodes are the targeted entity nodes, and code

and no nodes are the property nodes.

From a conceptual point of view, determining if an XML tree satisfies an XML key or
XML foreign key can be done by comparing entity nodes on the basis of values of distin-
guished property nodes. The only difference between checking if an XML key is satisfied
and checking if an XML foreign key is satisfied lies in the particular type of comparison
used. Whereas an XML key demands for certain sets of entity nodes that the values of
distinguished combinations of property nodes are different, an XML foreign key requires the
existence of certain pairs of entity nodes with the same values for distinguished combinations
of property nodes. Thus an XML key is a uniqueness constraint, whereas an XML foreign
key is a matching constraint.

Because of the hierarchical nature of XML data, it is in general possible that multiple
property nodes, which represent the same property, are related to a single entity node. In
such a situation it is necessary to carefully choose the combinations of property nodes that
are used for the comparison of entity nodes in order to achieve desired semantics of XML
keys and foreign keys. We now illustrate this point by an example.

Customers

Customer

Phone

2020

no
0660

codeSmith

name

Customer

Phone

0660

code
1010

noJones

name Phone

2020

no
0990

code

Figure 1.2: XML document representing customers and their phones. The phones are
unique and identify the customers.

Example 1.3 (multiple property nodes) Consider again the XML key from Example
1.2 which asserts that Customer nodes are identified by the values in related combinations of
code nodes and no nodes. If this XML key is checked in the XML tree depicted in Figure 1.2,
then there are multiple code nodes and no nodes related to the Customer node representing
customer Jones who owns two phones. Hence, it is necessary to decide which combinations
of the four possible combinations 0660/1010 , 0660/2020 , 0990/2020 and 0990/1010 to use for
comparing customers Smith and Jones . Intuitively, only the combinations 0660/1010 and
0990/2020 should be used, since combinations 0660/2020 and 0990/1010 obviously represent
the code and number of different phones and are therefore semantically incorrect. Note that
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if in contrast also the combination 0660/2020 is used for comparing the two Customer nodes,
then the XML key is violated, which is clearly counter-intuitive.

The first challenge posed by the characteristics of XML data to the design of XML keys
and foreign keys is therefore the question of

How can one ensure that only semantically correct combinations of property nodes
are used for the comparison of entity nodes?

The occurrence of multiple property nodes also results in another design issue, one that is
specific to keys in XML and that does not exist in the relational data model. The concept of
a key, irrespective of the data model used, requires two fundamental properties - uniqueness
and identification. Uniqueness means that the combinations of values for specified entity
properties are unique within a distinguished set of data entities. Identification means that for
any combination of values for specified entity properties there is at most one corresponding
data entity. Now in the relational model, since duplicate tuples (data entities) are not
allowed, the uniqueness and identification properties of a key are equivalent. That is, key
identification implies that there is at most one tuple with the corresponding key values,
and if there is at most one tuple with specific key values then the key values are unique
within the relation. However in XML the situation is different and while key uniqueness
still implies key identification, key identification no longer implies key uniqueness and so
duplicate combinations of key values can occur. This situation is undesirable, since it can
lead to data inconsistencies in the data if one duplicate combination of key values is updated
but not the other. We now illustrate this point by an example.

Example 1.4 (uniqueness versus identification) Consider once more the XML key on
Customer nodes from Example 1.2, and the XML document depicted in Figure 1.3, which
represents information about customers Henry and Smith and their phones. The identifica-
tion of customers Henry and Smith is achieved by their phones 0500/3030 and 0600/2020 .
However, the phone 0500/3030 is redundantly represented for customer Henry and so in-
tuitively one would expect that the XML key on Customer nodes is violated even though it
uniquely identifies customers.

Customers

Customer

Phone

2020

no
0660

codeSmith

name

Customer

Phone Phone
Henry

name

0550

code
3030

no
0550

code
3030

no

Figure 1.3: XML document representing customers and their phones. The phone of one
customers is represented twice.

In addition to allowing an entity node to have multiple property nodes that represent the
same entity property, the XML data model also allows for the property nodes to be absent.
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The second challenge posed by the characteristics of XML data to the design of XML keys
and foreign keys is therefore the question of

How to compare entity nodes in case that some property nodes are absent?

It is worth being mentioned that the absence of a property node does not necessarily
mean that there is some information missing. Entity nodes may also lack certain property
nodes because of heterogeneity in represented real world entities, and so the absent property
nodes may simply not be applicable to the specific entity node. XML keys and foreign keys
hence must accommodate the situation where some property nodes are absent even in case
of complete information. We now illustrate this observation by an example.

Example 1.5 (absent property nodes) Suppose that the phone company stores the ad-
dress of a customer within his/her record. Two customer records including the customer’s
address are depicted in Figure 1.4 for the purpose of illustration. Note that the address of
customer Smith states the number of his/her apartment, whereas the address of customer
Henry does not have this property. Now, suppose that there is an XML key defined for the
customer records asserting that the address of a customer is identified by the combination
of city, street (strt), house (hno), and apartment number (ano). Intuitively, this XML
key is expected to hold for the two addresses in the XML tree depicted in Figure 1.4, since
the address NY, 5th Avenue, 50 of customer Henry is obviously different from the address NY,
Park Avenue, 30, apartment 2B of customer Smith . The absence of an apartment number
in the address of customer Smith does not imply that there is some information missing.
Instead this merely reflects the fact that address data is heterogeneous.

Company

Customer

city
NY

hno
30

ano
2B

strt
Park Av.

Addrname
Smith

Customer

name
Henry

Addr

hno
50

city
NY

strt
5th Av.

Figure 1.4: XML document representing customers and their addresses. The addresses
are complete yet heterogenous.

To deal with multiple and absent property nodes are clearly not the only challenges
posed by the characteristics of XML data to the design of XML keys and foreign keys.
The hierarchical and semi-structured nature of XML data moreover demands for highly
expressive integrity constraints. However, even more important than the expressiveness of
the syntax of XML keys and foreign keys is that their semantics yields intuitive results in all
situations. In particular, situations where there are multiple or absent property nodes are
ones, where existing approaches to XML keys and foreign keys frequently result in incorrect
semantics. Thus, the focus of this thesis is not on proposing more expressive XML keys and
foreign keys but rather on ensuring that our definitions capture the correct semantics in the
case of multiple or absent property nodes.
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1.2.2 Usage of XML as Format for Data Exchange

When exchanging data over the internet in form of XML documents, it is often the case that
the data originally resides in a format other than XML [10]. The original data therefore
needs to be transformed to XML before it is exchanged. Irrespective of the data model
used, the semantics of data, expressed in the form of integrity constraints, is essential to
the effective use of the data. The usability of XML data is therefore diminished if only
the original data but not the original data semantics is transformed. For instance, if XML
integrity constraints are not available, updates issued on generated XML data have to be
verified against the original data, which is an intricate task. It is therefore desirable to
transform both the original data and also the original data semantics as specified by integrity
constraints. The predominant data model used in practise is still the relational data model,
and so the primary challenge in this regard is the question of

How to preserve the semantics of relational keys and foreign keys when XML
data is generated from relational data?

The answer to this question obviously depends on the specific procedure used for trans-
forming relational data to XML data. In general, there are many possible transformation
procedures. The essential requirements on a transformation procedure, and the design of
XML integrity constraints, are (i) that the XML integrity constraints can be derived from the
relational integrity constraints, and (ii) that the generated XML data satisfies the derived
XML integrity constraints if the relational data satisfies the original integrity constraints.

Relational data is often restructured during the transformation to XML in realistic ap-
plication scenarios like XML publishing for example [10]. It is therefore desirable that a
transformation procedure facilitates the restructuring of information. The next example il-
lustrates the restructuring of information when XML data is generated from relational data,
and it also illustrates the notions of derived XML keys and foreign keys.

Example 1.6 (transforming relational data and semantics to XML) Suppose that
the phone company stores information about phones and invoices for phone charges within
a relational database, which contains for this purpose relations Invoice and Phone as de-
picted in Figures 1.5a and 1.5b. Relation Phone states the codes (code) and numbers (no) of
phones, and relates to each phone the customer (cno) who owns the phone. The information
about invoices is represented in relation Invoice, which states for this purpose the addressed
customer (cno), the cell phone (code, no) together with the period (prd) for which phone
charges have to be paid, and the invoiced amount (amt).

Suppose now that relations Invoice and Phone are mapped to XML, and that, unlike for
the information about phones, the information about invoices is restructured in that invoices
are grouped according to the addressed customer and the invoice period. Figure 1.5c depicts
the resulting XML tree. Because the information about phones has not been restructured,
there is a one-to-one correspondence between the Phone nodes in the XML tree and the tuples
in relation Phone in that each phone is directly represented by one Phone node. In contrast,
the information about invoices has been restructured, and the tuples in relation Invoice are
therefore represented by only two Invoice nodes in the generated XML tree. This XML tree
nevertheless represents the same information as relations Invoice and Phone.
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Lets turn to the semantics of data in relations Phone and Invoice. Suppose that (code,
no, cno) is the key in relation Phone, and that (code, no, prd) is the key in relation Invoice.
The semantics asserted by the key in relation Invoice is thereby that at most one phone
charge is invoiced for a certain phone in a certain period. The XML keys to be derived from
these relational keys assert that Phone nodes are identified by the combinations of code, no,
and cno nodes, and analogously, that Invoice nodes are identified by the combinations of
code, no, and prd nodes. Note that although the two invoices in the generated XML tree
agree on the invoice period, they do not agree on any of the phones, and so the two Invoice

nodes are indeed identified by the combinations of code, no and prd nodes.
Suppose further, that (cno, code, no) is a foreign key from relation Invoice to relation

Phone, which asserts that a customer gets an invoice only for those phones that he or she
owns. The XML foreign key to be derived from this relational foreign key asserts that if
there exists an Invoice node together with a combination of cno, code, and no nodes, then
there also exists a Phone node and a value equal combination of cno, code, and no nodes.
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Figure 1.5: Relations representing phones and invoices, and a generated XML document.

It is also important to note that data is not only transformed from the relational data
model to the XML data model in data exchange scenarios, but also in the opposite direction.
Hence there is also need for preserving the semantics of XML keys and foreign keys when
XML data is transformed to relational data. This is however clearly not an issue for the
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design of XML keys and foreign keys, but belongs instead to the design of (new) relational
integrity constraints as well as to the design of procedures for transforming XML data to
relational data. The issue of preserving the semantics of XML keys and foreign keys when
XML data is transformed to relational data is therefore out of scope of this thesis.

1.3 Previous Approaches to XML Integrity Constraints

We now give an overview of previous approaches to XML integrity constraints. The focus
is thereby on concepts that address the challenges which we have identified in the previous
section. In particular, Section 1.3.1 illustrates concepts that address the challenges posed by
characteristics of XML data. Section 1.3.2 outlines concepts that address the preservation
of original data semantics when relational data is transformed to XML data.

1.3.1 Handling of Multiple or Absent Property Nodes

The challenges posed by the hierarchical and semi-structured nature of XML data are, in
summary, to handle multiple and absent property nodes. A number of approaches to XML
integrity constraints sidestep the problems caused by multiple or absent property nodes.
For instance, the XML keys and foreign keys proposed in XML Schema put additional
restrictions on the structure of XML data, and the approaches presented in [14–16] restrict
the syntax of XML integrity constraints and so avoid situations in which multiple or absent
property nodes occur. There are however several approaches to XML integrity constraints
that permit multiple or absent property nodes. We now illustrate how these approaches
handle multiple property nodes.

Apply cross-product semantics: A naive manner for handling multiple property nodes
is to apply cross-product semantics when choosing combinations of property nodes. For
instance the approaches to XML integrity constraints presented in [17–19] follow this idea.
A consequence of applying cross-product semantics when choosing combinations of property
nodes is that semantically incorrect combinations of property nodes are used for the com-
parison of entity nodes, resulting in an XML integrity constraint being violated when the
semantics require that the constraint should be satisfied. We now illustrate this point.

Example 1.7 Consider the XML key from Example 1.2 which asserts that customers are
identified by the combinations of the code and number of each of their phones. When applying
cross-product semantics in forming combinations of property nodes, this XML key is violated
in the XML tree depicted in Figure 1.2. The reason is that 0660/2020 is a combination of a
code node and a no node for both customers Jones and Smith . Regarding customer Jones ,
0660/2020 is however semantically incorrect since 0660 and 2020 do not belong to the same
phone. In fact one intuitively expects that this XML key on Customer nodes is satisfied in
the XML tree in Figure 1.2.

Exploit structural relationships: The approaches to XML integrity constraints presented
in [20–23] take into account structural relationships between property nodes in checking XML
integrity constraints. That is, a possible combination of property nodes is disregarded if the
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nodes do not possess certain structural relationships. In general there is a tight connection
between the arrangement of nodes in an XML document and the coherence in the infor-
mation represented by the nodes. Semantically incorrect combinations of property nodes
can therefore be effectively avoided by exploiting structural relationships between property
nodes. The particular structural relationships demanded for property nodes however differ
between the approaches in [20–23], and so semantically incorrect combinations of property
nodes are avoided in varying degree, that is some approaches always prevent semantically
incorrect combinations of property nodes, whereas other approaches do not.

Example 1.8 Referring to the XML tree depicted in Figure 1.2, the arrangement of code
and no nodes related to the customer node representing customer Jones is not accidental.
Instead the deliberate arrangement of these nodes reflects that 0660/2020 and 0990/1010 are
indeed phones of customer Jones, whereas 0660/1010 and 0990/2020 are not. When taking
into account the structural relationships between code and no nodes in checking the XML key
which asserts that customers are identified by the code and number of each of their phones,
the semantically incorrect combinations 0660/1010 and 0990/2020 are disregarded and so the
XML key is satisfied in the XML tree in Figure 1.2.

Concerning the manner in which absent property nodes are handled, the following ideas
are to be found in previous approaches to XML integrity constraints:

Disregard incomplete combinations of property nodes: A naive manner for handling
absent property nodes is to simply disregard incomplete combinations of property nodes in
checking whether an XML tree satisfies an XML key or foreign key. This idea is followed in
the approaches presented in [17, 24]. A consequence of disregarding incomplete combinations
of property nodes is that an XML key or foreign key is automatically satisfied with respect
to entity nodes that do not have any complete combination of property nodes. This is clearly
not desirable as the next example illustrates.
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Figure 1.6: XML document representing an invoice and two customer records.

Example 1.9 Consider the XML tree depicted in Figure 1.6 and the XML key introduced in
Example 1.5 which asserts that the address of a customer is identified by the combination of
city, street, house, and apartment number. The addresses of both customers Henry and Smith

are incomplete since they lack of an apartment number. Since incomplete combinations of
property nodes are simply disregarded, these two Customer nodes are not compared at all,
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and so the XML key on addresses of costumers is automatically satisfied in the approach
of [17, 24]. This is however counter-intuitive since the addresses of customers Henry and
Smith are obviously the same.

Apply strong or weak satisfaction semantics: In order to deal with missing informa-
tion, the notions of weak and strong satisfaction of integrity constraints have been translated
from the relational setting to XML in the approaches presented in [17, 23] and [25], respec-
tively. Intuitively, an XML integrity constraint is weakly satisfied if there exists at least
one completion of the XML document under consideration that satisfies the constraint. If
instead strong satisfaction semantics is applied, then every possible completion of the XML
document must satisfy the XML integrity constraint.

Applying either strong or weak satisfaction semantics is not adequate for handling absent
property nodes for two reasons. First, the notions of strong and weak satisfaction both rely
on a (virtual) completion of the XML document. It is therefore implicitly assumed that
absent nodes indicate information that actually exists but is currently unknown for some
reason. This is however not in accordance with the no information interpretation of missing
information which is recommended for XML data in the XML specification by the W3C.
According to the no information interpretation, the absence of a node merely indicates
that some information is not present for whatever reason. If the reason for the absence of
some information is not known, it is clearly inadequate to act on the assumption that any
completion of an XML document exists.

The second reason for which the notions of strong or weak satisfaction are not expedient
for handing absent property nodes is that the absence of a node does not necessarily indicate
some missing information at all. The absence of a node may also reflect some degree of
heterogeneity within real world entities. In this case, the absence of a node merely reflects
the fact that some information does not exist. The next example illustrates that applying
either weak or strong satisfaction semantics to XML integrity constraints produces counter-
intuitive results.

Example 1.10 Consider again the XML tree depicted in Figure 1.6 and the XML key
on addresses of customers introduced in Example 1.5. When applying weak satisfaction
semantics this XML key is satisfied in the XML tree in Figure 1.6. The reason is that
one possible completion of the XML tree contains the addresses NY, 5th Avenue, 50, 10A for
customer Henry as well as NY, 5th Avenue, 50, 20b for customer Smith . In this completion, the
XML key on customer addresses is satisfied, and so this XML key is satisfied in the XML tree
in Figure 1.6 when applying weak satisfaction semantics. This is counter-intuitive, similar
to Example 1.9 where incomplete combinations of property nodes are disregarded.

Suppose now that an invoice states the invoice address, which is illustrated for example
by the single invoice in the left of the XML tree in Figure 1.6. Suppose further that there is
an XML foreign key expressing that invoice addresses reference customer addresses. When
neglecting the record of customer Smith in the XML tree in Figure 1.6, then this XML
foreign key is expected to be satisfied, since the single invoice address is also the address of
customer Henry . However, when applying strong satisfaction semantics this XML foreign
key is violated in the XML tree in Figure 1.6 even if the record of customer Smith is not
present. The reason for this is that one possible completion of the invoice address is NY ,
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5th Avenue , 50 , 10b , and a completion of the address of customer Henry is for example NY ,
5th Avenue , 50 , 20b , in which case the XML foreign key from invoice addresses to customer
addresses is violated.

In addition to the methods for handling either multiple or absent property nodes illus-
trated above, some approaches to XML integrity constraints use another technique which
we now discuss.

Use element nodes as property nodes: The approaches to XML integrity constraints
presented in [12, 17, 18], permit the comparison of entity nodes not only on the basis of
values of attribute nodes or text nodes, but also on the basis of ‘values’ of element nodes.
Roughly speaking, the ‘value’ of an element node is the subtree rooted at the element node,
and the ‘values’ of two element nodes are equal if the subtrees are isomorphic. In checking
an XML key or foreign key the problems arising from multiple or absent property nodes can
be avoided if entity nodes are compared on basis of the ‘values’ of element nodes that enclose
the actual property nodes instead of comparing entity nodes on basis of the property nodes
themselves. This is indeed a valid technique for the restricted case where all nodes that are
nested within an element node are property nodes which are relevant for the comparison of
entity nodes with respect to the XML key or foreign key under consideration. If this is not
the case, this technique produces counter-intuitive semantics which is illustrated in the next
example.

Company

Customer

Phone

0660

code
02/02/09

adate
2020

no
Smith

name
Jones

name

Customer

Phone

2020

no
0660

code
01/01/09
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Figure 1.7: XML document representing two customers who bought the same phone.

Example 1.11 Consider again the XML key from Example 1.2 which asserts that Customer
nodes are identified by the combinations of code and no nodes. If this XML key is checked in
the XML tree depicted in Figure 1.2 multiple code and no nodes are related to the Customer

node representing customer Jones . The semantically correct combinations of code and no

nodes must be chosen in order to achieve the desired semantics, which has been illustrated in
Example 1.3. If the comparison of entity nodes on basis of the ‘values’ of element nodes is
permitted, then this XML key can be defined such that Customer nodes are identified by the
‘values’ of Phone nodes which encapsulate the actual property nodes, i.e. the code and no

nodes. Since the subtrees rooted at Phone nodes in the XML tree in Figure 1.2 are not iso-
morphic to each other, the XML key is satisfied as desired. Note that all nodes nested within
Phone nodes are property nodes which are relevant for the comparison of Customer nodes.
Therefore using element nodes as property nodes is semantically correct in this example.

The XML key asserting the identification of Customer nodes by Phone nodes is also
satisfied in the XML tree depicted in Figure 1.7. The reason is that the subtrees rooted at
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the Phone nodes are not isomorphic because the phones of customers Jones and Smith have
different acquisition dates (adate). It is however clearly not desirable that the XML key
on Customer nodes is satisfied in the XML tree in Figure 1.7 because both phones have the
same code and number. Since adate nodes nested within Phone nodes are irrelevant for the
identification of Customer nodes, the use of element nodes as property nodes is semantically
incorrect in this case.

We proceed with illustrating approaches that address the preservation of relational data
semantics in data exchange scenarios.

1.3.2 Preserving Relational Data Semantics

There is a substantial body of work on the transformation of relational data to XML. Early
approaches like XPERANTO [26–28] or SilkRoute [29] primarily focused on bridging the gap
between the flat structure of relational data and the hierarchical structure of XML data.
The semantics of data is kept buried within relational data in these approaches. In order to
overcome this limitation, the following approaches have been proposed:

Direct transformation: In the approaches presented in [30, 31], relational data is trans-
formed to XML data in a rigid and direct manner. In particular, each tuple in a relation
is mapped to exactly one element node, and each value in a tuple is represented by a child
node of this element node. Hence there is a 1-1 correspondence between the generated XML
data and the original flat data. As a consequence, multiple property nodes do not occur
when checking XML keys or foreign keys that express the semantics of relational keys or
foreign keys. Standard XML keys and foreign keys offered by XML schema are therefore
sufficient for expressing original data semantics in the approaches presented in [30, 31].

Example 1.12 Referring to Example 1.6 and Figure 1.5, the transformation of relation
Phone is an instance of the direct transformation procedure applied in the approaches pre-
sented in [30, 31]. Each tuple in relation Phone is represented by exactly one element node
in the XML tree in Figure 1.5c, where code, no, and cno nodes represent the values in the
corresponding attributes in a tuple. In checking the XML key derived from the key (code,
no, cno) in relation Phone, multiple property nodes do not occur since each Phone node has
related exactly one code, no, and cno node in correspondence to the single code, no, and
cno values in tuples of relation Phone.

Transformation on the basis of interconnected tuples: The approaches presented
in [32–37] aim at generating more compact XML documents than those resulting from the
direct transformation of relational data. For this purpose, the hierarchical nature of XML
data is exploited in that interconnected tuples are mapped to nested element nodes. As
opposed to the direct transformation of relational data, information is restructured during
the transformation on the basis of interconnected tuples. The manner in which information
is restructured however rigidly adheres to the connections between tuples, and so application
developers are not permitted to govern the restructuring of information.

Compared to the direct transformation of relation data, the total number of nodes in gen-
erated XML data is substantially smaller when transforming relational data on the basis of
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interconnected tuples. Generated XML documents are therefore more compact even though
not all types of connections between tuples can be represented by nested element nodes.
Problematic types of connections are, for instance, many-to-many or circular references.

As for the direct transformation of relational data, the flat structure of individual tuples
is kept during the transformation on the basis of interconnected tuples. Consequently,
multiple property nodes do not occur when checking XML keys or foreign keys that express
the semantics of relational keys or foreign keys. Hence, standard XML keys and foreign keys
offered by XML Schema are again sufficient in order to preserve original data semantics.

Example 1.13 Referring again to Example 1.6, there is a one-to-many relationship between
phones and invoices in that each phone is related to many invoices. This relationship is
expressed by the foreign key on attributes (cno, code, no) from relation Invoice to relation
Phone. The tuples in relations Invoice and Phone are thus interconnected. Because of this
interconnection, Invoice nodes representing the tuples in relation Invoice are nested within
Phone nodes representing the tuples in relation Phone when transforming relations Invoice

and Phone to XML on the basis of interconnected tuples. As for the direct transformation
procedure illustrated in Example 1.12, the generated Invoice and Phone nodes adhere to
the flat structure of tuples in relations Invoice and Phone. Therefore, multiple property
nodes again do not occur when checking either the XML key derived from the key (code, no,
cno) in relation Phones, or the XML key derived from the key (code, no, prd) in relation
Invoice.

Transformation on the basis of nested tuples: A two-step transformation procedure is
applied in the approaches presented in [25, 38, 39]. In the first step, nesting operations are
performed on the original relations. The resulting nested relations are then directly mapped
to XML in the second step. It is worth being mentioned that the transformation on basis of
nested tuples and the transformation on basis of interconnected tuples are complementary
approaches. In fact, the transformation procedure presented in [38, 39] first performs nest-
ing operations on the original relations and then maps the nested tuples to XML such that
interconnected tuples are represented by nested elements. The primary aim of this trans-
formation procedure is to yield XML documents that are even more compact than those
that result from transforming relations solely on basis of interconnected tuples. The nesting
operations to be performed are thereby automatically computed such that the number of
nodes in the resulting XML tree is as small as possible. Because nesting operations are au-
tomatically computed, application developers are not permitted to govern the restructuring
of information. The transformation procedure presented in [38, 39] is moreover limited in
that only the nesting on a single attribute is permitted for each relation.

The transformation procedure presented in [25] in contrast allows to perform a sequence
of arbitrary nesting operations on a relation. Application developers thereby individually
specify the nesting operations to be performed, and are therefore able to govern the restruc-
turing of information. The transformation procedure presented in [25] is however limited in
that only the transformation of a single relation is permitted.

Compared to the approaches where relational data is either directly transformed or on
the basis of interconnected tuples, it is more complicated to preserve original data semantics
when relations are nested prior to the mapping. The reason for this is that because of the
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nesting of relations, multiple property nodes may occur when checking an XML integrity
constraint that expresses original data semantics. Approaches to XML integrity constraints
which do not allow for multiple property nodes at all, or which are subject to semantically
incorrect combinations of property nodes are clearly inappropriate for preserving relational
data semantics when it is transformed on basis of nested tuples. For this reason, approaches
to XML integrity constraints have been proposed in [40] and [20] in accordance with the
transformation procedures presented in [38, 39] and [25], respectively. Even though the
approaches to XML integrity constraints proposed in [40] and [20] have different semantics
in general, both approaches take into account structural relationships betweens property
nodes when forming combinations of property nodes for the purpose of checking an XML
integrity constraint. Semantically incorrect combinations of property nodes in generated
XML documents are therefore disregarded in both approaches, and hence the ability to
preserve original data semantics is achieved.

Example 1.14 Referring again to Example 1.6 and Figure 1.5, the transformation of rela-
tion Invoice is an instance of the transformation procedure presented in [20]. In particular,
relation Invoice is first nested on attributes code, no, and amt, which results in a nested
relation where, conceptually, invoices are grouped according to the addressed customer (cno)
and invoice period (prd). This nested relation is then directly mapped to XML, which yields
the XML tree rooted at the Invoices node in the left of Figure 1.5c. Because of the nesting
of relation Invoice prior to the mapping, multiple property nodes occur when checking for
instance the XML key expressing the semantics of the original key (code, no, cno) in rela-
tion Invoice. Note that each line of an invoice in the XML tree in Figure 1.5 states the
phone for which phone charges are invoiced, and so there are multiple code and no nodes
related to the Invoice node representing the invoice for customer C1 in January 2009.

1.4 The Enhanced Closest node Approach

In light of the challenges identified in Section 1.2, the following objectives are pursued in
this thesis in order to provide keys and foreign keys for the XML data model:

• Approach to XML integrity constraints: To develop an approach to XML integrity con-
straints where the syntax allows application developers to specify XML keys and foreign
keys in an intuitive manner, and the semantics accommodates the hierarchical and semi-
structured nature of XML data. Especially to allow for the semantically correct handling
of XML integrity constraints when property nodes are absent, an issue that has not been
addressed in previous work.

• Transformation Procedure: To develop a procedure for the transformation of a set of rela-
tions to an XML document which allows application developers to govern the restructuring
of information in individual relations. The interplay of the transformation procedure and
the proposed approach to XML integrity constraints must allow to automatically derive
XML keys and foreign keys that preserve original data semantics.

• Consistency and implication problems: To develop decision procedures for the implication
and consistency problems related to the integrity constraints in the proposed approach.
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The consistency problem is the question of whether there exists at least one XML docu-
ment that satisfies a given set of XML integrity constraints. The practical use of a set of
XML integrity constraints is obviously diminished if not even one XML document may
satisfy the constraints. A decision procedure for the consistency problem is therefore a
useful tool in developing XML applications. The implication problem is the question of
whether an XML integrity constraint must necessarily hold in every XML document that
satisfies a given set of XML integrity constraints. To have a decision procedure that an-
swers this question is the fundamental prerequisite for facilitating essential database tasks
like automatic schema design and semantic query optimization.

We now summarize the contributions of this thesis. Preliminary results from the thesis
have already been published in [41, 42]. Details will be given in the subsequent chapters.

Keys and foreign keys for XML: A foreign key is in general the combination of a key
and an integrity constraint commonly known as inclusion dependency. The key asserts that
certain values identify referenced data entities, and the inclusion dependency asserts a subset
relationship between distinguished values of referencing data entities and the identifying val-
ues of referenced data entities. For this reason XML keys and XML inclusion dependencies
are developed in this thesis in order to provide keys and foreign keys for XML.

We call the approach to XML integrity constraints presented in this thesis the enhanced
‘closest node’ approach. This approach adopts the syntactic framework for XML integrity
constraints proposed by XML Schema, which we call the selector/field framework subse-
quently. In the selector/field framework integrity constraints are specified in form of pairs
of a selector and a set of fields. The selector is used for selecting entity nodes in an XML
document and the fields are used to relate property nodes to the selected entity nodes. We
adopt the selector/field framework so that the syntax of XML keys and inclusion dependen-
cies directly corresponds to the intended purposes of XML keys and inclusion dependencies,
i.e. to identify entity nodes on the basis of values of distinguished property nodes, and to
assert subset relationships between values of distinguished property nodes related to two
sets of entity nodes. Hence, application developers are provided with an intuitive manner
to specify XML keys and XML inclusion dependencies.

Example 1.15 (selector/field framework) Referring to Example 1.6, the XML key
asserting that invoices are identified by the invoice period together with the code
and number of each phone stated in an invoice line is specified by the statement
(Company.Invoices.Invoice, (prd, Line.code, Line.no)) in the selector/field framework.
The path Company.Invoices.Invoice is thereby the selector, and paths prd, Line.code, and
Line.no are the fields which relate combinations of a prd node, a code node, and no node
to each selected Invoice node.

Analogously, the XML inclusion dependency that expresses the reference part
of the XML foreign key from Invoices to Phones is specified by the statement
(Company.Invoices.Invoice, (cno, Line.code, Line.no)) ⊆ (Company.Phones.Phone, (cno,
code, no)) in the selector/field framework. This XML inclusion dependency consists of two
pairs of a selector and a set of fields. In particular, paths Company.Invoices.Invoice and
Company.Phones.Phone are the left hand side (LHS) and right hand side (RHS) selectors,
which point to the referencing Invoice nodes and the referenced Phone nodes, respectively.
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The LHS fields cno, Line.code, Line.no and the RHS fields cno, code, no then assert the
desired subset relationship between the values of any combination of a cno node, a code

node, and a no node nested within a selected Invoice node, and the values of at least one
combination of a cno node, a code node, and a no node nested within a selected Phone node.

Whereas XML integrity constraints in the enhanced ‘closest node’ approach have the
same syntax as XML Schema constraints, they have different semantics in order to accom-
modate the requirements identified in Section 1.2.

The rationale for handling multiple property nodes in the enhanced ‘closest node’ ap-
proach relies on the assumption that the degree of structural coherence in a set of nodes
is directly proportional to the degree of coherence in the represented information. That is,
the closer some nodes are arranged in an XML document, the stronger is the coherence in
the represented information. This assumption is not unusual, and is also postulated in ap-
proaches to XML keyword search for example [43, 44]. The rationale for handling multiple
property nodes is then to only use those combinations of property nodes for the purpose of
value-based comparison of entity nodes, where the degree of structural coherence is maxi-
mal. As a consequence, also the coherence in information represented by a combination of
property nodes is maximal, and so semantically incorrect combinations of property nodes
are disregarded in checking XML keys and inclusion dependencies. To determine whether
the structural cohesion in a combination of property nodes is maximal, we use the closest
property of nodes originally presented by Vincent et al. in defining an XML functional de-
pendency [20]. Intuitively, a pair of nodes in an XML document satisfy the closest property
if the nodes cannot be arranged more closely when taking into account the paths that lead
to the nodes. Technically, a pair of nodes satisfy the closest property, if the nodes have a
common ancestor node reachable over the intersection of the paths leading to the nodes.

Example 1.16 (closest property of nodes) Consider the code nodes and no nodes in
the XML tree depicted in Figure 1.5 which are nested within the Invoice node that rep-
resents the invoice for customer C1 in January 2009. The paths leading to code nodes
and no nodes from the root of the XML tree are Company.Invoices.Invoice.Line.code and
Company.Invoices.Invoice.Line.no, respectively. With respect to these paths, the structural
cohesion between a code node and a no node is maximal, if the nodes have a common an-
cestor node at path Company.Invoices.Invoice.Line. In fact, the pairs of a code node and
a no node which satisfy this requirement are precisely the semantically correct combinations
0660/1010 and 0990/2020 . In contrast the semantically incorrect combinations 0660/1010

and 0990/2020 do not satisfy the closest property, since neither one of these pairs of nodes
have a common ancestor at the intersection path Company.Invoices.Invoice.Line.

It is worth being mentioned that two nodes satisfying the closest property is not identical
with the property of two nodes to have the same parent node. For instance the combination
of the code node 0660 and the prd node 01/09 nested within the Invoice node representing
the invoice for customer C1 in January 2009 do not have the same parent node but satisfy
the closest property. The reason is that these two nodes have a common ancestor node at
the intersection path Company.Invoices.Invoice.

The manner in which absent property nodes are handled in the enhanced ‘closest node’
approach addresses XML documents where
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(i) information is complete and absent property nodes therefore reflect some degree of
heterogeneity in real world entities, or

(ii) information is incomplete and absent property nodes are interpreted in terms of the
no information interpretation as recommended in the XML specification by the W3C.

In both situations, checking for constraint satisfaction using a completion of the XML
document is incorrect, as has been illustrated in Example 1.10. So, since applying weak
or strong satisfaction semantics is incorrect in the context of absent property nodes, the
conclusion we draw is that XML keys and inclusion dependencies must be checked solely
on the basis of values in those combinations of property nodes that are present in an XML
document. In order to enable the comparison of entity nodes by the values in incomplete
combinations of property nodes, we introduce the novel concept of maximum combinations
of property nodes. Instead of comparing entity nodes only on the basis of values in complete
combinations of property nodes, entity nodes are compared in the enhanced ‘closest node’
approach on the basis of values in all semantically correct combinations of property nodes
that are maximal with respect to the number of nodes. Two maximum combinations of
property nodes are thereby value equal if (i) they contain the same number of nodes, and
(ii) the nodes represent the same properties of real world entities, and (iii) the nodes have
the same value assigned.

Example 1.17 (maximum combination of property nodes) Referring to Example
1.5, in checking the XML key that asserts the identification of addresses of customers by
the combinations of city, street, house number and apartment number in the XML tree de-
picted in Figure 1.4, the maximum combinations of property nodes are NY, 5th Avenue, 50 and
NY, Park Avenue, 30, 2B with respect to the addresses of customers Henry and Smith, respec-
tively. These two maximum combinations of property nodes are not value equal, since they
do not contain the same number of nodes, and so the XML key is satisfied when comparing
entity nodes on basis of maximum combinations of property nodes.

If instead this XML key is checked in the XML tree depicted in Figure 1.6, the maximum
combination of property nodes is NY, 5th Avenue, 50 for the addresses of both customers Henry

and Smith. These two maximum combinations of property nodes are value equal, since (i)
they both contain three nodes, (ii) the nodes in both combinations represent the city, street
and house number of an address, and (iii) the nodes in the two combinations are value
equal. The XML key is therefore violated as desired when comparing entity nodes on basis
of maximum combinations of property nodes.

In summary, the first contribution of this thesis is the formal definition of XML keys
(XKeys) and XML inclusion dependencies (XINDs) which adopt the intuitive selector/field
syntax, as well as the ‘closest node’ approach in order to adequately handle multiple property
nodes. The enhancement to the ‘closest node’ approach is to use the novel concept of
maximum combinations of property nodes in order to adequately deal with absent property
nodes.

Transformation Procedure: The procedure for transforming relational data to XML
data presented in this thesis adopts the transformation procedure presented in [25], which



24 CHAPTER 1. INTRODUCTION

allows for transforming a single relation on the basis of nested tuples. Application devel-
opers thereby govern the restructuring of information by specifying the sequence of nesting
operations to be applied on the initial relation prior to the mapping. We extend this trans-
formation procedure to the general case of transforming a set of relations as follows. Each
relation is first transformed to an individual XML tree by applying the original transforma-
tion procedure. The final XML tree is then composed by adding the individual XML trees
as principal subtrees to the final XML tree.

Example 1.18 (transformation procedure) The transformation of relations Invoice

and Phone illustrated in Example 1.6 is an instance of the transformation procedure presented
in this thesis. The relations Invoice and Phone are first transformed to the individual XML
trees rooted at the Invoices node and the Phones node depicted in Figure 1.5c, respectively.
Relation Invoice is thereby restructured in that it is nested on attributes code, no, amt prior
to the mapping. The final XML tree depicted in Figure 1.5c is then composed by adding these
individual subtrees as principal subtrees.

Further, a procedure for automatically deriving XKeys and XINDs from relational keys
and inclusion dependencies is developed in correspondence to the transformation procedure.
The second contribution of this thesis is to present the transformation procedure and the
procedure for deriving XKeys and XINDs in terms of precise algorithms. It is shown more-
over that derived XKeys and XINDs preserve relational data semantics. In particular the
result is established that if a set of complete flat relations satisfy a set of keys and inclu-
sion dependencies, then the XML tree obtained from these relations satisfies the XKeys and
XINDs derived from the relational constraints.

Thus, the approach presented in this thesis satisfies all the requirements presented in
Section 1.2.

Consistency and Implication Problems: The third contribution of this thesis is to solve
the consistency and implication problems related to enhanced ‘closest node’ XML keys and
inclusion dependencies in the context of a class of XML trees originally proposed by Vincent
et al. [20], called complete XML trees. Intuitively, a complete XML tree is one that contains
no missing data, and is intended to extend the notion of a complete relation to XML by
requiring that every path in the XML tree, rather then every tuple as in the relational
case, contains the maximal amount of information. A complete XML tree is however a
more general notion than a complete relation since it includes XML trees that cannot be
mapped to complete relations, such as those that contain duplicate nodes or subtrees, and
XML trees that contain element leaf nodes rather than only text or attribute leaf nodes.
The motivation for considering complete XML trees is that while XML explicitly caters for
irregularly structured data, it is also widely used in more traditional business applications
involving regularly structured data, often referred to as data-centric XML [7]. For example,
a recent survey of several hundred large companies in the United States found that around
70% were now using XML enabled databases, or native XML databases, for their core data
processing functions [45]. In this setting, complete XML trees are a natural and important
subclass, just as complete relations are in relational databases.

In the context of complete XML trees we show in particular that every set of XML keys
or XML inclusion dependencies is consistent. Concerning the implication of XML keys and
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XML inclusion dependencies, sound and complete sets of inference rules as well as decision
procedures for both types of constraints are developed.

1.5 Outline

The remainder of this thesis is organized into two parts devoted to the design and study of
XML keys and XML inclusion dependencies.

Chapter 2 - Related Work gives an overview on previous approaches to XML integrity con-
straints. The focus is thereby on how the challenges identified in the introduc-
tory chapter are being dealt with.

Chapter 3 - The Enhanced Closest node Approach presents the formal definitions of XKeys
and XINDs and illustrates that XKeys and XINDs adequately handle multiple
property nodes and also absent property nodes.

Chapter 4 - Preserving Relational Semantics presents the algorithms for transforming a
set of relations to a single XML document on the basis of nested tuples and
also the algorithms for deriving XKeys and XINDs from relational keys and
inclusion dependencies. It is shown that XKeys and XINDs preserve original
data semantics.

Chapter 5 - The Context for Reasoning about XKeys and XINDs introduces the notion of
complete XML trees and revisits the satisfaction of XKeys and XINDs in the
context of complete XML trees.

Chapter 6 - Reasoning about XKeys investigates the consistency and implication problems
related to XKeys in the context of complete XML trees. A sound and complete
set of inference rules and as well as a decision procedure for the implication of
XKeys in complete XML trees are presented.

Chapter 7 - Reasoning about XINDs investigates the consistency and implication problems
related to XINDs in the context of complete XML trees. A sound and complete
set of inference rules as well as a decision procedure for the implication of
XINDs in complete XML trees are presented.

Chapter 8 - Conclusion summarizes the thesis and gives an outlook on possible future work.
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This chapter relates previous approaches to XML integrity constraints to the enhanced
‘closest node’ approach proposed in this thesis. The focus is thereby on how previous ap-
proaches deal with the challenges identified in Chapter 1. Also, major theoretical results
related to previous approaches are summarized, where results on the implication and consis-
tency problems are emphasized. Section 2.1 outlines the context of our survey. It presents
a categorization of XML integrity constraints and a benchmark test for the class of value-
based XML integrity constraints where enhanced ‘closest node’ XML integrity constraints
fall into. Sections 2.2 - 2.6 then illustrate and evaluate previous approaches, and Section 2.7
finally summarizes their strengths and weaknesses.

29



30 CHAPTER 2. RELATED WORK

2.1 Context of the Survey

A plethora of different types of XML integrity constraints is to be found in literature. These
XML integrity constraints form the following categories with respect to their intended pur-
pose: schema constraints, path constraints, complex constraints and value-based constraints.
Section 2.1.1 gives a brief overview on these categories of XML integrity constraints and
also on major theoretical results related to the XML integrity constraints in the individual
categories.

2.1.1 A Categorization of XML Integrity Constraints

With respect to their intended purpose, XML integrity constraints are grouped into the
following disjoint categories:

Schema Constraints: XML schema languages typically impose structural and domain
constraints, which are subsumed under the umbrella term of schema constraints. Structural
constraints thereby specify for example the labels, nesting and cardinality of nodes in an
XML document. Domain constraints in contrast specify the set of permitted values for
nodes carrying text. Numerous different XML schema languages have been proposed so far
like, for example, XML Schema, RelaxNG [46], RegXPath [47] and XCSL [48]. Whereas
structural and domain constraints are specified in form of type definitions in XML Schema
and RelaxNG, these types of constraints are specified in form of rules in RegXPath and
XCSL. In general, the expressivity between XML schema languages differs largely. The
interested reader is referred to the excellent surveys in [49, 50] for a more detailed overview
on XML schema languages.

Results on the consistency of structural constraints, i.e. the question of whether there
exists at least one XML document that satisfies a given schema, have been established
recently. For instance, the consistency of a Document Type Definition (DTD), which is
the predecessor of XML Schema, is efficiently decidable [51]. In contrast, the consistency
of a set of RegXPath constraints, which basically have the same expressivity as structural
constraints in XML Schema, cannot be efficiently computed [47].

Path Constraints: In general, identity-based data models, like the object-oriented data
model for example, permit references between objects by object identifiers, as opposed to
value-based references in terms of foreign keys. Path constraints allow to specify dependen-
cies between sequences of objects which are connected by object references, i.e. paths. The
probably most prominent types of path constraints are path inclusion constraints and path
inverse constraints. Roughly speaking, a path inclusion constraint requires that if an object
o is reachable from an object o′ by following some path, then o must also be reachable from
o′ by following some other path. A path inverse constraint requires that if an object o is
reachable from an object o′, then also o′ must be reachable from o.

Path inclusion and path inverse constraints for XML data have been proposed by Abite-
boul et al. [52] and Buneman et al. [53], where nodes and edges take on the roles of objects
and object references, respectively. XML documents are thereby modeled as rooted graphs
of nodes rather than as rooted trees, which allows to represent identity-based references in
XML documents specified by advanced mechanisms such as XPointer [54] and XLink [55].
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The implication problem for path constraints, i.e. the question of whether a certain path
constraint must hold in every XML document which satisfies a given set of path constraints,
has been studied both in the absence of DTDs [56, 57] and in the presence of DTDs [58],
with the main finding that there are practical classes of path constraints in both settings
for which the implication problem is efficiently decidable.

Complex Constraints: Constraint languages like INCOX [59] or SCHEMATRON [60]
have been developed in order to specify complex, semantic integrity constraints on XML
data. Such constraints result from general business rules like, for instance, if a customer
has at least three cell phones, he/she gets 10 percent discount on phone charges. Complex
constraint languages are similar to assertions in SQL, and allow the specification of con-
straints in a rule based manner, where powerful XML query languages like XPath [61] or
even XQuery [62] are permitted in order to select those parts of an XML document against
which the constraint is checked.

Theoretical results for complex XML constraints are missing so far. The reason for
this is probably that the powerful XML query languages used for specifying complex XML
constraints make reasoning very hard.

Value-based Constraints: The commonality of value-based XML integrity constraints
is that they impose dependencies between the data in an XML document, i.e. the values
of nodes. Apart from XML keys and XML foreign keys, prominent types of value-based
XML integrity constraints are for example XML functional dependencies, XML inclusion
dependencies and XML multivalued dependencies. These types of XML integrity constraints
correspond to the respective types of relational integrity constraints. Value-based XML
integrity constraints are surveyed in detail in the remainder of this chapter.

The approach to XML integrity constraints proposed in this thesis obviously belongs
to the category of value-based XML integrity constraints. Therefore, a direct comparison
between enhanced ‘closest node’ XML integrity constraints and value-based XML integrity
constraints is possible, whereas a comparison with XML schema constraints, XML path
constraints, and complex XML constraints is not.

2.1.2 A Benchmark Test for value-based XML Integrity Con-
straints

In our survey of previous approaches to value-based XML integrity constraints we pay special
attention on how these approaches deal with the challenges identified in Section 1.2. For
this purpose the XML integrity constraints listed in Table 2.1 are used as benchmark test,
and we now explain how these benchmark constraints are related to the challenges identified
in Section 1.2. These challenges are in summary (a) to handle multiple property nodes, with
the specific challenge for XML keys to guarantee the uniqueness of property nodes, (b) to
handle absent property nodes, and (c) to preserve original data semantics, when relational
data is transformed to XML data.

Testing the ability of an approach to handle multiple property nodes: For this
purpose, XML tree T1 depicted in Figure 2.1 is validated against XML key K1 and XML
inclusion dependency I1 introduced in Example 1.6. XML key K1 asserts that invoices
(Invoice) are identified by the invoice period (prd) in combination with the code (code)
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# Description Type

K1 Invoices are identified by the invoice period together with the code and
number of each phone for which phone charges are invoiced.

Key

F1 The id of an invoice is determined by the invoice period together with
the code and number of each phone for which phone charges are invoiced.

FD

I1 The combinations of phone codes and numbers and the customer number
in an invoice are subsets of the combinations of codes and numbers of
existing phones and the numbers of customers owning the phones.

IND

K2 Addresses of customers are identified by the combinations of city, street,
house number and apartment number.

Key

F2 The id of a customer’s address is determined by the combination of city,
street, house number and apartment number.

FD

I2 Invoice addresses are a subset of customer addresses. IND

Table 2.1: Benchmark XML integrity constraints.

and number (no) of each phone for which phone charges are invoiced. This XML key should
be satisfied in XML tree T1, since the semantically correct combinations {01/09 , 0660 ,
1010 }, {01/09 , 0990 , 2020 }, and {01/09 , 0660 , 2020 } uniquely identify the Invoice nodes
in XML tree T1. Note that the invoice for customer C1 in XML tree T1 lists phone charges
for two phones. Multiple code nodes and no nodes therefore must be handled in validating
XML tree T1 against XML key K1.

For some approaches to value-based XML integrity constraints a key constraint has not
been proposed so far, which prevents the evaluation of these approaches using benchmark
constraint K1. To capture this situation in the benchmark test, we introduce the id of an
invoice, and use XML functional dependency F1 instead of XML key K1. XML functional
dependency F1 is inspired by XML key K1 and requires that prd, code and no determine the
id of an invoice. Note that multiple code nodes and no nodes must also be handled when
XML functional dependency F1 is checked in XML tree T1. XML functional dependency
F1 should be satisfied in XML tree T1 for reasons similar to which XML key K1 should be
satisfied in this XML tree.

XML inclusion dependency I1 asserts that a customer receives an invoice only for phones
he/she owns, and therefore requires that the combinations of cno, code, and no nodes nested
within Invoice nodes are a subset of the combinations of cno, code, and no nodes nested
within Phone nodes. Again, since the invoice for customer C1 in XML tree T1 lists phone
charges for two phones, multiple property nodes occur when checking the satisfaction of
XML inclusion dependency I1 in XML tree T1. XML inclusion dependency I1 should be
satisfied in XML tree T1 since the semantically correct combinations {C1 , 0660 , 1010 }, {C1 ,
0990 , 2020 }, and {C2 , 0660 , 2020 } are indeed also combinations of cno, code, and no nodes
nested within Phone nodes.

In order to evaluate whether a proposal for an XML key ensures uniqueness of property
nodes, XML tree T2 depicted in Figure 2.2 is validated against XML key K1. Note that the
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Figure 2.1: XML tree T1 used for testing the ability of value-based XML integrity con-
straints to handle multiple property nodes.

invoice for customer C1 lists charges for the phone 0990/2020 in period 01/09 twice, which
is clearly not desirable. Consequently, the combination {01/09 , 0990 , 2020 } is redundantly
represented in XML tree T2, and thus XML key K1 should be violated.
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Figure 2.2: XML tree T2 used for testing the ability of XML keys to ensure uniqueness of
property nodes.

Testing the ability of an approach to handle absent property nodes: The rationale
for this test is that an XML integrity constraint must not be satisfied (or violated) solely
because of the absence of some property nodes. For this purpose, the satisfaction of XML
Key K2 and XML inclusion dependency I2 introduced in Examples 1.5 and 1.10 is checked
in the XML trees depicted in Figures 2.3 and 2.4, respectively.

XML key K2 asserts that a customer’s address is identified by the combination of city
(city), street (strt), house number (hno), and apartment (ano). XML key K2 should
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Figure 2.3: XML trees T3 and T4 used for testing the ability of XML keys and XML
functional dependencies to handle absent property nodes.

be satisfied in XML tree T3, which is depicted in Figure 2.3a, for the obvious reason that
{NY , 5th Avenue , 50 }, and {NY , Park Avenue , 30 , 2B } are different addresses. In contrast,
XML key K2 should be violated in XML tree T4 depicted in Figure 2.3b. Both XML trees
represent addresses which do not have an apartment number, and so absent ano nodes must
be handled in checking the satisfaction of XML key K2.

In order to evaluate approaches to value-based XML integrity constraints for which a
key constraint has not been defined so far, we introduce the id of an address and use
XML functional dependency F2 instead of XML key K2. XML functional dependency F2

is inspired by XML key K2 and requires that the id of an address is determined by the
combination of city, strt, hno, and ano. For reasons similar to which XML key K2 should
be satisfied in XML tree T3 but violated in XML tree T4, also XML functional dependency
F2 should be satisfied in XML tree T3 but violated in XML tree T4.
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Figure 2.4: XML trees T5 and T6 used for testing the ability of XML inclusion dependencies
to handle absent property nodes.

XML inclusion dependency I2 asserts that customer addresses are a subset of invoice
addresses, and therefore requires that the combinations of city, strt, hno, and ano nodes
nested within invoice nodes are a subset of the combinations of city, strt, hno, and
ano nodes nested within customer nodes. XML inclusion dependency I2 should be satisfied
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in XML tree T5, which is depicted in Figure 2.4a, since {NY , Park Avenue , 30 } is both an
invoice address and also the address of a customer. In contrast, XML inclusion dependency
I2 should be violated in XML tree T6 depicted in Figure 2.4b since {NY , Park Avenue , 30 }
is an invoice address but not the address of any customer. Because none of the addresses
in XML trees T5 and T6 state an apartment number, absent ano nodes must be handled in
checking XML inclusion dependency I2.

Testing the ability of an approach to preserve relational data semantics: We
are specifically interested in whether an approach to value-based XML integrity constraints
allows to preserve the semantics of relational keys and foreign keys when relational data is
first nested and then mapped to XML as illustrated in Section 1.2.2.

To keep the number of XML integrity constraints and XML trees in the benchmark test
as small as possible, XML integrity constraints K1 and I1 as well as XML tree T1 are used
for evaluating the ability of an approach to XML integrity constraints to preserve relational
data semantics. XML tree T1 can be used since it results from mapping relations Invoice

and Phone depicted in Figure 1.5, after tuples in relation Invoice have been nested on
the charged amount (amt) together with the code (code) and number (no) of phones, as
illustrated in Example 1.6. Also, XML key K1 and XML inclusion dependency I1 can be
used since they have been derived from the key (code, no, prd) in relation Invoice and the
foreign key (cno, code, no) from relation Invoice to relation Phone, respectively. Hence,
an approach to XML integrity constraints allows to preserve relational data semantics, if
XML key K1 (or the corresponding XML functional dependency F1) and XML inclusion
dependency I1 are satisfied in XML tree T1 according to the semantics of XML integrity
constraints in the particular approach.

Table 2.2 summarizes the test cases of our benchmark test. We use test cases C1 and C2
to evaluate the ability of an approach to handle multiple property nodes and also to evaluate
the ability of an approach to preserve the semantics of relational data when it is transformed
to XML data. The specific ability of XML keys to ensure uniqueness of property nodes is
evaluated using test case C3. The remaining test cases C4 - C7 are used to evaluate the
ability of an approach to handle absent property nodes.

Evaluated Ability Test Case

# Benchmark XML Expected
Constraint Tree Result

Handling of multiple property nodes / C1 K1/F1 T1 satisfied
Preserving relational semantics C2 I1 T1 satisfied

Ensuring uniqueness of property nodes C3 K1 T2 violated

Handling of absent property nodes

C4 K2/F2 T3 satisfied
C5 K2/F2 T4 violated
C6 I2 T5 satisfied
C7 I2 T6 violated

Table 2.2: Benchmark tests for value-based XML integrity constraints.
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We now review previous approaches to value-based XML integrity constraints and eval-
uate them using the benchmark test developed in this section. The interested reader is
referred to the excellent surveys in [10, 63–65] for comparative analyses of value-based XML
integrity constraints from other perspectives.

2.2 ID and IDREF constraints in DTD

Early identification and reference mechanisms are the ID and IDREF constraints provided
by DTDs. An ID constraint asserts that the values of distinguished attribute nodes are
unique within an entire XML document, and the IDREF constraint allows to reference
such ID attributes. Document Type Definitions also offer a set-valued reference constraint
in form of the IDREFS constraint. The value of an attribute node of type IDREFS is a
whitespace-separated list of references to ID nodes.

ID and IDREF constraints have limited expressivity in that they are unary constraints
which are neither typed nor scoped. In this regard typing means that an XML integrity
constraint allows for constraining distinguished types of data entities, whereas the scope of
an XML integrity constraint denotes the sub-hierarchy in an XML document in which the
constraint takes effect. Because ID and IDREF constraints are neither typed nor scoped,
they are somewhat similar to object identifiers and object references known from the object
oriented data model.

ID and IDREF constraints do not allow to specify any of the benchmark constraints
listed in Table 2.2 because of their limited expressivity. Also, problems caused by multiple or
absent property nodes are sidestepped since ID and IDREF constraints are unary constraints.

2.3 Selector/Field XML Integrity Constraints

The commonality of selector/field constraints is that they are made up of pairs of the form
S, {F1, . . . , Fn}, where S is called the selector and F1, . . . , Fn are called fields. The selector
is used for selecting entity nodes in an XML document. For each selected entity node, the
fields F1, . . . , Fn specify sets of property nodes, as illustrated in the next example.

Example 2.1 Consider the selector/field pair Company.Invoices.Invoice, {Line.code,
Line.no} and XML tree T1. The set of nodes selected by Company.Invoices.Invoice in T1

contains the two Invoice nodes v3 and v15. Regarding selector node v3, fields Line.code and
Line.no specify the following sets of field nodes: {v6, v7}, {v6, v11}, {v10, v7}, and {v10, v11}.
Each of these sets of field nodes contains one code node and one no node. Note that only
the sets {v6, v7} and {v10, v11} are semantically correct combinations of field nodes, since
{v6, v11} as well as {v10, v7} contain a code node and a no node which do not belong to the
same invoice line.

Selector/field XML keys and foreign keys realize the notions of entity identification and
entity references in a straight and direct manner. Selector nodes and field nodes thereby
parallel entity nodes and property nodes, respectively. A selector/field key, which is made
up of a single selector/field pair as depicted in Table 2.3, aims at the identification of selected
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entity nodes by specified sets of field nodes. A selector/field key asserts in an XML document
that there do not exist distinct selector nodes v and v′ with sets of field nodes v1, . . . , vn for
v and v′1, . . . , v

′
n for v′ such that v1, . . . , vn and v′1, . . . , v

′
n are value equal.

XML Key (S, (F1, . . . , Fn))

XML Inclusion Dependency (S, (F1, . . . , Fn)) ⊆ (S′, (F ′1, . . . , F
′
n))

Table 2.3: General form of selector/field XML keys and XML inclusion dependencies.

A selector/field foreign key, and also the more general selector/field inclusion dependency,
is made up of two selector/field pairs as depicted in Table 2.3. We will refer to these
selector/field pairs as the left hand side (LHS) and right hand side (RHS) selector/field in
the following. A selector/field inclusion dependency asserts for an XML document that for
each LHS selector node v with field nodes v1, . . . , vn, there exists a RHS selector node v′

with field nodes v′1, . . . , v
′
n such that v1, . . . , vn and v′1, . . . , v

′
n are value equal.

Concerning the challenges which we have identified in Section 1.2, the primary question
related to selector/field constraints is how sets of field nodes are formed in case that either
multiple nodes are available for some field with respect to a given selector node, or conversely
that no node is present at all for some field. In this regard the individual proposals for selec-
tor/field constraints form the following classes: selector/field constraints with restrictions on
fields , selector/field constraints with restrictions on field nodes , unrestricted selector/field
constraints . We devote Subsections 2.3.1 - 2.3.3 to these classes of selector/field constraints.

2.3.1 Selector/Field Constraints with Restrictions on Fields

Fan & Libkin originally proposed selector/field constraints which are defined on element
types in a DTD. In particular, the selector of a constraint is specified in form of an element
type, and the fields are specified in form of attributes of the selected element type. In this
setting Fan & Libkin proposed keys, inclusion dependencies, and foreign keys for XML [66],
but also the more exotic types of XML non-identification constraints and XML exclusion
constraints [15], which are roughly speaking negations of keys and inclusion dependencies,
respectively. Arenas et al. proposed scoped versions of the keys, foreign keys, and inclusion
dependencies in the class of selector/field constraints with restrictions on fields [16]. The
scope of a constraint is thereby also specified in form of an element type.

The expressivity of selector/field constraints with restrictions on fields is rather low
because of the requirement on fields to be attributes declared for the selected element type.
Except for XML key K2, it is not possible to specify any of the benchmark constraints
depicted in Table 2.2 in form of a selector/field constraint with restrictions on fields. To
illustrate XML key K2 in form of a selector/field key with restrictions on fields, Figure 2.5
depicts DTD D1 which specifies the structure of XML tree T3 − T6. Attributes city, strt,
hno, and ano are implied attributes in DTD D1. This permits Addr nodes in conforming
XML trees to lack any of these attribute nodes, and so reflects possible heterogeneity in
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addresses. With respect to DTD D1, XML key K2 is of the form (Addr, (city, strt, hno,
ano)), where Addr is the selected element type, and city, strt, hno, and ano are attributes
declared for element type Addr.

<!DOCTYPE COMPANY[

<!ELEMENT Company (Customer*,Invoice*)>

<!ELEMENT Customer (Addr)>

<!ELEMENT Invoice (Addr)>

<!ELEMENT Addr EMPTY>

<!ATTLIST Addr city CDATA #IMPLIED>

<!ATTLIST Addr strt CDATA #IMPLIED>

<!ATTLIST Addr hno CDATA #IMPLIED>

<!ATTLIST Addr ano CDATA #IMPLIED>

<!ATTLIST Addr id CDATA #REQUIRED>

]>

Figure 2.5: DTD D1 specifying the structure of XML trees T3 − T6.

We now detail on how selector/field constraints with restrictions on fields deal with
multiple or absent field nodes.

Handling of multiple field nodes: According to the XML specification by the W3C,
no two distinct attribute nodes are permitted to have the same label if they have the same
parent node. From the point of view of an element node this means that for a given label
at most one attribute node is permitted. In combination with the restriction on fields to be
attributes of selected element types this means that for each selector node there is at most
one field node per field and so multiple field nodes do not occur during the validation of
selector/field constraints with restrictions on fields. Thus, the problems related to multiple
property nodes are sidestepped by selector/field constraints with restrictions on fields.

Handling of absent field nodes: The approaches presented in [15, 16, 66] assume that
all attributes declared in a DTD are ‘required’ attributes as opposed to ‘implied’ attributes
which are used in DTD D1. Hence, DTD D1 and, as a consequence, XML trees T3 and
T4 are invalid according to the approaches presented in [15, 16, 66]. Whereas benchmark
XML key K2 can be syntactically specified in terms of a selector/field key with restrictions
on fields, which we have illustrated previously, K2 is neither satisfied nor violated in XML
trees T3 and T4 since these XML trees are, due to limited support of DTD, invalid in the
approaches presented in [15, 16, 66].

In general, the assumption that all attributes in a DTD are required attributes, in com-
bination with the restriction on fields to be attributes of selected element types implies that
for each selected entity node there is exactly one field node per field. Therefore, absent
field nodes do not occur during the validation of selector/field constraints with restrictions
on fields. Hence, also the problems related to absent property nodes are sidestepped by
selector/field constraints with restrictions on fields.
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We conclude the discussion of selector/field constraints with restrictions on fields by
giving an overview on related theoretical results. The class of selector/field XML integrity
constraints with restrictions on fields has been extensively studied. The combined implica-
tion problem related to keys and inclusion dependencies has been shown to be undecidable
in general [15], which is expected given the well known result on the combined implication
problem for functional dependencies and inclusion dependencies in the relational setting.
Under the primary key assumption, which is that there is at most one key for each element
type in a DTD, the implication problem becomes tractable, and a set of sound and complete
inference rules has been presented for this special case [15].

As for the implication problem, the consistency problem related to keys and inclusion
dependencies in the class of selector/field constraints with restrictions on fields has been
shown to be undecidable in the presence of conventional DTDs [15] and also in the presence
of DTDs that allow for subtyping [67]. That is, it cannot be determined in general whether
there exists at least one XML document that conforms to a DTD and satisfies a given set
of keys and inclusion dependencies. The consistency problem becomes tractable for unary
keys and inclusion dependencies [15].

2.3.2 Selector/Field Constraints with Restrictions on Field Nodes

The XML Schema specification provides scoped selector/field constraints where the scope of
a constraint is specified in form of an element type definition in the XML Schema. The selec-
tor as well as the fields of a constraint are specified in form of restricted XPath expressions
[61]. The permitted fragment of XPath allows roughly speaking for downward navigation
with wildcards but excludes predicates and functions. The peculiarity of selector/field con-
straints in XML Schema is that the cardinality of field nodes is implicitly constrained in
that at most one field node is permitted per field for a given selector node.

In this setting the XML Schema specification provides two types of XML keys and also
an XML foreign key. The two types of XML keys, subsequently called ‘XSD key’ and ‘XSD
unique’, parallel the notions of primary keys and candidate keys known from the relational
setting. Tan et al. [68] proposed a scoped selector/field functional dependency which requires
in accordance to the XML Schema constraints that there is at most one field node per field
for a given selector node. Unlike XSD unique constraints and XML functional dependencies
presented in [68], XSD keys as well as XSD foreign keys additionally require that there is
at least one field node per field for a given selector node, and so there must be exactly one
field node per field.

We now detail on how these implicit cardinality constraints effect the semantics of a se-
lector/field constraint in case that multiple or absent field nodes occur in an XML document.
In this regard, XSD unique constraints are equivalent to the XML functional dependencies
presented in [68] since both types of constraints impose the same cardinality constraint on
field nodes. We therefore do not explicitly address the latter in the subsequent discussion.

Compared to selector/field constraints with restrictions on fields, XSD constraints pro-
vide greater flexibility for specifying fields, and in fact allow to specify benchmark constraints
K1, K2, I1, and I2, which are shown in Table 2.4 in form of XSD constraints. Since K1, K2,
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I1, and I2 are all global constraints, the explicit specification of the scope of a constraint is
omitted in Table 2.4 for reasons of brevity.

K1 (//Invoice, (prd, Line.code, Line.no))

K2 (//Addr, (city, strt, hno, ano))

I1 (//Invoice, (cno, Line.code, Line.no)) ⊆ (//Phone, (cno, code, no))

I2 (//Invoice.Addr, (city, strt, hno, ano)) ⊆ (//Customer.Addr, (city, strt, hno, ano))

Table 2.4: Benchmark constraints K1, K2, I1, and I2 specified as selector/field constraints.

Handling of multiple field nodes: Because XSD constraints require that there is at most
one field node per field for a given selector node, an XSD constraint is violated if multiple
field nodes occur. For example, according to the semantics of XSD constraints, K1 and I1

are both violated in XML tree T1, since Invoice node v3, which is selected by both K1 and
I1, obviously has multiple field nodes for fields Line.code and Line.no, i.e. nodes {v6, v10}
and {v7, v11}, respectively. Given that K1 and I1 should be satisfied in XML tree T1, XSD
constraints do not adequately handle multiple field nodes.

Ensuring uniqueness of field nodes: A direct consequence of the implicit cardinality
constraints on field nodes imposed by XSD keys and XSD unique constraints is that there is
at most one set of field nodes for a given selector node, and so the uniqueness of field nodes
is ensured. In fact, according to the semantics of XSD keys and XSD unique constraints,
K1 is violated in XML tree T2, which is desired. In particular, the selected Invoice node v3

in XML tree T2 has multiple field nodes for both fields Line.code and Line.no, i.e. nodes
{v5, v9} and {v6, v10}, and so K1 is violated in XML tree T2 according to the semantics of
XSD keys and XSD unique constraints.

Handling of absent field nodes: The implicit cardinality constraints on field nodes
imposed by XSD keys and XSD foreign keys prohibit absent field nodes, and so K2 is
violated in both XML trees T3 and T4, as well as I2 is violated in both XML trees T5 and
T6 according to the semantics of XSD constraints. The reason for this is that the selected
Addr node v3 does not have a field node for the field ano in each one of these XML trees.
Given that K2 and I2 should be satisfied in XML trees T3 and T5, respectively, XSD keys
and XSD foreign keys do not adequately handle absent field nodes.

In contrast to XSD keys, absent field nodes are permitted by XSD unique constraints,
which only requires that there is at most one field node per field for a given selector node.
Unfortunately, selector nodes which do not have field nodes for some fields are simply ig-
nored when checking the satisfaction of an XSD unique constraint. For example, regarding
benchmark constraint K2 and XML tree T4, the Addr nodes v3 and v9 are ignored since
both nodes do not have a field node for the field ano. Consequently, K2 is satisfied in XML
tree T4 according to the semantics of XSD unique constraints. Since this is not desired, also
XSD unique constraints do not adequately handle absent property nodes.
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We conclude the discussion of selector/field constraints with restrictions on field nodes
by giving an overview on related theoretical results. Only little attention has been paid so
far on the study of this class of XML integrity constraints. Regarding XSD keys and XSD
foreign keys, the only result established so far is that the related consistency problem is
undecidable in the presence of a DTD [67, 69]. For the selector/field functional dependency
proposed by Tan et al. in [68], a validation algorithm based on tree-automata has been
presented recently which allows to validate an XML document against a DTD and a set of
functional dependencies in a single-pass [70].

2.3.3 Unrestricted Selector/Field Constraints

Buneman et al. originally proposed a scoped selector/field key which neither puts restric-
tions on fields nor on the cardinality of field nodes [17, 71]. For specifying the scope, the
selector and the fields of an unrestricted selector/field key, Buneman et al. proposed a path
language which basically has the same expressivity as the restricted form of XPath used for
specifying XSD keys and XSD foreign keys (cf. Subsection 2.3.2). In the class of unrestricted
selector/field constraints, Wang & Topor proposed global functional dependencies and global
equality generating dependencies [72]. Essentially, an XML equality generating dependency
as proposed in [72] is an XML functional dependency which asserts value equality between
field nodes of two distinct sets of selector nodes. For this purpose, XML equality generating
dependencies as proposed by Wang & Topor have separate selectors for the LHS and RHS
of the constraint. A scoped functional dependency in the class of unrestricted selector/field
constraints has been proposed by Ahmad & Ibrahim [24].

The selector/field key proposed by Buneman et al. in [71] is representative for the class
of unrestricted selector/field constraints with regard to how multiple and absent field nodes
are handled. We therefore use the selector/field key as proposed by Buneman et al. for the
evaluation of unrestricted selector/field constraints.

Handling of multiple field nodes: Selector/field keys as proposed by Buneman et al. com-
pare selected entity nodes on the basis of all possible sets of field nodes. Consequently,
semantically incorrect sets of field nodes are potentially used for the comparison of selected
entity nodes. Consider for example benchmark constraint K1, which is depicted in Table
2.4 in form of a selector/field key as proposed by Buneman et al. With respect to XML tree
T1, Invoice nodes v3 and v15 are selected by K1. Also, the field nodes for v3 are the single
node v14 for the field prd, nodes {v6, v10} for the field Line.code, and nodes {v7, v11} for
the field Line.no. Hence, the selected node v3 is compared to node v15 on the basis of the
values of nodes (v14, v6, v7), (v14, v6, v11), (v14, v10, v7), and (v14, v10, v11). Since the seman-
tically incorrect set of field nodes (v14, v6, v11) is value equal to the single set of field nodes
(v22, v18, v19) for node v15, benchmark constraint K1 is violated in XML tree T1 according
to the semantics of selector/field keys as proposed by Buneman et al. Since K1 should be
satisfied in XML tree T1, unrestricted selector/field constraints do not adequately handle
multiple field nodes.

Ensuring uniqueness of field nodes: Selector/field keys as proposed by Buneman et
al. are only violated in an XML document if distinct selector nodes have value equal com-
binations of field nodes. Consequently, uniqueness of field nodes is not ensured. For ex-
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ample, benchmark constraint K1 is satisfied in XML tree T2 according to the semantics of
selector/field keys as proposed by Buneman et al. since the duplicate sets of field nodes
(v13, v5, v6) and (v13, v9, v10) belong to the same selected Invoice node v3.

Handling of absent field nodes: Selector/field keys as proposed by Buneman et al. com-
pare selected entity nodes only on the basis of ‘complete’ sets of field nodes. A set of field
nodes is thereby complete, if it contains one node for each field in the constraint. Hence,
benchmark constraint K2, which is depicted in Table 2.4 in form of a selector/field key as
proposed by Buneman et al., is satisfied in XML tree T4 since selected Addr nodes v3 and v9

are not compared on the basis of the sets of field nodes {v4, v5, v6} and {v10, v11, v12}. Note
that both sets of field nodes are missing an ano node and are therefore incomplete. Since K2

should be violated in T4, unrestricted selector/fied integrity constraints do not adequately
handle absent field nodes.

We conclude the discussion of unrestricted selector/field constraints by giving an overview
on related theoretical results. The study of unrestricted selector/field constraints focussed
exclusively on the selector/field key proposed by Buneman et al. in [17]. Chen et al. pre-
sented a validation algorithm for the selector/field key as proposed by Buneman et al. This
validation algorithm is based on SAX and has linear runtime complexity in the size of the
XML document [73]. Buneman et al. studied the related implication problem and presented
a decision algorithm as well as a set of inference rules [74, 75]. Unfortunately, one of the
inference rules turned out to be incorrect, and Hartmann & Link developed a sound and
complete set of inference rules for the subclass of selector/field keys as proposed by Bune-
man where only simple paths are permitted in order to specify the fields of a key [76, 77].
Hartmann & Link also developed a sound and complete set of inference rules for another
subclass of these keys, called structural keys, where the selector coincides with the fields
[78]. However, for the general class of keys as proposed by Buneman et al., the related
implication problem is still unsolved.

2.4 Tuple-based XML Integrity Constraints

To translate the notion of a tuple from the relational model to the XML data model is the
common for what we call tuple-based XML integrity constraints. In general, the syntax of
a tuple-based constraint parallels the syntax of its relational counterpart, where paths take
on the role of attributes. For illustration, Table 2.5 shows the general forms of tuple-based
functional dependencies and inclusion dependencies.

Tuple-based Functional Dependency {P1, . . . , Pm} → {P ′1, . . . , P ′n}

Tuple-based Inclusion Dependency [P1, . . . , Pn] ⊆ [P ′1, . . . , P
′
n]

Table 2.5: General form of tuple-based functional dependencies and inclusion dependen-
cies.
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Apart from its syntax, also the semantics of a tuple-based constraint is inspired by
the semantics of its relational counterpart. Checking an XML document against a tuple-
based constraint means in general to form tuples of nodes w.r.t. the paths in the con-
straint, and to compare these tuples of nodes as required by the particular type of con-
straint. Hence, a tuple-based functional dependency asserts that whenever there exist dis-
tinct tuples of nodes 〈v1, . . . , vm, v

′
1, . . . , v

′
n〉 and 〈v̄1, . . . , v̄m, v̄

′
1, . . . , v̄

′
n〉 for the set of paths

{P1, . . . , Pm, P
′
1, . . . , P

′
n} such that the LHS nodes 〈v1, . . . , vm〉 and 〈v̄1, . . . , v̄m〉 are value

equal, then also the RHS nodes 〈v′1, . . . , v′n〉 and 〈v̄′1, . . . , v̄′n〉 are value equal. Likewise,
a tuple-based inclusion dependency asserts that whenever there exists a tuple of nodes
〈v1, . . . , vn〉 for the LHS paths {P1, . . . , Pn}, there also exists a tuple of nodes 〈v′1, . . . , v′n〉
for the RHS paths {P ′1, . . . , P ′n} such that 〈v1, . . . , vn〉 and 〈v′1, . . . , v′n〉 are value equal.

In contrast to the notions of tuple-based functional dependencies and inclusion depen-
dencies, there is no common notion of a tuple-based key. In some tuple-based approaches,
a key is a special case of a functional dependency. In other tuple-based approaches, keys
and functional dependencies are separately defined. We will therefore address the notion of
a tuple-based key separately for each individual approach.

Concerning the challenges which we have identified in Section 1.2, the primary ques-
tion related to tuple-based XML integrity constraints is how tuples of nodes are formed for
the paths in a constraint in case that either multiple nodes are reachable over some path,
or conversely that no node is reachable over some path at all. In this regard the individ-
ual approaches to tuple-based XML integrity constraints form four groups, to which the
subsequent Sections 2.4.1 - 2.4.4 are devoted.

2.4.1 The Intersection Path Approach

The tuple-based functional dependency presented by Yan & Lv in [79] and also the tuple-
based inclusion dependency presented by Vincent et al. in [80] follow what we call the
intersection path approach. In this approach, a set of nodes v1, . . . , vn forms a tuple for a set
of paths P1, . . . , Pn if nodes v1, . . . , vn have a common ancestor node which is reachable over
the intersection path of P1, . . . , Pn. In the approach to functional dependencies proposed by
Yan & Lv in [79], it is additionally required that both the LHS nodes and the RHS nodes in
a tuple have common ancestor nodes at the intersection path of the LHS paths and the RHS
paths, respectively. The paths in an intersection path constraint are simple paths leading
to attribute or text nodes, and so element nodes are not permitted to be used as property
nodes. Also, a key has not been proposed so far for the intersection path approach.

We now evaluate the ability of intersection path constraints to handle the challenges
which we have identified in Section 1.2. In particular, we use benchmark constraints F1 and
F2 for the evaluation of the intersection path functional dependency defined in [79], and we
use benchmark constraints I1 and I2 for the evaluation of the intersection path inclusion
dependency defined in [80]. Table 2.6 lists these benchmark constraints in the common form
of tuple-based functional dependencies and tuple-based inclusion dependencies.

Handling of multiple property nodes: The structural cohesion between nodes in a tuple
is very low in the intersection path approach. Consequently, semantically incorrect tuples of
nodes are formed. To see this, consider benchmark constraint F1 and XML tree T1. Table
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F1 {Company.Invoices.Invoice.prd, Company.Invoices.Invoice.Line.code,
Company.Invoices.Invoice.Line.no} → Company.Invoices.Invoice.id

I1 [Company.Invoices.Invoice.cno, Company.Invoices.Invoice.Line.code,
Company.Invoices.Invoice.Line.no] ⊆

[Company.Phones.Phone.cno, Company.Phones.Phone.code, Company.Phones.Phone.no]

F2 {Company.Customer.Addr.city, Company.Customer.Addr.strt,
Company.Customer.Addr.hno, Company.Customer.Addr.ano} →
Company.Customer.Addr.id

I2 [Company.Invoice.Addr.city, Company.Invoice.Addr.strt,
Company.Invoice.Addr.hno, Company.Invoice.Addr.ano] ⊆

[Company.Customer.Addr.city, Company.Customer.Addr.strt,
Company.Customer.Addr.hno, Company.Customer.Addr.ano]

Table 2.6: Benchmark constraints F1, F2, I1, and I2 specified as tuple-based constraints.

2.7 lists the tuples of nodes in T1 which are formed for the paths in F1. Recall that an
intersection path functional dependency requires the RHS and LHS nodes in a tuple to have
common ancestor nodes at the intersection of the RHS paths and the LHS paths in the
constraint. Regarding benchmark constraint F1 this means that the LHS nodes in a tuple
must have a common ancestor node at path Company.Invoices.Invoice and that the RHS
nodes in a tuple must have a common ancestor node at path Company.Invoices.Invoice.id.
Note that F1 is a unary functional dependency and that therefore the RHS intersection
path equals the single RHS path Company.Invoices.Invoice.id. The common ancestor
nodes for the RHS nodes and LHS nodes are indicated by the gray node identifiers to the
left and right of a tuple of nodes in Table 2.7. The gray node identifier to the far right
of a tuple of nodes indicates the common ancestor node at the intersection of all paths in
F1, i.e. Company.Invoices.Invoice. For reasons of clarity, the values of attribute nodes
are given below each tuple in Table 2.7. Tuples 〈v14, v6, v11, v4〉 and 〈v14, v10, v7, v4〉 are
semantically incorrect, since neither the combination (v6, v11) nor the combination (v10, v7)
of a code and a no node belong to the same invoice line. Consequently, F1 is violated in T1

since the two tuples of nodes 〈v14, v6, v11, v4〉 and 〈v22, v18, v19, v16〉 have value equal LHS
nodes as opposed to the RHS nodes v4 and v16 which have distinct values.

Consider now benchmark constraint I1 and XML tree T1. Table 2.8 lists the tuples of
nodes in T1 which are formed for the paths in I1. The gray node identifier to the right
of a tuple thereby indicates the common ancestor node at the intersection path, which is
path Company.Invoices.Invoice for the LHS tuples and path Company.Phones.Phone for the
RHS tuples. Tuples 〈v13, v6, v11〉 and 〈v13, v10, v7〉 are semantically incorrect. The reason
for this is again that neither nodes (v6, v11) nor nodes (v10, v7) belong to the same invoice
line. Consequently, also I1 is violated in T1, since there are no RHS tuples of nodes which
are value equal to the semantically incorrect tuples of nodes 〈v13, v6, v11〉 and 〈v13, v10, v7〉.
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v3 〈v14 v6 v7 v4〉 v4 v3

01/09 0660 1010 I1

v3 〈v14 v6 v11 v4〉 v4 v3

01/09 0660 2020 I1

v3 〈v14 v10 v11 v4〉 v4 v3

01/09 0990 2020 I1

v3 〈v14 v10 v7 v4〉 v4 v3

01/09 0990 1010 I1

v15 〈v22 v18 v19 v16〉 v16 v15

01/09 0600 2020 I2

Table 2.7: Tuples of nodes in XML Tree T1 formed for benchmark constraint F1 according
to the intersection path approach.

Since benchmark constraints F1 and I1 both should be satisfied in XML tree T1, multiple
property nodes are not adequately handled in the intersection path approach.

Handling of absent property nodes: Incomplete tuples of nodes are simply ignored
by intersection path functional dependencies and inclusion dependencies. A tuple of nodes
is incomplete if it does not contain a node for each path in the constraint. Consequently,
benchmark constraints F2 and I2 are satisfied in XML trees T4 and T6 according to the
semantics of intersection path functional dependencies and inclusion dependencies. Since
benchmark constraints F2 and I2 should be violated in XML trees T4 and T6, absent property
nodes are not adequately handled in the intersection path approach.

We conclude the discussion of intersection path constraints by giving an overview on
related theoretical results. Vincent et al. presented a sound and complete set of inference
rules for the implication of intersection path inclusion dependencies [80], which implies that
the related implication problem is decidable. The consistency problem related to intersection
path inclusion dependencies has not been studied so far.

Regarding intersection path functional dependencies, it has been shown by Lv & Yan
that they preserve the semantics of relational functional dependencies when relational data
is transformed to XML data on the basis of nested tuples [40]. In establishing this result Lv
& Yan considered the restricted case where only one nesting operation on a single attribute
is permitted prior to the mapping of the relation to XML. The result in [40] is therefore
in accordance with the finding in our evaluation that intersection path functional depen-
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〈v13 v6 v7〉 v3 〈v27 v25 v26〉 v24

C1 0660 1010 C1 0660 1010

〈v13 v6 v11〉 v3 〈v31 v29 v30〉 v28

C1 0660 2020 C1 0990 2020

〈v13 v10 v11〉 v3 〈v35 v33 v34〉 v32

C1 0990 2020 C2 0660 2020

〈v13 v10 v7〉 v3

C1 0990 1010

〈v21 v18 v19〉 v15

C2 0600 2020

Table 2.8: Tuples of nodes in XML Tree T1 formed for benchmark constraint I1 according
to the intersection path approach.

dencies do not adequately handle multiple field nodes. Note that this finding suggests that
intersection path functional dependencies do not allow to preserve the semantics of relational
functional dependencies in the general case where arbitrary nesting operations are permitted
prior to the mapping.

2.4.2 The Tree Tuple Approach

Arenas & Libkin originally proposed the ’tree tuple’ approach when defining an XML func-
tional dependency [23]. Conceptually, tuples of nodes are formed in the ‘tree tuple’ approach
as follows. The XML document, which is expected to conform to a DTD, is transformed
into a flat relation by the total unnesting of the XML document. The attributes of the
resulting relation correspond to the paths indicated by the DTD, and the values in the
relation represent the nodes in the XML document. A set of nodes in the XML document
then forms a tuple, if the nodes were mapped to the same tuple in the relation. For the
purpose of illustration, Table 2.9 lists the ‘tree tuples’ that result from the total unnesting
of the Invoices subtrees of XML trees T1 and T2. We note that the Phones subtree in T1

has been omitted for reasons of brevity. The paths in the header of Table 2.9 are derived
from DTD D1 (cf. Section 2.3.1), to which XML trees T1 and T2 conform to.

Yu & Yagdish extended the ‘tree tuple’ functional dependency developed by Arenas &
Libkin [23] with the flavor of a set-valued constraint [81, 82]. Such an extended ‘tree tuple’



2.4. TUPLE-BASED XML INTEGRITY CONSTRAINTS 47

Co
mp
an
y

Co
mp
an
y.I

nv
oi
ce
s

Co
mp
an
y.I

nv
oi
ce
s.I

nv
oi
ce

Co
mp
an
y.I

nv
oi
ce
s.I

nv
oi
ce
.id

Co
mp
an
y.I

nv
oi
ce
s.I

nv
oi
ce
.cn

o

Co
mp
an
y.I

nv
oi
ce
s.I

nv
oi
ce
.pr

d

Co
mp
an
y.I

nv
oi
ce
s.I

nv
oi
ce
.Li

ne

Co
mp
an
y.I

nv
oi
ce
s.I

nv
oi
ce
.Li

ne
.am

t

Co
mp
an
y.I

nv
oi
ce
s.I

nv
oi
ce
.Li

ne
.co

de

Co
mp
an
y.I

nv
oi
ce
s.I

nv
oi
ce
.Li

ne
.no

〈v1 v2 v3 v4 v13 v14 v5 v8 v6 v7〉

XML Tree T1

I1 C1 01/09 $10 0660 1010

〈v1 v2 v3 v4 v13 v14 v9 v12 v10 v11〉
I1 C1 01/09 $20 0990 2020

〈v1 v2 v15 v16 v21 v22 v17 v20 v18 v19〉
I2 C2 01/09 $30 0660 2020

〈v1 v2 v3 v14 v12 v13 v4 v7 v5 v6〉
XML tree T2

I1 C1 01/09 $20 0990 2020

〈v1 v2 v3 v14 v12 v13 v8 v11 v9 v10〉
I1 C1 01/09 $20 0990 2020

Table 2.9: Tree tuples in benchmark XML Trees T1 and T2.

functional dependency allows for example to express that the set of phones in the lines of
an invoice determines the customer who is charged. The single-valued and the set-valued
notions of a ‘tree tuple’ functional dependency deal with multiple and absent property nodes
in the same manner. We therefore restrict our subsequent discussion on the original proposal
by Arenas & Libkin [23].

Unlike for an intersection path functional dependency, the paths in a ‘tree tuple’ func-
tional dependency may also lead to element nodes. The identities of element nodes are
thereby used for the comparison of element nodes when the satisfaction of a ‘tree tuple’
functional dependency is checked in an XML document. That is, according to the ‘tree
tuple’ approach, two element nodes are ‘value’ equal if they have the same identity. Hence,
if a ‘tree tuple’ functional dependency has an RHS path that leads to element nodes, then
it is satisfied in an XML document if whenever a pair of ‘tree tuples’ have value equal LHS
nodes, then the RHS element nodes are the same node, and so LHS nodes identify the RHS
nodes. Thus, a ‘tree tuple’ functional dependency has some flavor of an XML key if it has
a single RHS path that leads to element nodes.

We now evaluate the ability of ‘tree tuple’ functional dependencies to handle the chal-
lenges which we have identified in Section 1.2. In particular, we use benchmark constraints
K1 and K2 for the evaluation. Table 2.10 lists these benchmark constraints in the form of
‘tree tuple’ functional dependencies.

Handling of multiple property nodes: Consider K1 depicted in Table 2.10 and the
‘tree tuples’ in XML tree T1, which are depicted in the top of Table 2.9. The projection
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K1 {Company.Invoices.Invoice.prd, Company.Invoices.Invoice.Line.code,
Company.Invoices.Invoice.Line.no} → Company.Invoices.Invoice

K2 {Company.Customer.Addr.city, Company.Customer.Addr.strt,
Company.Customer.Addr.hno, Company.Customer.Addr.ano} →
Company.Customer.Addr

Table 2.10: Benchmark constraints K1 and K2 specified as ‘tree tuple’ functional depen-
dencies.

of these ‘tree tuples’ on the paths in K1 yields tuples 〈v14, v6, v7, v3〉, 〈v14, v10, v11, v3〉, and
〈v21, v18, v19, v16〉, where no two combinations of LHS nodes, i.e. (v14, v6, v7), (v14, v11, v10),
and (v21, v18, v19), are value equal (cf. Table 2.9). As a consequence, K1 is satisfied in T1

according to the semantics of ‘tree tuple’ functional dependencies, and so multiple property
nodes are adequately handled in the ‘tree tuple’ approach.

Ensuring uniqueness of property nodes: Whereas ‘tree tuple’ functional dependencies
capture the identification property of an XML key, they do not capture the uniqueness
property. To see this, consider XML key K1 and the ‘tree tuples’ in XML tree T2 which
are given in the bottom of Table 2.9. The projections of these ‘tree tuples’ to the paths
in K1 are 〈v13, v5, v6, v3〉 and 〈v13, v10, v9, v3〉, and so K1 is satisfied in T2 according to the
semantics of ‘tree tuple’ functional dependencies. Since K1 should be violated in T2, ‘tree
tuple’ functional dependencies do not ensure the uniqueness of property nodes.

Handling of absent property nodes: ‘Tree tuple’ functional dependencies apply a kind of
weak satisfaction semantics to absent property nodes. In particular, absent property nodes
are represented by special null nodes in a ‘tree tuple’. For illustration, Table 2.11 lists the
‘tree tuples’ in XML trees T3 and T4, where absent ano nodes are denoted by symbol ⊥. The
value of a ⊥ node is thereby assumed to be different to the value of any other node, which
is indicated by the distinct subscripts of ⊥ nodes in Table 2.11. Consider now benchmark
constraint K2 depicted in Table 2.10. Given that ⊥ nodes have distinct values, neither
〈v4, v5, v6,⊥1, v3〉 and 〈v10, v11, v12, v13, v9〉, nor 〈v4, v5, v6,⊥1, v3〉 and 〈v10, v11, v12,⊥2, v9〉
have value equal LHS nodes. As a consequence, K2 is satisfied in both XML trees T3 and
T4 according to the semantics of ‘tree tuple’ functional dependencies. Since this is not
desired for XML tree T4, the weak satisfaction semantics applied by ‘tree tuple’ functional
dependencies is not adequate for handling absent property nodes.

We conclude the discussion of the ‘tree tuple’ approach with an overview on related
theoretical results. Arenas & Libkin presented a normal form for XML documents related to
‘tree tuple’ functional dependencies, and developed a corresponding normalization algorithm
for DTDs [23]. Arenas & Libkin also presented an information-theoretic approach that can
be used for the justification of XML normalforms in general [83].

The implication problem related to ‘tree tuple’ functional dependencies has been studied
by Kot & White [19]. Their main finding is that the implication of ‘tree tuple’ functional
dependencies is in general undecidable because of the interaction with structural constraints
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〈v1 v2 v3 v7 v4 v5 v6 ⊥1〉
XML Tree T3

A1 NY 5th Av. 50

〈v1 v8 v9 v14 v10 v11 v12 v13〉
A2 NY Park Av. 30 2B

〈v1 v2 v3 v7 v4 v5 v6 ⊥1〉
XML Tree T4

A1 NY 5th Av. 50

〈v1 v8 v9 v13 v10 v11 v12 ⊥2〉
A2 NY 5th Av. 50

Table 2.11: Tree tuples in benchmark XML Trees T3 and T4.

imposed by the DTD which is assumed to be present. The implication problem becomes
tractable for the class of disjunction free DTDs, and a set of sound and complete inference
rules for the implication of ‘tree tuple’ functional dependencies has been presented [19].

2.4.3 The Closest Node Approach

The central mechanism for building tuples of nodes in the ‘closest node’ approach is the
closest property of nodes, which has been originally presented by Vincent et al. in defining
an XML functional dependency [25]. A pair of nodes satisfy the closest property if the nodes
have a common ancestor-or-self node which is reachable over the intersection of the paths
leading to the nodes. A node v is thereby an ancestor-or-self node of a node v′, if either v
is an ancestor node of v′ or v and v′ are the same node.

Vincent et al. proposed two versions of the ‘closest node’ approach, which they call weak
‘closest node’ approach and strong ‘closest node’ approach. Even though both version of the
‘closest node’ approach are based on the closest property of nodes, only the strong ‘closest
node’ approach adequately handles multiple property nodes, as will be made more clear
soon. Because of this significant difference we will discuss the weak ‘closest node’ approach
separately from the strong ‘closest node’ approach.

As for the ‘tree tuple’ approach, element nodes are compared by their identities also in
the ‘closest node’ approach. Hence, a ‘closest node’ functional dependency has also some
flavor of an XML key in case that the functional dependency has a single RHS path that
leads to element nodes. The uniqueness of property nodes is not ensured by a ‘closest node’
functional dependency for reasons similar to which a ‘tree tuple’ functional dependency also
does not have this property. Since we detailed on this issue already in Section 2.4.2, we do
not address it again in the evaluation of ‘closest node’ functional dependencies.
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Weak Closest Node Approach

Vincent et al. proposed the weak ‘closest node’ approach when defining a unary XML
functional dependency [25]. In this approach a set of nodes v1, . . . , vn, vn+1 forms a tuple for
the set of paths {P1, . . . , Pn, Pn+1} in an XML functional dependency {P1, . . . , Pn} → Pn+1,
if for all i ∈ {1, . . . , n}, the LHS node vi and the RHS node vn+1 satisfy the closest property.
In this setting Vincent et al. also defined an XML multivalued dependency [84].

We now evaluate the ability of the weak ‘closest node’ approach to handle the challenges
which we have identified in Section 1.2. We use benchmark constraints K1 and K2 for this
purpose. In terms of weak ‘closest node’ functional dependencies benchmark constraints K1

and K2 are of the same form as the corresponding ‘tree tuple’ functional dependencies which
are given in Table 2.10.

Handling of multiple property nodes: Because of the rather loose structural cohesion
within tuples of nodes in the weak ‘closest node’ approach, semantically incorrect tuples of
nodes are potentially formed. Table 2.12 lists the tuples of nodes which are formed during
the validation of XML tree T1 against K1. Note that in each of these tuples, the pairs of
an LHS node and the RHS node satisfy the closest property. For instance, Invoice node
v3 is the RHS node in the tuple of nodes 〈v14, v6, v7, v3〉. For each one of the pairs (v3, v14),
(v3, v6), and (v3, v7), the intersection path is Company.Invoices.Invoice. Because node v3

is reachable over path Company.Invoices.Invoice, and v3 is an ancestor-or-self node of v3

as well as an ancestor-or-self node of each one of the LHS nodes {v14, v6, v7}, the closest
property is satisfied by each one of the pairs (v3, v14), (v3, v6), and (v3, v7).

Com
pan

y.In
voi

ces
.Inv

oic
e.pr

d

Com
pan

y.In
voi

ces
.Inv

oic
e.Li

ne.c
ode

Com
pan

y.In
voi

ces
.Inv

oic
e.Li

ne.n
o

Com
pan

y.In
voi

ces
.Inv

oic
e

〈v14 v6 v7 v3〉
01/09 0660 1010

〈v14 v6 v11 v3〉
01/09 0660 2020

〈v14 v10 v11 v3〉
01/09 0990 2020

〈v14 v10 v7 v3〉
01/09 0990 1010

〈v22 v18 v19 v15〉
01/09 0600 2020

Table 2.12: Tuples of nodes in benchmark XML Tree T1 formed for benchmark constraint
K1 according to the weak ‘closest node’ approach.



2.4. TUPLE-BASED XML INTEGRITY CONSTRAINTS 51

The tuples of nodes 〈v14, v6, v11, v3〉 and 〈v14, v10, v7, v3〉 are semantically incorrect, since
neither the combination (v6, v11) nor the combination (v10, v7) of a code and a no node
belong to the same invoice line. As a consequence, K1 is violated in T1 since the two tuples
of nodes 〈v14, v6, v11, v3〉 and 〈v22, v18, v19, v15〉 have value equal LHS nodes whereas the RHS
element nodes v3 and v15 have distinct ‘values’, i.e. identities.

Handling of absent property nodes: Weak ‘closest node’ functional dependencies apply
a kind of strong satisfaction semantics to absent property nodes. As for the ‘tree tuple’
approach, absent property nodes are represented by special null nodes (⊥). The essential
difference is that a ⊥ node is value equal to every other node in the weak ‘closest node’
approach, whereas ⊥ nodes have distinct values in the ‘tree tuple’ approach. For the purpose
of illustration, Table 2.13 lists the tuples of nodes formed during the validation of XML trees
T3 and T4 against benchmark constraint K2. Given that a ⊥ node is value equal to every
other node, the tuples of nodes 〈v4, v5, v6,⊥, v3〉 and 〈v10, v11, v12,⊥, v9〉 have value equal
LHS nodes. Since RHS nodes v3 and v9 are distinct nodes, and are therefore not value equal
according to the semantics in the weak ‘closest node’ approach, K2 is violated in T4, which is
desired. Further, K2 is satisfied in T3 since tuples 〈v4, v5, v6,⊥, v3〉 and 〈v10, v11, v12, v13, v9〉
do not have value equal LHS nodes, irrespective of the ⊥ node. Hence, with respect to XML
functional dependencies, the strong satisfaction semantics applied in the weak ‘closest node’
approach is an adequate manner for dealing with absent property nodes.
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〈v4 v5 v6 ⊥ v3〉
XML Tree T3

NY 5th Av. 50

〈v10 v11 v12 v13 v9〉
NY Park Av. 30 2B

〈v4 v5 v6 ⊥ v3〉
XML Tree T4

NY 5th Av. 50

〈v10 v11 v12 ⊥ v9〉
NY 5th Av. 50

Table 2.13: Tuples of nodes in benchmark XML Trees T3 and T4 formed for benchmark
constraint K2 according to the weak ‘closest node’ approach.

We conclude the discussion of weak ‘closest node’ constraints with an overview on re-
lated theoretical results. Weak ‘closest node’ functional dependencies have been thoroughly
studied. A validation algorithm has been developed which requires linear time in the size
of the XML document and the number of functional dependencies [85]. A set of sound
inference rules has been presented in [25], which then have been shown to be also complete
for unary weak ‘closest node’ functional dependencies, and a linear time decision algorithm
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for the related implication problem has been developed on basis of these inference rules [86].
Vincent et al. further developed a normal form with respect to weak ‘closest node’ functional
dependencies, and established the result that this normal form is a necessary and sufficient
condition for the elimination of redundancy in XML data [87, 88].

Vincent et al. presented a check algorithm for weak ‘closest node’ multivalued dependen-
cies which requires linear time in the size of the XML document [89]. Vincent et al. also de-
veloped a normal form with respect to weak ‘closest node’ multivalued dependencies [90, 91].

Strong Closest Node Approach

In order to overcome the limitations of the weak ‘closest node’ approach with respect to
the manner in which multiple property nodes are handled, Vincent et al. proposed the
strong ‘closest node’ approach when defining an XML functional dependency [20]. In the
strong ‘closest node’ approach a set of nodes {v1, . . . , vn} forms a tuple for a set of paths
{P1, . . . , Pn} if the nodes pairwise satisfy the closest property. Compared to the weak ‘closest
node’ approach, the structural cohesion between the nodes in a tuple is substantially tighter
and so semantically incorrect tuples are avoided in the validation of an XML document
against a strong ‘closest node’ functional dependency.

Liu et al. adopted the strong ‘closest node’ approach when defining a scoped XML func-
tional dependency 1. Fassetti & Fazzinga also adopted the strong ‘closest node’ approach
in order to define an approximate XML functional dependency, which is an XML functional
dependency that is not necessarily strictly satisfied in an XML document [93]. An approxi-
mate XML functional dependency is intended for the discovery of erroneous or exceptional
element nodes, which has been claimed to be useful for data cleaning and data integration
[93]. In the approach by Fassetti & Fazzinga, two element nodes are approximately value
equal if the tree edit distance (TED) for the subtrees rooted at these element nodes is less
than a fixed threshold. The TED is thereby the minimal number of nodes and edges that
need to be added or deleted in two trees such that the trees became isomorphic. Based
on the notion of approximate value equality between element nodes, Fassetti & Fazzinga
defined an XML functional dependency to be satisfied in an XML document if whenever the
LHS nodes in a pair of tuples are approximately value equal, then also the RHS nodes in
these tuples must be approximately value equal.

We now evaluate the ability of the strong ‘closest node’ approach to handle the challenges
identified in Section 1.2. The XML functional dependency presented by Vincent et al. in [20]
is representative for the proposals by Liu et al. [92] and Fassetti & Fazzinga [93] regarding the
manner in which multiple property nodes are handled. We therefore restrict our subsequent
discussion to the original proposal by Vincent et al [20].

Handling of multiple property nodes: In comparison to the weak ‘closest node’ ap-
proach, the requirement on a set of nodes to form a tuple is strictly stronger in the strong
‘closest node’ approach. To see this, consider the tuples of nodes listed in Table 2.12 which
are formed according to the weak ‘closest node’ approach for the validation of XML tree T1

against benchmark constraint K1 (cf. Table 2.10). The semantically incorrect tuples of nodes
〈v14, v6, v11, v3〉 and 〈v14, v10, v7, v3〉 are not formed according to the strong ‘closest node’

1In [92] two nodes that satisfy the closest property are said to be fellows.
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approach. The reason for this is that not every pair of nodes in either one of these tuples
satisfy the closest property. In particular, the pairs (v6, v11) and (v10, v7) of a code node and
a no node do not satisfy the closest property since the nodes in both of these pairs do not
have a common ancestor node at the intersection path Company.Invoices.Invoice.Line.
The remaining tuples of nodes in Table 2.12 are semantically correct, and in fact every pair
of nodes in each of these tuples satisfy the closest property. Given that only the semantically
correct tuples of nodes 〈v14, v6, v7, v3〉, 〈v14, v10, v11, v3〉 and 〈v22, v18, v19, v15〉 are formed in
the validation of XML tree T1 against K1 according to the strong ‘closest node’ approach,
K1 is satisfied in XML tree T1 as desired. In contrast to the weak ‘closest node’ approach,
multiple property nodes are thus adequately handled in the strong ’closest node’ approach.

Handling of absent property nodes: Strong ‘closest node’ functional dependencies apply
exactly the same kind of strong satisfaction semantics to absent property nodes as weak
‘closest node’ functional dependencies. Hence, in accordance with the weak ‘closest node’
approach, benchmark constraint K2 is satisfied in XML tree T3 and violated in XML tree
T4 according to the semantics of a strong ‘closest node’ functional dependency.

We conclude the discussion of strong ‘closest node’ constraints with an overview on
related theoretical results. Vincent et al. established the result that the semantics of strong
‘closest node’ functional dependencies coincides with the semantics of ‘tree tuple’ functional
dependencies in the class of XML trees without missing information. That is, whereas
absent property nodes are handled in different manners, strong ‘closest node’ functional
dependencies and ‘tree tuple’ functional dependencies handle multiple property nodes in
essentially the same sophisticated manner [20].

Vincent et al. moreover established the result that a strong ‘closest node’ functional
dependency precisely preserves the semantics of a relational functional dependency in case
that XML data is generated from relational data by applying an arbitrary sequence of nesting
operations prior to the mapping [20].

Fassetti & Fazzinga presented an algorithm for inferring approximate ‘closest node’ XML
functional dependencies from XML data and showed experimental results asserting the ef-
fectiveness of this algorithm [94].

2.4.4 The Hedge-based Approach

Shariar & Liu proposed scoped versions of an XML key [95], an XML functional dependency
[22] and an XML inclusion dependency [96] in the setting of a ‘tuple based’ approach to
XML integrity constraints where the structural information in a DTD is exploited in order
to form tuples of nodes. Shariar & Liu proposed for this purpose the notion of a minimal
structure for a pair of types2 in a DTD, and also the notion of a hedge for a pair of nodes in
an XML document. Roughly speaking, the minimal structure for a pair of types τ and τ ′ in
a DTD is the smallest snippet of the DTD that contains τ and τ ′. Figure 2.6a depicts the
minimal structure for element types B and C in the fairly simple DTD D2 for the purpose
of illustration. Again roughly speaking, the hedge for a pair of sibling nodes v and v′ is
the sequence of child nodes of the common parent node of v and v′ that ranges from v to
v′. Consider for example XML tree T7 depicted in Figure 2.6b which conforms to DTD D2.

2A type is thereby either an element type, a declared attribute or the predefined text type.
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The hedge for sibling nodes v3 and v5 is the sequence of nodes (v3, v4, v5), which are child
nodes of the common parent node v1. Likewise, the sequence of nodes (v4, v5) is the hedge
for nodes v4 and v5.

(a) (b)

<!DOCTYPE [

<!ELEMENT A ((B,C)+)>

<!ELEMENT B (#PCDATA)>
}

Minimal structure
<!ELEMENT C (#PCDATA)> for B and C

]>

2
C
C1

B
B1

C
C1

B
B1

43 5

1
A

Figure 2.6: Minimal structure for a pair of element types in DTD D2, and XML tree T7

which conforms to DTD D2.

Based on the notions of a minimal structure for a pair of types in a DTD and the hedge
for a pair of nodes, tuples are formed in the approach by Shariar & Liu as follows. A set
of nodes v1, . . . , vn forms a tuple for a set of paths P1, . . . , Pn if it holds true for every pair
of nodes (v̄, v̄′), where v̄ and v̄′ are either nodes in {v1, . . . , vn} or ancestors of any nodes
in {v1, . . . , vn}, that (a) v̄ and v̄′ are the same node if v̄ and v̄′ are reachable over the same
path; (b) if v̄ and v̄′ have a common parent node, then the hedge for v̄ and v̄′ conforms to
the minimal structure for τ and τ ′, where τ and τ ′ are the types for nodes v̄ and v̄′.

There is a tight relationship between condition (a) and the closest property of nodes
presented by Vincent et al. in [20]. Recall that a pair of nodes v and v′ satisfy the closest
property if and only if v and v′ have a common ancestor at the intersection path. Now, if
v and v′ satisfy the closest property then this implies that any pair of ancestor nodes v̄ of
v and v̄′ of v′ are the same nodes if and only if v̄ and v̄′ are reachable over the same path.
Hence, a pair of nodes satisfy the closest property if and only if these nodes satisfy condition
(a). The effect of condition (a) on the nodes in a tuple is therefore equivalent with the effect
of requiring the nodes in a tuple to pairwise satisfy the closest property.

To see the impact of condition (b) on the nodes in a tuple, and thus to see the difference
between the manners in which tuples are built in the strong ‘closest node’ approach and in
the hedge-based approach, consider again XML tree T7 and DTD D2 depicted in Figure 2.6.
Suppose that tuples of nodes are to be formed for the paths A.B and A.C. Then, the tuples
of nodes 〈v2, v3〉, 〈v2, v5〉, 〈v4, v5〉, and 〈v4, v3〉 are formed according to the strong ‘closest
node’ approach, since every pair of a B node and a C node satisfies the closest property. Note
that each of these pairs of nodes also satisfy condition (a). However, only tuples 〈v2, v3〉
and 〈v4, v5〉 also satisfy condition (b). The reason for this is that the minimal structure
for types B and C, which is depicted in Figure 2.6a, requires conforming hedges to contain
exactly one B node which is followed by exactly one C node. This is clearly not satisfied by
the hedge (v2, v3, v4, v5) for the pair of nodes in tuple 〈v2, v5〉. The hedge (v3, v4) for the
pair of nodes in tuple 〈v4, v3〉 does not conform to the minimal structure for types B and C

because the C node v3 precedes the B node v4 in XML tree T7. That is, compared to the
strong closest-node approach, the structural cohesion of nodes in a tuple is even stronger in
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the hedge-based approach. The reason for this is that condition (b) incorporates structural
information in a DTD into the process of forming tuples of nodes.

A salient difference between the ‘closest node’ approach and the hedge-based approach is
also that the value of an element node is the subtree rooted at this node in the hedge-based
approach. Two element nodes are thereby value equal in the hedge-based approach if the
subtrees rooted at these element nodes are isomorphic. As a consequence, a hedge-based
functional dependency does not have the flavor of an XML key in case that the functional
dependency has a single RHS path that leads to element nodes. Note that two element
nodes need not necessarily be the same if the subtrees rooted at these nodes are isomorphic.
Shariar & Liu however proposed a dedicated constraint for asserting the semantics of an
XML key [95]. The general form of a hedge-based key is (P1, . . . , Pn). Such an XML key
asserts that if there is a pair of value equal tuples of nodes for the paths P1, . . . , Pn, then
these tuples are made up of the same nodes. Table 2.14 gives benchmark constraints K1

and K2 in the form of hedge-based XML keys.

K1 (Company.Invoices.Invoice.Line.code, Company.Invoices.Invoice.Line.no,
Company.Invoices.Invoice.prd)

K2 (Company.Customer.Addr.city, Company.Customer.Addr.strt,
Company.Customer.Addr.hno, Company.Customer.Addr.ano)

Table 2.14: Benchmark constraints K1 and K2 specified as hedge-based keys.

The other salient difference between the ‘closest node’ approach and the hedge-based
approach belongs to the manner in which absent property nodes are handled. Whereas the
‘closest node’ approach applies a kind of strong satisfaction semantics to absent property
nodes, incomplete tuples of nodes are simply ignored in the hedge-based approach.

We now evaluate the ability of the hedge-based approach to handle the challenges identi-
fied in Section 1.2. We use benchmark constraints I1 and I2 for the evaluation of hedge-based
inclusion dependencies. These benchmark constraints have already been illustrated in the
common form of ‘tuple based’ XML inclusion dependencies within the discussion of the ‘in-
tersection path’ approach (cf. Table 2.6 in Section 2.4.1). We use benchmark constraints K1

and K2 for the evaluation of hedge-based keys.

Handling of multiple property nodes: Table 2.15 lists the tuples of nodes formed for
benchmark XML key K1 in XML tree T1 according to the hedge-based approach. Semanti-
cally incorrect combinations of property nodes are avoided. This is expected given that the
nodes in each one of the tuples satisfy condition (a) and that therefore the nodes in each
tuple pairwise satisfy the closest property.

We now illustrate that the tuples in Table 2.15 also satisfy condition (b) using the
example of tuple 〈v6, v7, v14〉. In doing this we refer to the types in DTD D3 depicted in
Figure 2.7 which specifies the structure of XML tree T1. Consider first the pair of nodes
(v6, v7). The ancestor nodes of both v6 and v7 are {v5, v3, v2, v1}, and so condition (b)
must hold true for every pair of nodes in {v6, v5, v3, v2, v1} × {v7, v5, v3, v2, v1} that have a
common parent node, i.e. (v6, v7), (v5, v5), (v3, v3), and (v2, v2). Note that condition (b)
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〈v6 v7 v14〉

XML tree T1

0660 1010 01/09

〈v10 v11 v14〉
0990 2020 01/09

〈v18 v19 v22〉
0660 2020 01/09

〈v5 v6 v13〉
XML tree T2

0990 2020 01/09

〈v9 v10 v13〉
0990 2020 01/09

Table 2.15: Tuples of nodes in benchmark XML Trees T1 and T2 formed for benchmark
constraint K1 according to the hedge-based approach.

trivially holds true for a pair of nodes if it is made up of the same node. With respect to the
remaining pair of nodes (v6, v7), condition (b) requires that the hedge for the code node v6

and the no node v7 conforms to the minimal structure for the types code and no in DTD D3.
For reasons of brevity, we will subsequently use the fairly intuitive abstract syntax proposed
by Shariar & Liu in [95] for formulating the minimal structure for a pair of types in a DTD.
In this abstract syntax, the minimal structure for types code and no in DTD D3 is given by
[code, no], which means that conforming hedges must be made up of exactly one code node
followed by exactly one no node. This is clearly satisfied by the hedge (v6, v7) for the pair
of nodes v6 and v7, and hence condition (b) holds true for this pair of nodes.

Consider now the pair of nodes (v6, v14) in tuple 〈v6, v7, v14〉. The ancestor nodes of v6

are {v5, v3, v2, v1} and the ancestor nodes of v14 are {v3, v2, v1}. Consequently, condition (b)
takes effect for the pairs of nodes in {v6, v5, v3, v2, v1}×{v14, v3, v2, v1} that have a common
parent node, i.e. (v5, v14), (v3, v3), and (v2, v2). Again, condition (b) trivially holds true
for the pairs of nodes (v3, v3) and (v2, v2). The hedge for the Line node v5 and the prd

node v14 in the remaining pair of nodes is (v5, v9, v14), where v9 is also a Line node. The
minimal structure for the types Line and prd in DTD D1 is [Line+, prd], which requires
conforming hedges to be made up of a non-empty list of Line nodes followed by exactly one
prd node. Given that in the hedge (v5, v9, v14) nodes v5 and v9 are Line nodes followed by
the prd node v14, condition (b) holds true for this hedge and therefore also for the pair of
nodes (v6, v14). For similar reasons condition (b) is also satisfied by the remaining pair of
nodes v7, v14 in tuple 〈v6, v7, v14〉.
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<!DOCTYPE COMPANY[

<!ELEMENT Company (Invoices,Phones)>

<!ELEMENT Invoices (Invoice+)>

<!ELEMENT Invoice (Line+)>

<!ELEMENT Line EMPTY>

<!ELEMENT Phones (Phone+)>

<!ELEMENT Phone EMPTY>

<!ATTLIST Invoice prd CDATA #REQUIRED>

<!ATTLIST Invoice cno CDATA #REQUIRED>

<!ATTLIST Invoice id CDATA #REQUIRED>

<!ATTLIST Line no CDATA #REQUIRED>

<!ATTLIST Line code CDATA #REQUIRED>

<!ATTLIST Line amt CDATA #REQUIRED>

<!ATTLIST Phone no CDATA #REQUIRED>

<!ATTLIST Phone code CDATA #REQUIRED>

<!ATTLIST Phone amt CDATA #REQUIRED>

]>

Figure 2.7: DTD D3 specifying the structure of benchmark XML trees T1 and T2.

Because no two distinct tuples of nodes formed for benchmark XML key K1 in XML tree
T1 are value equal (cf. Table 2.15), K1 is satisfied in XML tree T1 as desired according to
the semantics of hedge-based keys.

As desired, benchmark XML inclusion dependency I1 is also satisfied in XML tree T1

according to the hedge-based approach. Table 2.16 lists the tuples of nodes formed for XML
inclusion dependency I1 in XML tree T1 according to the hedge-based approach. Again,
semantically incorrect tuples are not formed and so there is for each LHS tuple of nodes
a corresponding RHS tuple of nodes such that the nodes in these tuples are value equal.
Multiple property nodes are therefore adequately handled in the hedge-based approach.

Ensuring uniqueness of property nodes: XML keys in the hedge-based approach indeed
ensure uniqueness of property nodes since no two distinct tuples of nodes are allowed to be
value equal. Tuples 〈v5, v6, v13〉 and 〈v9, v10, v13〉 are formed in XML tree T2 for benchmark
XML key K2 which is depicted in Table 2.14 in form of a hedge-based key. Because these
two tuples are distinct but value equal, XML key K2 is violated in XML tree T2 according
to the semantics of hedge-based XML keys.

Handling of absent property nodes: In the hedge-based approach incomplete tuples of
nodes are simply ignored when checking the satisfaction of a constraints. Hence, benchmark
XML key K2 is satisfied in both XML trees T3 and T4 as well as benchmark XML inclusion
dependency I2 is satisfied in both XML trees T5 and T6. Since this result is not desired for
XML trees T4 and T6, hedge-based constraints do not adequately handle absent property
nodes.
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〈v13 v6 v7〉 〈v27 v25 v26〉
C1 0660 1010 C1 0660 1010

〈v13 v10 v11〉 〈v31 v29 v30〉
C1 0990 2020 C1 0990 2020

〈v21 v18 v19〉 〈v35 v33 v34〉
C2 0660 2020 C2 0660 2020

Table 2.16: Tuples of nodes in benchmark XML Tree T1 formed for benchmark constraint
I1 according to the hedge-based approach.

We conclude the discussion of hedge-based constraints with an overview on related the-
oretical results. Shariar & Liu showed that the semantics of hedge-based functional depen-
dencies and keys can be preserved when transforming a DTD with basic transformation
operations commonly found in approaches towards the transformation of DTDs [97, 98].
Shariar & Liu also presented check algorithms based on DOM for hedge-based keys and
functional dependencies. These algorithms require linear time in the number of nodes in an
XML document and the number of paths in the constraints to be checked [99, 100].

2.5 Subtree-based XML Integrity Constraints

Hartmann et al. originally proposed an XML functional dependency which compares com-
binations of property nodes by means of comparing entire subtrees that contain these com-
binations of property nodes [101]. For the purpose of specifying the subtrees that are to be
compared in checking an XML functional dependency, the existence of a scheme tree, i.e.
an a priori schema for the XML tree under consideration, is assumed to be present. Figures
2.8a and 2.8b depict the scheme trees for XML tree T1 as well as for XML trees T3 and T4,
respectively. Symbols ∗, 1 and ? specify the cardinalities of nodes. In particular, 1 requires
a node to occur at must once, ? requires a node to occur at most once, and ∗ specifies that
a node may occur multiple times or not at all.

Based on the notion of a scheme tree, the general form of a subtree-based XML functional
dependency is X : Y → Z, where X is a subtree in a scheme tree, and Y and Z are rooted
subtrees of X. The meaning of such an XML functional dependency is then roughly speaking
that whenever there exist two XML subtrees TX and T′X that conform to X and contain
at most one node for each path indicated by X, then the projections TX|Z and T′X|Z of TX
and T′X on Z must be isomorphic if the projections TY |Z and T′Y |Z of TX and T′X on Y
are isomorphic and contain at least one node for each path indicated by Y . In particular,
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two projections of an XML tree are isomorphic in the subtree-based approach if they have
the same structure and their leaf nodes are value equal.

(b)

Company

Phones

Phone

∗∗

∗ ∗

∗

Invoice

Invoices

idprdcno Line

amtnocode
111

1 11

cnonocode
1 1 1

(a)

Company
∗

∗

1

hnostrtcity ano
? ??

Addr

Customer

id
?

Figure 2.8: Scheme trees specifying the structure of XML trees T1, T3 and T4.

Hartmann et al. also extended their XML functional dependency with some flavor of
set semantics [21]. Such an XML function dependency allows to express for example that
the set of phones determines the customer number as opposed to the situation where each
phone of a customer determines the customer number on its own. Lv & Yan proposed to
extend subtree-based XML functional dependencies with a feature that allows application
developers to individually specify the kind of agreement between subtrees on which an XML
functional dependency takes effect [102].

We now evaluate the subtree-based approach on basis of the original proposal to XML
functional dependencies by Hartmann et al. [101]. We use for this purpose benchmark XML
functional dependencies F1 and F2 which are depicted in Figure 2.9 in form of subtree-based
XML functional dependencies.

(a)

prd Line

nocode

InvoiceY :

id

InvoiceZ :

idprdcno Line

amtnocode

InvoiceX :

(b)

Addr

hnostrtcity ano id

X :

AddrZ :

id

AddrY :

hnostrtcity ano

Figure 2.9: Benchmark constraints F1 and F2 in form of subtree-based XML functional
dependencies.
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Handling of multiple property nodes: When checking XML functional dependency F1

in XML tree T1, the three TX -subtrees depicted in Figure 2.10 are found. Note that these
subtrees conform to the X scheme tree specified by F1, which is the Invoice subtree of
the scheme tree depicted in Figure 2.8. Also, each TX -subtree contains at most one node
reachable over any path indicated by X. The TX -subtrees obviously do not agree on any
projection on Y , i.e. the combinations of a prd node, a code node, and a no node have
different values in each of the TX|Y projections, and so F1 is satisfied according to the
semantics of subtree-based XML functional dependencies as desired. In general, subtree-
based XML functional dependencies adequately deal with multiple property nodes, since
structural relationships between property nodes are kept when comparing subtrees.

idprdcno Line

amtnocode

Invoice

C1 01/09 I1

0660 1010 $10

idprdcno Line

amtnocode

Invoice

C2 01/09 I2

0660 2020 $30

idprdcno Line

amtnocode

Invoice

C1 01/09 I1

0990 2020 $20

Figure 2.10: Subtrees in checking the satisfaction of benchmark constraint F1 in XML
tree T1 in the subtree-based approach.

Handling of absent property nodes: Whereas subtree-based XML functional depen-
dencies adequately handle multiple property nodes, they disregard incomplete combinations
of property nodes and therefore do not adequately handle absent property nodes. To see
this consider the validation of XML tree T4 against XML functional dependency F2. The
TX -subtrees are the subtrees of XML tree T4 which are rooted at the Addr nodes. Since the
TX|Y projections in these subtrees are both missing an ano node, they do not satisfy the
requirement to have one node for each path indicated by the Y scheme tree in F2. Hence,
the Z subtrees, i.e. the id nodes, must not agree according to the semantics of subtree-based
XML functional dependencies. As a consequence, F1 is satisfied in XML tree T1 according
to the semantics of subtree-based XML functional dependencies, which is clearly not desired.

We conclude the discussion of subtree-based XML functional dependencies with an
overview on related theoretical results. Hartmann et al. presented a sound and complete
set of inference rules for subtree-based XML functional dependencies in [103]. Interest-
ingly, the well known transitivity rule for relational functional dependencies is not sound
for subtree-based XML functional dependencies. Lv & Yan developed a normalform based
on their extended version of subtree-based XML functional dependencies and showed this
normalform to be a necessary and sufficient condition for avoiding redundancies in XML
data [104].

2.6 Formula-based XML Integrity Constraints

The commonality of what we call formula-based XML integrity constraints is that a con-
straint is specified using variables to which nodes and values in an XML document are bound
in order to validate the XML document against an XML integrity constraint.
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2.6.1 XML Template Functional Dependencies

Inspired by traditional template dependencies for the relational data model, Mok recently
presented an XML template functional dependency [105]. Likewise to its relational antetype,
an XML template functional dependency consists of a hypothesis and a conclusion. The
hypothesis is made up of a set of lists of variables of the form X1. · · · .Xn. A variable X may
have associated an element type τ or attribute α defined in a DTD, which is assumed to
be present, in which case X is called an element variable or attribute variable, respectively.
If a variable X has neither associated an element type nor an attribute, then X is a text
variable. Attribute variables and text variables must not occur in any other position than
the last in any list of variables in the hypothesis. The conclusion in an XML template
functional dependency is made up of a single equality comparison between two variables of
the hypothesis.

The variables in an XML template functional dependency are bound to nodes and values
in an XML document, where element variables are bound to element nodes, as opposed to
attribute variables and text variables, which are bound to the values of attribute nodes and
text nodes, respectively. The binding of a list of variables X1. · · · .Xn to a list of nodes and
values u1, . . . , un in an XML document is said to be valid, if for all i ∈ {1, . . . , n}, (a) if X i is
an element variable having associated element type τ , then ui is an element node of type τ ,
and ui−1 is the parent of node ui if i > 1; (b) if X i is an attribute variable having associated
attribute α, then ui is the value of an attribute node labeled α which is a child of node ui−1;
(c) if X i is a text variable, then ui is the value of a text node which is a child of node ui−1.
An XML document satisfies an XML template functional dependency, if every valid binding
of all lists of variables in the hypothesis to nodes and values in the XML document satisfies
the conclusion.

In case that the conclusion requires equality between element variables, an XML template
functional dependency acts as a key constraint, since two element nodes are equal if and
only if they are they same node according to [105]. We therefore use benchmark XML keys
K1 and K2 for the evaluation of XML template functional dependencies.

With respect to the element types and attributes in DTDs D1 and D3 depicted in Figures
2.5 and 2.7, respectively, the benchmark XML keys K1 and K2 are specified in form of XML
template functional dependencies as depicted in Table 2.17. The element type or attribute
associated to a variable is thereby indicated by the name of the variable, in accordance with
the notation used in [105].

Handling of multiple property nodes: The hypothesis of XML key K1 depicted in
Table 2.17 contains only element variables and attribute variables but no text variable. In
particular, Invoice1 and Invoice2 as well as Line1 and Line2 are element variables, and
prd1, code1, and no1 are attribute variables. Hence, variables Invoice1 and Invoice2 are
bound to (not necessarily distinct) element nodes of type Invoice, and variables Line1

and Line2 are bound to (not necessarily distinct) element nodes of type Line. In contrast,
attribute variables prd1, code1, and no1 are bound to values of prd nodes, code nodes and
no nodes, respectively.

The three lists of variables in the top of the hypothesis require for any valid binding
that (i) the value in prd1 is the value of a prd attribute node of the Invoice node in
variable Invoice1; (ii) the Line node in variable Line1 is a child of the Invoice node in
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K1 〈Invoice1.prd1〉
〈Invoice1.Line1.code1〉
〈Invoice1.Line1.no1〉
〈Invoice2.prd1〉
〈Invoice2.Line2.code1〉
〈Invoice2.Line2.no1〉
Invoice1 = Invoice2

K2 〈Addr1.city1〉
〈Addr1.strt1〉
〈Addr1.hno1〉
〈Addr1.ano1〉
〈Addr2.city1〉
〈Addr2.strt1〉
〈Addr2.hno1〉
〈Addr2.ano1〉
Addr1 = Addr2

Table 2.17: Benchmark constraints K1 and K2 specified as XML template functional de-
pendencies.

variable Invoice1, and the value in code1 is the value of a code attribute node of the Line

node in variable Line1; (iii) the value in no1 is the value of a no attribute node of the
Line node in variable Line1. The three lists of variables in the bottom of the hypothesis
impose similar requirements on the nodes and values in variables Invoice2 and Line2. Note
that the attribute variables prd1, code1, and no1 are reused in the lists of variables in the
bottom of the hypothesis. As a consequence, whenever element variables Invoice1, Line1

and Invoice2, Line2 are bound to two pairs of an Invoice node and a Line node, then
the invoices must have the same invoice period, and the invoice lines must have the same
combination of code and number. Combined with the condition in the conclusion, this
means that if two pairs of an Invoice node and a Line node have the same values for the
prd, code, and no nodes, then the Invoice nodes must be the same, which is the intended
meaning of XML key K1.

There are three valid bindings in XML tree T1, which are listed in Table 2.18. Because
the same Invoice node is assigned to variables Invoice1 and Invoice2 in each of these
bindings, XML key K1 is satisfied in XML tree T1 according to the semantics of XML
template functional dependencies as desired.

Invoice1 prd1 Line1 code1 no1 Invoice2 Line2

v3 01/09 v5 0660 1010 v3 v5

v3 01/09 v9 0990 2020 v3 v9

v15 01/09 v17 0660 2020 v15 v17

Table 2.18: Bindings of the variables in the XML template functional dependency K1 to
nodes and values in XML tree T1.

It is however worth being mentioned that an XML template functional dependency does
not intrinsically avoid semantically incorrect combinations of property nodes when it is
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checked. For example, if XML template dependency K1 in Table 2.17 is specified in a
slightly different way such that four separate Line variables are used, then {Invoice1 = v3,
prd1 = 01/09 , Line1 = v5, code1 = 0660 , Line2 = v9, no1 = 2020 , Invoice2 = v15,
Line3 = v17, Line4 = v17} is a valid binding in XML tree T1. The binding of variables
code1 and no1 to values 0660 and 2020 is however semantically incorrect, since 0660 and
2020 belong to different invoice lines with respect to the Invoice node v3 assigned to
variable Invoice1. This slightly modified version of K1 is in fact violated in XML tree T1,
because distinct Invoice nodes v3 and v15 are assigned to variables Invoice1 and Invoice2,
respectively, and so the conclusion is not satisfied. Hence, it is the responsibility of developers
of XML applications to specify XML template dependencies in a way such that semantically
incorrect combinations of property nodes are ignored and so multiple property nodes are
adequately handled.

Ensuring uniqueness of property nodes: An XML template functional dependency
does not ensure uniqueness of property nodes. To see this consider XML template func-
tional dependency K1 depicted in Table 2.17 and XML tree T2. The valid bindings of the
variables in the hypothesis of K1 to nodes and values in XML tree T2 are listed in Table 2.19.
Because the Invoice node v3 is assigned to both variables Invoice1 and Invoice2 in each
of these bindings, K1 is satisfied in XML tree T2 according to the semantics of XML tem-
plate functional dependencies, even though the combinations of property nodes v5, v6, v13

and v9, v10, v13, i.e. 0990 , 2020 , 01/09 , are redundant.

Invoice1 prd1 Line1 code1 no1 Invoice2 Line2

v3 01/09 v4 0990 2020 v3 v8

v3 01/09 v8 0990 2020 v3 v4

Table 2.19: Bindings of the variables in XML template functional dependency K1 to nodes
and values in XML tree T2.

Generally speaking, in order to ensure uniqueness of property nodes it is necessary to
assert that whenever there exist value equal combinations of property nodes, then these
property nodes must be the same, and so it is necessary to compare property nodes both by
means of value equality and also by means of existential equality. Translated to the setting
of XML template dependencies this means that it would be necessary to bind variables
in the hypothesis to values of nodes and to compare the identities of these nodes in the
conclusion. Unfortunately, this is not permitted by XML template functional dependencies,
and so uniqueness of property nodes cannot be ensured.

Handling of absent property nodes: The variables in an XML template functional
dependencies are only bound to a set of nodes and values if there is exactly one node or
value for each variable. Incomplete combinations of property nodes are therefore simply
disregarded when the satisfaction of an XML template functional dependency is checked.
For example with respect to XML template functional dependency K2 depicted in Table
2.17 and XML tree T3, {Addr1 = v9, city1 = NY , strt1 = Park Av. , hno1 = 30 , ano1 = 2B ,
Addr2 = v9} is the single valid binding such that each variable in K2 is bound. Because Addr
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node v9 is assigned to both variables Addr1 and Addr2, the XML key K2 is satisfied in XML
tree T3 according to the semantics of XML template functional dependencies. Whereas this
result is intended in XML tree T3, K2 is also satisfied in XML tree T4, where not even one
binding exists such that every variable is bound to a node or value. Hence, XML template
functional dependencies do not adequately handle absent property nodes.

2.6.2 XML Disjunctive Embedded Dependencies

Deutsch & Tannen proposed an XML disjunctive embedded dependency, which is a direct
extension of its relational antetype to the XML data model [106, 107]. An XML disjunctive
embedded dependency is a first-order logic assertion of the form

∀X1, . . . ,Xn

[
Φ(X1, . . . ,Xn)→

l∨
i=1

∃ Yi1 , . . . , YimΨi(X1, . . . ,Xn, Yi1 , . . . , Yim)

]
where X1, . . . ,Xn and Yi1 , . . . , Yim are lists of variables, and Φ and Ψi are conjunctions of
XPath atoms of the form [P ](Z) or [P ](Z,Z′) and (dis)equality atoms of the form (Z 6= Z′)
Z = Z′, where P is an XPath expression, and Z and Z′ are variables or constants.

As for variables in XML template functional dependencies, the variables in an XML
disjunctive embedded dependency are bound to nodes or values in an XML document. The
binding of a variable Z to a node or value u thereby satisfies a unary XPath atom [P ](Z),
if u is in the result of XPath expression P , when P is evaluated from the root of the XML
document. A binary XPath atom [P ](Z,Z′) is satisfied by the bindings of Z to u and Z′ to
u′, if u′ is in the result of XPath expression P , when P is evaluated relative to node u. An
XML document satisfies an XML disjunctive embedded dependency, if for any binding of
the variables in X1, . . . ,Xn that satisfies all atoms in Φ, there is some i, where 1 ≤ i ≤ l,
and some extension of this binding to the variables Yi1 , . . . , Yim such that all atoms in Ψi

are satisfied by the extended binding [107].
Embedded dependencies for the relational data model allow to express most of the tradi-

tional integrity constraints, including functional dependencies, inclusion dependencies, and
multivalued dependencies, but also cardinality and domain constraints [108]. Likewise, XML
disjunctive embedded dependencies are a very powerful type of XML integrity constraint,
and allow to specify XML keys, XML functional dependencies and XML inclusion depen-
dencies for instance.

We now evaluate XML disjunctive embedded dependencies. For the purpose of illustra-
tion, Table 2.20 lists benchmark XML key K1 and XML inclusion dependency I1 in form of
XML disjunctive embedded dependencies.

Handling of multiple property nodes: Consider first XML disjunctive embedded depen-
dency I1 depicted in Table 2.20. The antecedent of I1 binds variables A and B to Invoice

and Line nodes, respectively. Further, the Ci variables are bound to the values of cno

nodes, code nodes, and no nodes, where the symbol ‘@’ is standard XPath syntax for ac-
cessing the values of attribute nodes. In order to avoid semantically incorrect combinations
of property nodes, XPath atom [./Line](A, B) together with XPath atoms [@code](B, C2)
and [@no](B, C3) ensure that the pairs of values of a code node and a no node assigned to
variables C2 and C3 belong to the same line in an invoice. The consequent of I1 then requires
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K1 ∀ A, Ā, B, B̄, C1, C̄1, C2, C̄2, C3, C̄3,D1,D2,D3

[//Invoice](A) ∧ [./prd](A, C1) ∧ [text()](C1,D1)∧
[./Line](A, B) ∧ [./code](B, C2) ∧ [text()](C2,D2) ∧ [./no](B, C3) ∧ [text()](C3,D3)∧
[//Invoice](Ā) ∧ [./prd](Ā, C̄1) ∧ [text()](C̄1,D1)∧
[./Line](Ā, B̄) ∧ [./code](B̄, C̄2) ∧ [text()](C̄2,D2) ∧ [./no](B̄, C̄3) ∧ [text()](C̄3,D3)∧
→ A = Ā ∧ C1 = C̄1 ∧ C2 = C̄2 ∧ C3 = C̄3

I1 ∀ A, B, C1, C2, C3
[//Invoice](A) ∧ [@cno](A, C1) ∧ [./Line](A, B) ∧ [@code](B, C2) ∧ [@no](B, C3)
→ ∃ D [//Phone](D) ∧ [@cno](D, C1) ∧ [@code](D, C2) ∧ [@no](D, C3)

Table 2.20: Benchmark constraints K1 and I1 specified as XML disjunctive embedded
dependencies.

the existence of a Phone node, which is assigned to variable D, such that this Phone node
has a cno, a code, and a no attribute node with the values assigned to variables C1, C2, and
C3, respectively. That is, the existential quantification of a Phone node in the consequent
asserts the subset relationship between the values of cno, code, and no nodes nested within
Invoice nodes and the values of cno, code, and no nodes nested within Phone nodes. Table
2.21 lists the bindings of variables in XML disjunctive embedded dependency I1 to nodes
and values in XML tree T1. Because semantically incorrect combinations of property nodes
are disregarded, there exists a D node for every binding of nodes and values to the variables
in the antecedent of I1, and so I1 is satisfied in XML tree T1 according to the semantics of
XML disjunctive embedded dependencies as desired.

A B C1 C2 C3 D

v3 v5 C1 0660 1010 v24

v3 v9 C1 0990 2020 v28

v15 v17 C2 0660 2020 v32

Table 2.21: Bindings of the variables in XML disjunctive embedded dependency I1 to
nodes and values in XML tree T1

.

The rationale for XML disjunctive embedded dependency K1 depicted in Table 2.20 is
essentially the same as the rationale for the XML template functional dependency depicted
in Table 2.17, which has been illustrated in Section 2.6.1. Variables A and B as well as
variables Ā and B̄ bind pairs of an Invoice node and a Line node. An XML disjunctive
embedded dependency permits in contrast to an XML template functional dependency to
freely choose whether to bind a variable to the value of a node or to the identity of a node.
This is the essential prerequisite for ensuring uniqueness of property nodes, as will be made
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more clear soon. In addition to the three Di variables for binding the values of prd nodes,
code nodes and no nodes, the XML disjunctive embedded dependency K1 binds the Ci and
C̄i variables to the identities of prd nodes, code nodes, and no nodes. The Di variables are
thereby bound to the values of nodes using the standard XPath function text(). Note that
each Di variable is bound to the value of both the node in Ci and the node in C̄i, and so each
pair of nodes assigned to variables Ci and C̄i must have the same value, i.e. only pairwise
value equal combinations of a prd node, a code node, and a no node are assigned to the Ci
and C̄i variables.

The equality atoms to the right of the implication symbol parallel the conclusion of an
XML template functional dependency. However, instead of only requiring the existential
equality of the Invoice nodes assigned to variables A and Ā in order to assert the identi-
fication of Invoice nodes, it is additionally required that the combinations of prd nodes,
code nodes and no nodes assigned to the Ci and C̄i variables must be pairwise the same.

Table 2.22 lists the bindings of variables in XML disjunctive embedded dependency K1

to nodes and values in XML tree T1. Again, semantically incorrect combinations of property
nodes are disregarded and so K1 is satisfied in T1 as desired.

A B C1 D1 C2 D2 C3 D3 Ā B̄ C̄1 C̄2 C̄3

v3 v5 v14 01/09 v6 0660 v7 1010 v3 v5 v14 v6 v7

v3 v9 v14 01/09 v10 0990 v11 2020 v3 v9 v14 v10 v11

v15 v17 v22 01/09 v18 0660 v19 2020 v15 v17 v22 v18 v19

Table 2.22: Bindings of the variables in XML disjunctive embedded dependency K1 to
nodes and values in XML tree T1

.

As for XML template functional dependencies, also XML disjunctive embedded depen-
dencies do not intrinsically avoid semantically incorrect combinations of property nodes. It
is again the responsibility of application developers to carefully define a constraint such that
desired semantics is asserted.

Uniqueness of property nodes: XML disjunctive embedded dependencies allow to ensure
uniqueness of property nodes in contrast to XML template functional dependencies. To see
this consider the validation of XML tree T2 against XML disjunctive embedded dependency
K1. Because the consequent of K1 requires nodes, which are bound to the Ci and C̄i variables,
to be the same, it is effectively required that whenever there exist value equal combinations
of a prd node, a code node, and a no node, then these nodes must be the same, i.e. the
combinations of a prd node, a code node, and a no node must be unique. Table 2.23 lists
the bindings of variables in XML disjunctive embedded dependency K1 to nodes and values
in XML tree T2. Because different nodes are assigned to variables C2 and C̄2 as well as C3 and
C̄3 in the bindings in the second and the fourth line of Table 2.23, the consequent of K1 is
not satisfied. Hence, K1 is violated in XML tree T2 as desired. This desirable result is again
achieved solely because of the deliberate specification of K1 in form of an XML disjunctive
dependency.
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A B C1 D1 C2 D2 C3 D3 Ā B̄ C̄1 C̄2 C̄3

v3 v4 v13 01/09 v5 0990 v6 2020 v3 v4 v13 v5 v6

v3 v4 v13 01/09 v5 0990 v6 2020 v3 v8 v13 v9 v10

v3 v8 v13 01/09 v9 0990 v10 2020 v3 v8 v13 v9 v10

v3 v8 v13 01/09 v9 0990 v10 2020 v3 v4 v13 v5 v6

Table 2.23: Bindings of the variables in the XML disjunctive embedded dependency rep-
resenting benchmark XML key K1 to nodes and variables in XML tree T2

.

Handling of absent property nodes: The variables in an XML disjunctive embedded
dependency are only bound to nodes and values if there is exactly one node or value for each
variable. As for XML template functional dependencies, also XML disjunctive embedded
dependencies therefore do not allow to adequately deal with absent property nodes. In
particular, benchmark constraint K2 is satisfied in both XML trees T3 and T4 as well as
benchmark constraint I2 is satisfied in both XML trees T5 and T6 according to the semantics
of XML disjunctive embedded dependencies. Since K2 and I2 should be violated in XML
trees T4 and T6, respectively, XML disjunctive embedded dependencies do not adequately
handle absent property nodes.

2.7 Summary

Table 2.24 summarizes the results of our evaluation of previous approaches to value-based
XML integrity constraints. The symbols in Table 2.24 have the following meaning:

+ . . . The test case is passed.
× . . . The approach does not allow to specify the type of constraint used in the test case.
− . . . The approach allows in general to specify the type of constraint used in the test case

but either does not allow to specify the particular benchmark constraint or uses a
model of XML data which does not allow to represent the XML tree in the test case.

� . . . The approach allows to specify the benchmark constraint but checking the satisfaction
of the constraint in the benchmark XML tree yields a counter-intuitive result.

The strength of selector/field XML integrity constraints is clearly their intuitive syn-
tax. Unfortunately, multiple and absent property nodes are not adequately handled by
selector/field XML integrity constraints.

Compared to selector/field XML integrity constraints, the syntax of tuple-based XML
integrity constraints is less intuitive since only the targeted property nodes are explicitly
specified for tuple-based XML integrity constraints but not the targeted entity nodes. Nev-
ertheless, tuple-based approaches as well as the subtree-based approach exploit structural
relationships between property nodes and therefore disregard semantically incorrect combi-
nations of property nodes in general. Absent property nodes are handled in these approaches
either by means of applying strong/weak satisfaction semantics or by means of disregarding



68 CHAPTER 2. RELATED WORK

Test Case C1 C2 C3 C4 C5 C6 C7
Approach

ID and IDREF − − − − − − −
Subtree-based approach + × × + � × ×

Selector/Field approaches
With restrictions on fields − − − − − − −
With restrictions on field nodes

- XSD key and foreign key � � + � + � +
- XSD unique constraint � × + + � × ×

Unrestricted � × � + � × ×

Tuple-based approaches
Intersection path approach � � × + � + �
Tree-tuple approach + × � + � × ×
Weak closest-node approach � × � + + × ×
Strong closest-node approach + × � + + × ×
Hedge-based approach + + + + � + �

Formula-based approaches
XML template functional dependencies + × � + � + �
XML disjunctive embedded dependencies + + + + � + �

Table 2.24: Evaluation of previous approaches to value-based XML integrity constraints.

incomplete combinations of property nodes at all. In general none of these techniques is
adequate for handling absent property nodes as we have illustrated already in the introduc-
tory chapter. Applying strong satisfaction semantics is nevertheless an expedient manner for
handling absent property nodes in checking the satisfaction of XML functional dependencies
in particular. This is made evident by the results of both the strong and the weak ‘closest
node’ approach for test cases C4 and C5 (cf. Table 2.2). But we note that applying strong
satisfaction semantics leads to counter-intuitive results in checking the satisfaction of XML
inclusion dependencies. This has been illustrated in Example 1.10.

Formula-based XML integrity constraints are highly expressive constraints. Especially,
XML embedded disjunctive dependencies as proposed by Deutsch & Tannen. The limitations
of formula-based XML integrity constraints are twofold. The first limitation is that it is left
to the application developer to ensure that multiple property nodes are adequately handled,
which is clearly undesirable. The second limitation is that formula-based XML integrity
constraints do not allow for adequately handling absent property nodes.
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This chapter presents the definitions of XML keys and XML inclusion dependencies in the
enhanced ‘closest node’ approach. For this purpose, Section 3.1 reviews the basics of graphs
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presents our model of XML data, and finally Section 3.3 defines the syntax and semantics
of the XML keys and XML inclusion dependencies proposed in this thesis.
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3.1 Preliminaries

The purpose of this section is to review basics of graphs and trees, which we then use in
Section 3.2 for defining our model of XML data. For detailed discussions of graphs and
trees, we refer the reader to the excellent textbooks by Diestel [109] and Tutte [110].

3.1.1 Graphs and Trees

A graph is essentially a pair of a set of nodes and a set of edges connecting the nodes. Based
on this general notion, we define a graph as follows.

Definition 3.1 (Graph) A graph G is defined to be

G = (V ,E)

where V is the finite set of nodes and E ⊆ V × V is the set of edges such that
(i) for all (v, v̄) ∈ E, v 6= v̄;

(ii) for all v ∈ V , if V 6= {v} then ∃v̄ ∈ V such that (v, v̄) ∈ E or (v̄, v) ∈ E.

The graph G is defined to be the empty graph if V = ∅, and G is defined to be a trivial
graph if |V | = 1.

A couple of comments on Definition 3.1 are appropriate. In contrast to graph models
frequently used in general graph theory, our graph model requires graphs to consist of finitely
many nodes and thus only permits finite graphs. The edges in a graph are a subset of the
cross product of the nodes in the graph according to Definition 3.1. An edge is therefore an
ordered pair of nodes and so the edges in a graph are directed edges. In particular, an edge
(v, v̄) leads from node v to node v̄. Requirement (i) in Definition 3.1 means that an edge does
not connect a node to itself. Loops are hence excluded in our graph model. Requirement
(ii) in Definition 3.1 means that every node in a non-trivial graph must be connected to at
least one other node. Our graph model thus only permits connected graphs.

A sequence of connected nodes in a graph is usually called a path. The term ‘path’
however has some special meaning in the context of XML. In order to avoid ambiguities we
call a sequence of connected nodes in a graph a walk.

Definition 3.2 (Walk and Cycle) Let G = (V ,E) be a graph. A non-empty list of nodes
[v1, . . . , vn] ⊆ V is defined to be walk in G, denoted by v1. · · · .vn, if for all i ∈ {1, . . . , n},
(vi−1, vi) ∈ E if i > 1. The walk v1. · · · .vn is defined to be a cycle if v1 = vn and n > 1.

Example 3.1 Figure 3.1a depicts a graph consisting of three nodes. The number beside a
node indicates its node identifier which we use for referencing individual nodes in examples.
The edges connecting the nodes are depicted by solid lines in Figure 3.1a. The arrow at the
end of an edge indicates its direction. For instance, the edge connecting nodes v1 and v2

leads from v1 to v2. Also, the sequence of connected nodes v1.v2.v3 is a walk in this graph.
In contrast, v1.v3 is not a walk in this graph because the edge that connects v1 and v3 leads
from v3 to v1 and not in the opposite direction. Finally, the walk v1.v2.v3.v1 is a cycle.
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We now define a tree, a special case of a graph, since we model an XML document as
a tree. The actual difference between a graph and a tree is that the former permits walks
which are cycles in contrast to the latter.

Definition 3.3 (Tree) A graph G is defined to be a tree if no walk in G is a cycle.

(a)

1

32

(b)

1

4

2 3 5

Figure 3.1: A graph and a tree.

Because edges are directed and cycles are prohibited in a tree, there exists exactly one
node in every non-empty tree from which edges only emanate but to which no edge leads to.
This node is usually called the root node of a tree. The next definition makes the notion of
the root node of a tree more precise.

Definition 3.4 (Root Node) Let G = (V ,E) be a non-empty tree. The root node of G,
denoted by root(G), is defined to be

root(G) = v ∈ V | @ v̄ ∈ V such that (v̄, v) ∈ E.

Example 3.2 Figure 3.1b depicts a tree consisting of five nodes. The root node in this tree
is node v1. Hence, if we denote this tree by G, then root(G) = v1.

Because a tree is a connected graph and edges do not lead to the root node of a tree,
there is a walk to every node in the tree which starts at the root node. Hence, there are
the notions of above and below in trees, where above means closer to the root node and
below means further away from the root node. We define next certain types of vertical
relationships between nodes in a tree, which we call axes, in alignment with the terminology
used in the XML specification by the W3C.

Definition 3.5 (Axes) Let G = (V ,E) be a tree. With respect to a given node v ∈ V ,

parent(v,G) ={v̄ ∈ V | (v̄, v) ∈ E}
ancestor(v,G) = parent(v) ∪ ancestor(parent(v, root(G)), root(G))

anc-or-self(v,G) = ancestor(v, root(G)) ∪ {v}
child(v,G) ={v̄ ∈ V | (v, v̄) ∈ E}

descendant(v,G) = child(v, root(G)) ∪ descendant(v̄, root(G)) for all v̄ ∈ child(v, root(G))

desc-or-self(v,G) = descendant(v, root(G)) ∪ {v}
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With respect to a given node v, axes parent, ancestor, and anc-or-self relate nodes to v
which are above v in the tree under consideration. These axes are therefore called upward
axes. In contrast, axes child, descendant, and desc-or-self relate nodes to v which are below
v in the tree under consideration. These axes are therefore called downward axes. We will
omit explicitly stating the tree in which an axis is computed if the tree is understood from
the context. Also, it is worth being mentioned that every node in a tree has exactly one
parent node except for the root node which does not have a parent node at all.

Example 3.3 Referring to the tree depicted in Figure 3.1b, parent(v1) = ∅ whereas
parent(v2) = {v1}. Also, ancestor(v4) = {v3, v1} and anc-or-self(v4) = {v4, v3, v1}. Next,
child(v5) = ∅ whereas child(v3) = {v4}. Finally, descendant(v1) = {v2, v3, v4, v5} and
desc-or-self(v1) = {v1, v2, v3, v4, v5}.

In addition to the notions of above and below in a tree, it is also convenient to have the
notions of left and right. For this purpose we now introduce ordered trees.

Definition 3.6 (Ordered Tree) An ordered tree is defined to be

(V ,E,≤), where

- (V ,E) is a tree, and
- ≤ is a partial order on V such that for all (v, v′) ∈ V × V , nodes v and v′ are related by
≤ iff parent(v) = parent(v′).

According to Definition 3.6, every set of nodes that have the same parent node are
ordered by ≤. The child nodes of a node are therefore lists of nodes in ordered trees as
opposed to unordered trees where child nodes are (unordered) sets. It is hence determined
for each pair of child nodes (v, v̄) of the same parent node whether v is to the left of v̄ or
vice versa. In the remainder of this thesis we assume that all trees are ordered trees even
though we will omit to explicitly state the ordering function ≤ unless we need to refer to
the ordering of child nodes.

Example 3.4 Consider once more the tree depicted in Figure 3.1b and suppose that partial
ordering ≤ is defined in correspondence with the arrangement of nodes in Figure 3.1b. Then,
v2 ≤ v2 as well as v2 ≤ v3. In contrast, v5 6≤ v2. Also, nodes v4 and v2 are not related by ≤
at all, i.e. ≤ is undefined for v4 and v2, since these nodes do not have the same parent node.

3.1.2 Operators on Trees

We now define some tree operators that are needed later in the thesis. We start with defining
the projection of a tree on an node v.

Definition 3.7 (Tree Projection) Let G = (V ,E) be a tree, and let v ∈ V be a node.
The operation of projecting G on v, denoted by G[v], results in the tree (V ′,E′), where
V ′ = desc-or-self(v,G) and E′ = {(v̈, v̄) ∈ E | {v̈, v̄} ⊆ V ′}.
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The projection of a tree on a node v results in the subtree rooted at v. Consider for
example the tree depicted in the top of Figure 3.2a. If we denote this tree by G, then G[v3]
results in the subtree of G depicted in the bottom of Figure 3.2a.

We define next the operation of adding a tree Ḡ as principal subtree1 to another tree G.

Definition 3.8 (Tree Add) Let G = (V ,E) and Ḡ = (V̄ , Ē) be trees such that V ∩ V̄ =
∅. The operation of adding Ḡ to G, denoted by G + Ḡ, results in the tree (V ′,E′), where
V ′ = V ∪ V̄ , and E′ = E ∪ Ē ∪ {(root(G), root(Ḡ))}.
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Figure 3.2: Trees resulting from the projection, add, and subtraction operator.

In order to ensure that adding a tree to another results in a tree in terms of our tree
model, Definition 3.8 requires the two trees to have disjoint sets of nodes. For example, if
we denote the trees depicted in the top left and right of Figure 3.2b by G and Ḡ, then G
and Ḡ have disjoint sets of nodes, as indicated by the disjoint sets of node identifiers. It
is therefore valid to add Ḡ as principal subtree to G. In particular, G + Ḡ yields the tree
depicted in the bottom of 3.2b, which obviously contains Ḡ as one of its principal subtrees.

We finally introduce the subtraction operator. Roughly speaking, this operator deletes
all subtrees in a tree G which are rooted at nodes that are contained in another tree Ḡ.

Definition 3.9 (Tree Subtraction) Let G = (V ,E) and Ḡ = (V̄ , Ē) be trees. The
operation of subtracting Ḡ from G, denoted by G − Ḡ, results in the tree (V ′,E′), where
V ′ = V − {v ∈ V | v ∈ desc-or-self(v̄,G) ∧ v̄ ∈ V̄ }, and E′ = {(v̈, v̄) ∈ E | {v̈, v̄} ⊆ V ′}.

We now illustrate the subtraction operator. Consider trees G and Ḡ depicted in the top
left and right of Figure 3.2c, respectively. The common nodes in trees G and Ḡ are nodes v3

and v6. Hence, subtracting Ḡ from G means to remove the subtrees of G which are rooted
at nodes v3 and v6. The tree resulting from G− Ḡ is depicted in the bottom of Figure 3.2c.

1A principal subtree is one whose root node is a child of the root node of the original tree.
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3.2 A Model of XML Data

We now present our model of XML data. We define XML trees in Section 3.2.1, and introduce
the notion of a path in Section 3.2.2. In Section 3.2.3 we finally redefine the operators on
trees introduced in Section 3.1.2 for the special class of XML trees.

3.2.1 XML Trees: The Primary Data Structure

Our intention is to model XML data as a tree of nodes which have assigned labels in order
to represent the names of XML elements and XML attributes, and which may have assigned
values in order to represent values of XML attributes as well as text enclosed by XML
elements. We therefore assume the existence of a set of permitted values as well as a set of
permitted labels, and we define these sets follows.

Definition 3.10 (Values and Labels) A value u is a member of the fixed, countably
infinite set of values U . A label l is a member of the fixed set of labels L = LE ∪LA ∪ {S},
where LE and LA are countably infinite, disjoint sets of element labels and attribute labels,
respectively, and S is the distinguished text label.

Our reason for distinguishing element labels, attribute labels and the text label is that
we couple the kind of a node to the label of the node in our model of XML data, which allows
for more compact definitions. That is, we assume that if a node has assigned an element
label, an attribute label or a text label, then it is an element node, an attribute node or a
text node, respectively. It is worth being mentioned that this assumption does not limit the
generality of our model of XML data even though it is in contrast to other models like the
Document Object Model (DOM) [111] for example. We now make these ideas more precise.

Definition 3.11 (XML Tree) An XML tree T is defined to be

T = (V ,E, lab, val), where

(1) (V ,E) is a tree in terms of Definition 3.3;
(2) the total function lab : V → L assigns labels to the nodes in V , such that a node v ∈ V

is said to be an element node if lab(v) ∈ LE , an attribute node if lab(v) ∈ LA, and a
text node if lab(v) = S;

(3) the partial function val : {v ∈ V | lab(v) /∈ LE} → U assigns values to the attribute
nodes and text nodes in V ;

(4) for all (v, v̄) ∈ E
(i) lab(v) ∈ LE , and
(ii) if v̄ ∈ LA then @(v, v̄′) ∈ E such that v̄ 6= v̄′ and lab(v̄) = lab(v̄′).

A couple of comments are appropriate. First, requirement (4.i) in Definition 3.11 means
that only element nodes are inner nodes in an XML tree, which reflects the property of an
XML document of being well-formed. Second, in correspondence with the XML specification
by the W3C, (4.ii) in Definition 3.11 requires that an element node does not have two distinct
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child attribute nodes which have the same label assigned. Third, element nodes are allowed
to have more than only one child text node. Our XML tree model therefore allows to
represent mixed-content in XML documents.

Customer
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Phone

0660

code
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Figure 3.3: An XML tree conforming to Definition 3.11.

Example 3.5 (XML tree) Figure 3.3 depicts an XML tree in terms of our tree model
which represents information about customer Jones and his or her phones. Thereby,
{Customer, Status, Phone} ⊆ E are element labels, and {name, code, no} ⊆ A are attribute
labels. For instance, lab(v1) = Customer and so v1 is an element node, which is also the
root node in this XML tree. Also, val(v2) = Jones as well as val(v4) = premium .

3.2.2 Paths and Reachable Nodes

We proceed with defining the fundamental notion of a path in an XML tree.

Definition 3.12 (Path) A path P is defined to be

P = l1. · · · .ln,

where for all i ∈ {1, . . . , n}, li ∈ L and li ∈ LE if i 6= n.

Because our model of XML data only permits element nodes as inner nodes in an XML
tree, Definition 3.12 requires that a path does not contain attribute or text labels in any
position other than the last. For instance, referring to Example 3.5, the sequence of labels
Customer.Phone is a path, whereas name.Phone is not since it starts with attribute label
name. We now introduce some frequently required properties of paths.

Definition 3.13 (Properties of Paths) Let P and P̄ be given paths, where P =
l1. · · · .lm and P̄ = l̄1. · · · .l̄n.

Length: The length of P , denoted by |P |, is defined to be |P | = m.

First and Last Label: The first label in P , denoted by first(P ), is defined to be first(P ) =
l1. The last label in P , denoted by last(P ), is defined to be last(P ) = lm.

Prefix and Strict Prefix: Path P is defined to be a prefix of P̄ , denoted by P ⊆ P̄ , if
m ≤ n and for all i ∈ {1, . . . ,m}, li = l̄i. Path P is defined to be a strict prefix of P̄ ,
denoted by P ⊂ P̄ , if P ⊆ P̄ and m < n.
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Equality: Path P is defined to be equal to P̄ , denoted by P = P̄ , if P ⊆ P̄ and also P̄ ⊆ P .

Parent Path: Path P is defined to be the parent path of P̄ , denoted by P = parent(P̄ ), if
P ⊂ P̄ and m+ 1 = n.

Intersection: If l1 = l̄1, the intersection of P and P̄ , denoted by P ∩ P̄ , is defined to be
the longest path that is a prefix of both P and P̄ .

Again referring to Example 3.5, if we let P = Customer.Phone.code then length(P ) =
3, first(P ) = Customer, last(P ) = code, and parent(P ) = Customer.Phone. Also,
Customer.Phone ⊂ Customer.Phone.code and Customer.Phone.code ∩ Customer.Phone.no
= Customer.Phone. In contrast, Phone.code ∩ Status.S is undefined, since these two paths
do not start with the same label. We define next the concatenation of two paths.

Definition 3.14 (Path Concatenation) Let P = l1. · · · .lm and P̄ = l̄1. · · · .l̄n be paths
such that lm ∈ LE . Then, the concatenation of P and P̄ , denoted by P.P̄ , is defined to
result in the path l1. · · · .lm.l̄1. · · · .l̄n.

The requirement on a path P to end in an element label in case that a path P̄ is
concatenated to P ensures that path P.P̄ conforms to Definition 3.12. For instance, referring
once more to Example 3.5, the concatenation of paths Customer.Phone and code is legal
and results in path Customer.Phone.code. In contrast, paths Customer.Phone.code and no

cannot be concatenated since path Customer.Phone.code does not end in an element label.
Note that the sequence of labels Customer.Phone.code.no is not a path in terms of Definition
3.12, since code is an attribute label in a position other than the last.

We now turn to the reachability of nodes in an XML tree by following a path. Intuitively,
a node v is reachable over a path P if the labels of nodes in the walk from the root node of
the XML tree to node v coincide with the labels in P . We now make this idea more precise.

Definition 3.15 (Walk on Path) Let P = l1. · · · .ln be a path, and let v1. · · · .vn be a
walk in an XML tree T = (V ,E, lab, val). The walk v1. · · · .vn is defined to be a walk on
path P if for all i ∈ {1, . . . , n}, lab(vi) = li.

For the purpose of illustration, consider the walk v5.v6 in the XML tree depicted in Figure
3.3. The walk v5.v6 is a walk on path Phone.code, since lab(v5) = Phone and lab(v6) = code.
We define next function nodes(P,T) which returns the set of nodes in an XML tree T that
is reachable from the root node of T by following path P .

Definition 3.16 (Reachability of Nodes) Let T = (V ,E, lab, val) be an XML tree and
let P = l1. · · · .ln be a path. The set of nodes reachable from root(T) by following P , denoted
by nodes(P,T), is defined to be

nodes(P,T) = {v ∈ V | v1. · · · .vn is a walk on P in T such that
v1 = root(T) ∧
vn = v}
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We will omit to explicitly state the XML tree to which function nodes(P,T) applies,
if this XML tree is clear from context. We now illustrate function nodes(P,T). For this
purpose, let P denote path Customer.Phone.code and let T be the XML tree depicted in
Figure 3.3. Then nodes(P,T) = {v6, v9}. In contrast, if we let P = Phone.code, then
nodes(P,T) is the empty set, since the walks in T on path P do not start at the root node.

We note that it follows from our model of XML data that for every node v in an XML tree
T there is exactly one walk from the root node in T to v and therefore nodes(P )∩nodes(P̄ ) =
∅ if P 6= P̄ . We therefore say that P is the path such that v ∈ nodes(P ).

3.2.3 Operators on XML trees

We proceed with redefining the operators on trees introduced in Section 3.1.2 for the more
specific notion of XML trees. This actually means to specify the assignments of labels and
values to the nodes in resulting XML trees by functions lab and val.

Definition 3.17 (XML Tree Projection) Let T = (V ,E, lab, val) be an XML tree, and
let v ∈ V be an element node. The operation of projecting T on v, denoted by T[v], is
defined to result in the XML tree (V̄ , Ē, l̄ab, v̄al), where (V̄ , Ē) = (V ,E)[v] and l̄ab and
v̄al are the restrictions of functions lab and val to V̄ , respectively.

In order to ensure that the projection of an XML tree on a node v conforms to Definition
3.11, node v is required to be an element node. Otherwise, the root node of the resulting
XML tree is not an element node, which clearly contradicts our model of XML data. The
labels and values of nodes in the resulting XML tree directly correspond to the labels and
values of nodes in the input XML tree.

This is also the case for the XML trees that result from applying the add operator and
the subtraction operator. The definitions of these operators adopted to XML trees are given
below.

Definition 3.18 (XML Tree Add) Let T = (V ,E, lab, val) and T̄ = (V̄ , Ē, l̄ab, v̄al) be
XML trees such that V ∩ V̄ = ∅. The operation of adding an XML tree T̄ to XML
tree T, denoted by T + T̄, is defined to result in the XML tree (V̈ , Ë, l̈ab, v̈al), where
(V̈ , Ë) = (V ,E) + (V̄ , Ē) and for all v̈ ∈ V̈

l̈ab(v̈) =

{
lab(v̈) v̈ ∈ V
l̄ab(v̈) v̈ ∈ V̄

v̈al(v̈) =

{
val(v̈) v̈ ∈ V
v̄al(v̈) v̈ ∈ V̄

Definition 3.19 (Tree Subtraction) Let T = (V ,E, lab, val) and T̄ = (V̄ , Ē, l̄ab, v̄al)
be XML trees. The operation of subtracting T̄ from T, denoted by T − T̄, is defined to
result in the XML tree (V̈ , Ë, l̈ab, v̈al), where (V̈ , Ë) = (V ,E) − (V̄ , Ē) and l̈ab and v̈al
are the restrictions of functions lab and val to V̈ , respectively.
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3.3 XML Keys and XML Inclusion Dependencies

We now present the definitions of XML keys, XML inclusion dependencies and XML for-
eign keys in the enhanced ‘closest node’ approach. The syntax of enhanced ‘closest node’
constraints is presented in Section 3.3.1, and their semantics is defined in Section 3.3.2.

3.3.1 Defining the Syntax

The syntax of enhanced ‘closest node’ constraints adopts the intuitive syntactical framework
of XML keys and foreign keys in XML Schema, which we call the selector/field framework.
The selector is thereby used for selecting entity nodes in an XML document, and the fields
are used to relate combinations of property nodes to the selected entity nodes for the purpose
of value-based comparison of entity nodes.

Even though enhanced ‘closest node’ XML integrity constraints adopt the selector/field
framework, their syntax slightly differs from the original syntax of selector/field constraints
in XML Schema, which we call XSD constraints for short in the following. We now briefly
outline these differences. (i) We only consider simple paths in the selectors and fields,
whereas XSD constraints allow for a restricted form of XPath expressions. (ii) In contrast
to enhanced ‘closest node’ constraints, XSD constraints allow for scoped constraints, where
the constraint is only evaluated in part of the XML tree. (iii) We only allow for property
nodes which are attribute or text nodes, whereas XSD constraints also allow for property
nodes which are element nodes. Our reason for not considering these extensions is so that we
can concentrate on the main contribution of this thesis, which is to apply different semantics
to XML keys and XML inclusion dependencies so as to adequately handle multiple or absent
property nodes. We now present the syntax of enhanced ‘closest node’ XML integrity
constraints, starting with the syntax of an XML key.

Definition 3.20 (XML Key) An enhanced ‘closest node’ XML key (XKey) is a statement
of the form

(S, {F1, . . . , Fn}),

where S is a path, called selector, that ends in an element label, and {F1, . . . , Fn} is a
non-empty set of paths, called fields, that end in attribute or text labels.

In general, the meaning of an XKey is that selected entity nodes are identified by the
values in combinations of field nodes, i.e. property nodes which are related to the selected
entity nodes by the fields of the XKey. For the purpose of illustration, Table 3.1 lists
benchmark constraints K1 and K2 in terms of XKeys. These benchmark constraints have
been introduced in Chapter 2 in order to evaluate the ability of previous approaches to XML
keys to handle multiple or absent property nodes. We now repeat the meaning of benchmark
constraints K1 and K2 for the convenience of the reader.

The XKey K1 asserts that invoices are identified by the invoice period together with the
code and number of each phone for which phone charges are invoiced. In particular, the se-
lector Company.Invoices.Invoice of K1 selects Invoice nodes in the XML document under
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consideration, and the fields {prd, Line.code, Line.no} relate combinations of prd, code
and no nodes to the selected Invoice nodes for the purpose of value-based comparison. The
XKey K2 asserts that customer addresses are identified by the combinations of city, street,
house and apartment number. For this purpose, Company.Customer.Addr is the selector of
K2, and {city, strt, hno, ano} are the fields of K2.

K1 (Company.Invoices.Invoice, {prd, Line.code, Line.no})
K2 (Company.Customer.Addr, {city, strt, hno, ano})

Table 3.1: Benchmark constraints K1 and K2 specified as XKeys.

We proceed with presenting the syntactic definition of an enhanced ‘closest node’ XML
inclusion dependency, which is also the syntax for enhanced ‘closest node’ XML foreign keys.

Definition 3.21 (XML Inclusion Dependency) An enhanced ‘closest node’ XML in-
clusion dependency (XIND) is a statement of the form

(S, [F1, . . . , Fn]) ⊆ (S′, [F ′1, . . . , F
′
n]),

where S and S′ are paths, called LHS and RHS selector, that end in element labels, and
F ′1, . . . , F

′
n and F ′1, . . . , F

′
n are non-empty lists of paths, called LHS and RHS fields, that end

in attribute or text labels.

In general, the meaning of an XIND is that there is a subset relationship between the
values in combinations of LHS field nodes related to selected LHS entity nodes, and the
values in combinations of RHS field nodes related to selected RHS entity nodes. The XIND
(S, [F1, . . . , Fn]) ⊆ (S′, [F ′1, . . . , F

′
n]) is an XML foreign key (XFKey) if (S′, [F ′1, . . . , F

′
n]) is

an XKey. In contrast to XKeys, which have unordered sets of fields, XINDs have lists of
fields. The reason for XINDs to have lists of fields, as opposed to sets of fields, is so that
it is clear from the positions of fields which specific pairs of an LHS field node and an RHS
field node are to be compared when checking the satisfaction of an XIND in an XML tree.

For the purpose of illustration, Table 3.2 lists benchmark constraints I1 and I2 in terms
of XINDs. As for benchmark constraints K1 and K2, also benchmark constraints I1 and I2

have been introduced in Chapter 2, and we now repeat their meaning.

I1 (Company.Invoices.Invoice, [cno, Line.code, Line.no]) ⊆
(Company.Phones.Phone, [cno, code, no])

I2 (Company.Invoice.Addr, [city, strt, hno, ano]) ⊆
(Company.Customer.Addr, [city, strt, hno, ano])

Table 3.2: Benchmark constraints I1 and I2 specified as XINDs.

The XIND I1 asserts that combinations of codes and numbers of phones together with
the customer numbers in invoices are a subset of the combinations of codes and numbers of
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existing phones and the numbers of customers owning the phones. For this purpose, paths
Company.Invoices.Invoice and Company.Phones.Phone are the LHS and RHS selectors of
I1, and [cno, Line.code, Line.no] and [cno, code, no] are the lists of LHS and RHS fields of
I1 which relate combinations of cno, code, and no nodes to the selected Invoice and Phone

nodes. The XIND I2 asserts that invoice addresses are a subset of customer addresses.
In particular, Company.Invoice.Addr and Company.Customer.Addr are the LHS and RHS
selectors of I2 and [city, strt, hno, ano] is both the list of LHS and RHS fields.

3.3.2 Defining the Semantics

Dealing with multiple or absent field nodes has been identified in Chapter 1 as the primary
challenge posed by the hierarchical and semi-structured nature of XML data to the design
of value-based XML integrity constraints. Our focus in defining the semantics of enhanced
‘closest node’ XML integrity constraints is therefore on ensuring that our definitions capture
the correct semantics in case that multiple or absent field nodes occur in an XML tree.

In order to adequately handle multiple field nodes it is necessary to disregard semantically
incorrect combinations of field nodes in checking the satisfaction of an XKey or XIND. Our
rationale for ensuring that semantically incorrect combinations of field nodes are disregarded
relies on the assumption that the degree of structural coherence in a set of nodes is directly
proportional to the degree of coherence in the represented information. Even though this
assumption is arguable, it is by no means unusual and in fact frequently postulated in
work within the context of XML data, as for example in the work on XML keyword search
[43, 44]. Because of the correspondence between the structural coherence in a set of nodes
on the one side and the coherence in the represented information on the other side, we
argue that a combination of field nodes is semantically correct if the degree of structural
coherence in the combination of nodes is maximal. Based on this rationale, semantically
incorrect combinations of field nodes are disregarded in that only those combinations of field
nodes are used for the value-based comparison of selected entity nodes, where the degree of
structural coherence is maximal.

In order to determine whether the degree of structural coherence in a combination of
field nodes is maximal, we use the closest property of nodes originally presented by Vincent
et al. [20]. Intuitively, a pair of nodes satisfy the closest property if the nodes cannot be
arranged more closely when taking into account the paths that lead to the nodes. Hence, if
every pair of nodes in a combination of field nodes satisfy the closest property, then these
nodes cannot be arranged more closely which means that the structural coherence in the
combination of nodes is maximal and so that the combination is semantically correct. To
be self-contained we now repeat the definition of the closest property of nodes.

Definition 3.22 (The Closest Property of Nodes) Let v1 and v2 be nodes in an XML
tree T = (V ,E, lab, val). The boolean function closest(v1, v2) is defined to return true iff
there exists node v1

2 ∈ V such that
(i) v1

2 ∈ anc-or-self(v1), and
(ii) v1

2 ∈ anc-or-self(v2), and
(iii) v1

2 ∈ nodes(P1 ∩ P2),
where P1 and P2 are the paths such that v1 ∈ nodes(P1) and v2 ∈ nodes(P2).
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According to Definition 3.22, a pair of nodes satisfy the closest property, if the nodes
have a common ancestor node which is reachable over the intersection of the paths that lead
to the nodes. We now illustrate the closest property by an example, and explain how it
facilitates to disregard semantically incorrect combinations of field nodes in checking XKey
or XIND satisfaction.

Example 3.6 Consider the XML tree T1 depicted in Figure 3.4, which has been introduced
in Chapter 2 within our evaluation of previous approaches to value-based XML integrity
constraints. If we want to test for instance whether the XKey K1 given in Table 3.1 is
satisfied in XML tree T1, it is necessary to form combinations of cno, code, no nodes
that are nested within Invoice nodes. The important point is thereby to disregard the
semantically incorrect combinations (v6, v11) and (v7, v10) of a code node and a no node
nested within Invoice node v3. This is achieved by requiring the nodes in a combination
of field nodes to pairwise satisfy the closest property, as we now illustrate. The code nodes
{v6, v10} are reachable over path Company.Invoices.Invoice.Line.code in XML tree T1 as
well as the no nodes {v7, v11} are reachable over path Company.Invoices.Invoice.Line.no.
Hence, Company.Invoices.Invoice.Line.code ∩ Company.Invoices.Invoice.Line.no =
Company.Invoices.Invoice.Line and therefore closest(v6, v11) = closest(v7, v10) = false,
since neither nodes v6 and v11 nor nodes v7 and v10 have a common anc-or-self node
reachable over path Company.Invoices.Invoice.Line. In contrast, the semantically cor-
rect combinations (v6, v7) and (v10, v11) of a code node and a no node satisfy the closest
property, since {v5, v9} ⊆ nodes(Company.Invoices.Invoice.Line) and v5 ∈ anc-or-self(v6)
∩ anc-or-self(v7) as well as v9 ∈ anc-or-self(v10) ∩ anc-or-self(v11).
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Figure 3.4: XML tree representing invoices and phones.

In order to adequately handle absent field nodes, it is necessary to compare selected
entity nodes not only on the basis of values in complete combinations of field nodes, but
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also on the basis of values in incomplete combinations of field nodes. To compare selected
entity nodes also on the basis of values in incomplete combinations of field nodes addresses
XML documents where:

(i) information is complete and absent field nodes therefore reflect some degree of hetero-
geneity in real world entities, or

(ii) information is incomplete and absent field nodes are interpreted in terms of the no
information interpretation as recommended in the XML specification by the W3C.

In both situations, it is necessary to check XKeys and XINDs solely on the basis of
values in those combinations of field nodes that are present in an XML document, since
using a completion of the XML document for this purpose leads to counter intuitive results,
as has been illustrated in Example 1.10. In order to enable the comparison of entity nodes
by the values in incomplete combinations of field nodes, we propose the novel concept of
maximum combinations of field nodes. Intuitively, every semantically correct combination of
field nodes that is maximal with respect to the number of nodes, is a maximum combination
of field nodes. We now make this idea more precise.

Definition 3.23 (Maximum Combination of Field Nodes) Let S be a selector and
let {F1, . . . , Fn} be a set of fields. Also, let T be an XML tree and let v ∈ nodes(S,T) be
a selector node. A set of nodes {v1, . . . , vm} in XML tree T is defined to be a maximum
combination of field nodes for selector node v with respect to the fields {F1, . . . , Fn} if

(i) ∀{i, j} ⊆ {1, . . . ,m}, closest(vi, vj) = true;
(ii) ∀i ∈ {1, . . . ,m}, v ∈ ancestor(vi) and vi ∈ nodes(S.Fj) for some j ∈ {1, . . . , n};
(iii) there does not exist node v̄ ∈ desc(v) such that ∀i ∈ {1, . . . ,m}, v̄ 6= vi and

closest(v̄, vi) = true, and v̄ ∈ nodes(S.Fj) for some j ∈ {1, . . . , n}.

A couple of comments are appropriate. To ensure that a maximum combination of field
nodes is semantically correct, (i) in Definition 3.23 requires that the field nodes pairwise
satisfy the closest property. Further, a maximum combination of field nodes is related to
a selected entity node by the fields in an XKey or XIND, as precisely stated by (ii) in
Definition 3.23. Finally, (iii) in Definition 3.23 requires the maximality of a combination
of field nodes w.r.t. the number of nodes. Intuitively, (iii) in Definition 3.23 requires a
maximum combination of field nodes to be no strict subset of any other semantically correct
combination of field nodes. We now illustrate Definition 3.23 by an example.

Example 3.7 Suppose that we want to check the satisfaction of XKey K2 (cf. Table 3.1)
in XML tree T3 (cf. Figure 3.5a). Then, it is necessary to compare Addr nodes on the
basis of the values in combinations of city, strt, hno, and ano nodes. Whereas the ad-
dress represented by node v9 is complete, the apartment number is absent for the address
represented by node v3. It is thus necessary to compare v9 and v3 on the basis of values
in incomplete combinations of city, strt, hno, ano nodes. Thereby, w.r.t. the selected
Addr node v3 and the fields {city, strt, hno, ano} of XKey K2, nodes (v4, v5, v6) are a
maximum combination of field nodes since (i) these nodes pairwise satisfy the closest prop-
erty, (ii) node v3 is a common ancestor of nodes {v4, v5, v6} which are reachable over paths



3.3. XML KEYS AND XML INCLUSION DEPENDENCIES 83

Company.Customer.Addr.city, Company.Customer.Addr.strt, Company.Customer.Addr.hno,
and (iii) nodes {v4, v5, v6} are no strict subset of any other semantically correct combination
of field nodes. For instance, the superset {v4, v5, v6, v13} is not a maximum combination of
field nodes for v3 w.r.t. the fields in XKey K2 for two reasons. First, v13 does not satisfy the
closest property in combination with any node in {v4, v5, v6} and thus (i) in Definition 3.23
is violated. Second, v3 is not an ancestor of node v13 and thus also (ii) in Definition 3.23 is
violated. The set of nodes {v4, v5} is also not a maximum combination of field nodes for v3

w.r.t. the fields in XKey K2, since even though v4 and v5 satisfy (i) and (ii) in Definition
3.23, they violate (iii) for the obvious reason that {v4, v5} ⊂ {v4, v5, v6}.
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Figure 3.5: XML trees representing customer addresses and invoice addresses.

We are now ready to present our definitions of the semantics of XKeys and XINDs based
on maximum combinations of field nodes. We start with defining the semantics of an XKey.

Definition 3.24 (XKey Semantics) Let σ = (S, {F1, . . . , Fn}) be an XKey and let T be
an XML tree. The XML tree T satisfies σ, denoted by T � σ, if whenever there exist nodes
v, v′ ∈ nodes(S,T), and, with respect to {F1, . . . , Fn}, there exist maximum combinations
of field nodes {v1, . . . , vm} for selector node v, and {v′1, . . . , v′m} for selector node v′, such
that ∀i ∈ {1, . . . ,m}

(i) val(vi) = val(v′i), and
(ii) there exists j ∈ {1, . . . , n} such that {vi, v′i} ∈ nodes(S.Fj),

then ∀i ∈ {1, . . . ,m}, vi = v′i.
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Intuitively, an XKey σ is satisfied in an XML tree, if there do not exist two distinct
maximum combinations of field nodes that contain the same number of nodes and are value
equal. Requirement (ii) in Definition 3.24 thereby ensures that only the values of field nodes
that belong to the same field are compared, and so prevents comparing apples and oranges.
Our definition of an XKey clearly captures the uniqueness property of a key, since if T � σ
then there cannot exist two distinct maximum combinations of field nodes for some selected
entity nodes with respect to the fields in σ. Also, our definition captures the identification
property of a key, i.e. the identification of selected entity nodes by maximum combinations
of related field nodes. That is, if T � σ and v, v′ are selected entity nodes for σ, then v = v′

if there exist maximum combinations of field nodes v1, . . . , vm for v and v′1, . . . , v
′
m for v′

with respect to the fields in σ such that (i) and (ii) in Definition 3.24 are satisfied. This is
because if v 6= v′, then since T is a tree a field node cannot be a descendant of both v and
v′ and hence the maximum combinations of field nodes v1, . . . , vm and v′1, . . . , v

′
m must be

distinct, which is a contradiction and so v = v′.
We now illustrate the semantics of an XKey using the test cases developed in Chapter

2 for evaluating the ability of previous approaches to XML keys to deal with multiple or
absent field nodes.
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Figure 3.6: XML tree representing an invoice where phone charges are invoiced for the
same phone twice.

Example 3.8 (XKey semantics) Test case C1 (cf. Table 2.2) addresses the handling of
multiple field nodes and stipulates for this purpose that benchmark XML tree T1 depicted in
Figure 3.4 is validated against benchmark constraint K1 which is given in Table 3.1 in terms
of an XKey. According to Definition 3.24, K1 is satisfied in XML tree T1 for the following
reason. The nodes v3 and v15 are the entity nodes selected by XKey K1 in XML tree T1, and
the only maximum combinations of field nodes are {(v6, v7, v14), (v10, v11, v14)} for v3 and
{(v18, v19, v22)} for v15. These maximum combinations of field nodes are obviously unique,
since none of them are value equal, and therefore XML tree T1 satisfies K1 as desired.
Because semantically incorrect combinations of field nodes are disregarded, our definition of
an XKey passes test case C1.

Test case C3 addresses the ability of an approach to XML keys to ensure the uniqueness
of field nodes and stipulates for this purpose that benchmark XML tree T2 depicted in Figure
3.6 is validated against benchmark constraint K1 which is given in Table 3.1 in terms of
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an XKey. The node v3 is the single entity node selected by XKey K1 in XML tree T2, and
the maximum combinations of field nodes for v3 are (v5, v6, v13) and (v9, v10, v13). Because
these maximum combinations of field nodes are value equal but distinct, XML tree T2 violates
XKey K1 as desired, and so our definition of an XKey also passes test case C3.

Test cases C4 and C5 address the handling of absent field nodes and stipulate for this
purpose that benchmark XML trees T3 and T4, which are depicted in Figures 3.5a and 3.5b,
are validated against benchmark constraint K2 which is given in Table 3.1 in terms of an
XKey. Regarding XML tree T3, nodes v3 and v9 are the entity nodes selected by XKey K2,
and the maximum combinations of field nodes are (v4, v5, v6) for v3 and (v10, v11, v12, v13)
for v9. These maximum combinations of field nodes are obviously unique, since they do
not contain the same number of nodes, and therefore XML tree T3 satisfies K2 as desired.
Regarding XML tree T4, also nodes v3 and v9 are the entity nodes selected by XKey K2.
However, the maximum combinations of field nodes are (v4, v5, v6) for v3 and (v10, v11, v12)
for v9. Because these two maximum combinations of field nodes contain the same number of
nodes, and are moreover value equal, XML tree T4 violates XKey K2, which is again desired.
Because also incomplete combinations of field nodes are used for the comparison of entity
nodes, our definition of an XKey also passes test cases C4 and C5.

We define next the semantics of an XIND.

Definition 3.25 (XIND Semantics) Let σ = (S, [F1, . . . , Fn]) ⊂ (S′, [F ′1, . . . , F
′
n]) be an

XIND and let T be an XML tree. The XML tree T satisfies σ, denoted by T � σ, if whenever
there exists LHS selector node v ∈ nodes(S,T) and a maximum combination of LHS field
nodes {v1, . . . , vm} for v with respect to [F1, . . . , Fn], then there exists RHS selector node
v′ ∈ nodes(S′,T) and a maximum combination of RHS field nodes {v′1, . . . , v′m} for v′ with
respect to [F ′1, . . . , F

′
n], such that ∀i ∈ {1, . . . ,m},

(i) val(vi) = val(v′i) and
(ii) if vi ∈ nodes(S.Fj), where j ∈ {1, . . . , n}, then v′i ∈ nodes(S′.F ′j).

Intuitively, an XIND is satisfied in an XML tree if the maximum combinations of field
nodes for selected LHS nodes have value equal counterparts in maximum combinations of
field nodes for selected RHS nodes. In analogy to the definition of the semantics of an XKey,
requirement (ii) in Definition 3.25 ensures that only the values of field nodes that belong
to corresponding LHS and RHS fields are compared. We now illustrate the semantics of an
XIND. We use for this purpose again the test cases developed in Chapter 2 for evaluating
the ability of previous approaches to XML inclusion dependencies to deal with multiple or
absent field nodes.

Example 3.9 (XIND semantics) Test case C2 (cf. Table 2.2) addresses the handling of
multiple field nodes and stipulates for this purpose that benchmark XML tree T1 depicted
in Figure 3.4 is validated against benchmark constraint I1 which is given in Table 3.2 in
terms of an XIND. According to Definition 3.25, the XIND I1 is satisfied in XML tree T1

as desired. This is because the only maximum combinations of field nodes for the selected
LHS nodes v3 and v15 are {(v6, v7, v13), (v10, v11, v13)} and {(v18, v19, v21)}, respectively, and
these three combinations of field nodes are value equal to the maximum combinations of field
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nodes (v25, v26, v27), (v29, v30, v31) and (v33, v34, v35) for the selected RHS nodes v24, v28

and v32, respectively. As for our XKeys, also an XIND disregards semantically incorrect
combinations of field nodes, and so our definition of an XIND passes test case C2.

Test cases C6 and C7 address the handling of absent field nodes and stipulate for this
purpose that benchmark XML trees T5 and T6, which are depicted in Figures 3.5c and 3.5d,
are validated against benchmark constraint I2 which is given in Table 3.2 in terms of an
XIND. Regarding XML tree T5, the single maximum combination of field nodes (v4, v5, v6)
for the selected LHS entity node v3 is value equal to the maximum combination of field nodes
(v9, v10, v11) for the selected RHS entity node v8, and therefore XML tree T5 satisfies I2 as
desired. Regarding XML tree T6, the single maximum combination of field nodes (v4, v5, v6)
obviously does not have a value equal counterpart in maximum combinations of field nodes
for selected RHS nodes, simply because there is no node in XML tree T6 which is reachable
over RHS selector path Company.Customer.Addr. Hence, XML tree T6 violates XIND I2.
Because also incomplete combinations of field nodes are taken into account when testing the
satisfaction of an XIND in an XML tree, our definition of an XIND also passes test cases
C6 and C7.

We conclude this chapter with the observation that our definitions XKeys and XINDs
pass all test cases in the benchmark test developed in Chapter 2, which is in contrast to any
other approach to value-based XML integrity constraints.
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This chapter presents the procedure for transforming flat relational databases to XML,
and also the major results on the preservation of relational data semantics by XKeys and
XINDs. For this purpose, Section 4.1 presents our model of relational data, and introduces
the fundamental operations of nesting and unnesting relations. Section 4.2 is devoted to
the transformation of relational data to XML and presents the particular algorithms used in
our transformation procedure. Finally, Section 4.3 reviews relational keys and inclusion de-
pendencies and shows how to automatically derive XKeys and XINDs that preserve original
data semantics.
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4.1 A Model of Relational Data

Preliminary to the presentation of our model of relational data, we informally introduce the
primary data structure used in the relational data model, i.e. a relation. Intuitively, a
relation can be thought of as being a table, where the rows contain the actual data and the
table header determines the structure of the data. The table header gives the name of the
table together with the names of its columns, and determines the structure of the data, in
that each row in the table is required to consist of one cell per column name.

In the flat relational model, a cell can contain only an atomic value such as a string or
an integer. The restriction that a cell can contain only an atomic value is relaxed in the
nested relational model, where a cell can contain either an atomic value or an entire table.
The structure of tables that are nested within cells of a column in a table is determined by
means of a nested table header that replaces the name of the column. We now illustrate flat
and nested tables by an example.
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Figure 4.1: A flat table and a nested table.

Example 4.1 (flat and nested table) Figure 4.1a depicts a flat table named A with three
columns named B, C and D. Table A contains two rows, each having exactly one cell per
column name. Note that the values in the cells of table A are atomic values. Figure 4.1b
again depicts a table named A with columns B, C and F, where column F is a table header
on its own. The structure of tables nested inside F-cells is determined by the column names
in F, i.e. D and E. Note that the values in columns B and C are again atomic, whereas the
values in column F are tables.

4.1.1 Relations: The Primary Data Structure

We now present our model of relational data, starting with the definition of a relational
schema which is the formalization of a table header. Motivated by the fact that nested
relations strictly generalize flat relations, we only model the more general case of nested re-
lations explicitly. For this purpose, we first determine a set of allowed attributes, i.e. column
names.
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Definition 4.1 (Attribute) An attribute A is defined to be a member of the fixed, count-
ably infinite set of attributes A = LE ∪ LA. Attribute A is said to be a flat attribute if
A ∈ LA, and A is said to be a nested attribute otherwise.

Our reason for distinguishing flat attributes from nested attributes is to distinguish
columns where the cells contain atomic values from those columns where the cells contain
tables. For reasons which will be made clearer soon, we reuse the sets of attribute labels and
element labels as the fixed sets of flat attributes and nested attributes, respectively, which
we defined in our tree model of XML data in Section 3.2.

There is a variety of proposals in literature for modeling nested relational schemas, that
range from modeling nested relational schemas as recursively nested sets [112] to modeling
nested relational schemas as expressions conforming to some grammar [113]. In [114] a
nested relational schema is modeled as a tree of attributes, which is particularly suitable for
our purpose of mapping relations to XML trees. We therefore adopt the approach in [114]
and define a relational schema as follows:

Definition 4.2 (Relational schema) A relational schema S is defined to be

S = (V ,E,≤), where

- V ⊂ A is a finite set of attributes, and
- (V ,E,≤) is an ordered tree in terms of Definition 3.6 such that ∀(A,A′) ∈ E, A ∈ LE .

Relational schema S is said to be a flat relational schema if for all A ∈ V − {root(S)},
A ∈ LA, and S is said to be a nested relational schema, otherwise.

A couple of comments are appropriate. A relational schema does not have an explicit
name in our model of relational data. The name of a relational schema is however given by
its root attribute. In particular, a relational schema is an ordered tree, and so the attributes
in a relational schema are ordered from left to right. As for ordered trees, we will omit to
explicitly write down ordering function ≤ in a relational schema unless we need to refer to
the ordering of attributes explicitly. Next, because a relational schema is a tree, operators
‘project’, ‘add’, and ‘subtract’ defined in Section 3.1.2 are applicable to relational schemas.
Clearly, if a relational schema S is projected on an attribute A, then A must be a nested
attribute so that the resulting relational schema S[A] satisfies the requirement on edges in
Definition 4.2. This requirement intuitively means that a flat attribute must not be nested
inside another flat attribute. Also, since attributes in a relational schema are taken from the
sets of element labels LE and attribute labels LA, the requirement on edges in Definition
4.2 ensures that a walk in a relational schema is a path in terms of Definition 3.12. We now
illustrate the notion of a relational schema.

Example 4.2 (relational schema) The relational schema depicted in Figure 4.2a corre-
sponds to the table header depicted in Figure 4.1a. The root attribute A indicates the relation
name, and attributes B, C and D correspond to the column names of the table header depicted
in Figure 4.1a. In particular, A ∈ LE is a nested attribute and {B, C, D} ⊆ LA are flat
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attributes. If we denote this relational schema by S = (V ,E), then V = {A, B, C, D},
E = {(A, B), (A, C), (A, D)} and root(S) = A. Also, the walk A.C in S is a path in terms of
Definition 3.12, and S is a flat relational schema since root attribute A is the only nested
attribute in S. In contrast, the relational schema depicted in Figure 4.2b, which corresponds
to the table header depicted in Figure 4.1b, is a nested relational schema.
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Figure 4.2: A flat relational schema and a nested relational schema.

The attributes in a relational schema that are children of the root attribute determine
the overall structure of a relation. We call these child attributes the principal attributes of
a relational schema in accordance with the terminology used in Section 3.2. We now make
the notion of principal attributes more precise.

Definition 4.3 (Principal Attribute) The set of principal attributes in a relational
schema S = (V ,E), denoted by att(S), is defined to be

att(S) = child(root(S).

We define next a relation over a relational schema. For this purpose, we first define the
domain of an attribute, which is the set of permitted values for an attribute in a relation.

Definition 4.4 (Domain and Tuple) Let S be a relational schema, and let A be an at-
tribute in S. The domain of A, denoted by dom(A), is defined to be

dom(A) =


fixed subset of U A is flat

P
({
t : {A1, . . . , An} → {dom(A1) ∪ · · · ∪ dom(An)} | A is nested

∀i ∈ {1, . . . , n}, t(Ai) ∈ dom(Ai)
})

where {A1, . . . , An} = att(S[A]) and mapping function t is said to be a tuple over S[A].

Intuitively, the domain of a flat attribute is a primitive data type associated to the
attribute. In Definition 4.4, the domain of a flat attribute is a subset of the set of values U ,
which we have introduced in defining our model of XML data in Section 3.2.

As has been illustrated at the beginning of this section, the value of a nested attribute
is an entire relation. Translated to the notion of a table, this means that the value of a
nested attribute A is a set of rows. The rows in a table are called tuples in Definition 4.4,
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and the structure of a tuple is determined by the structure of the nested relational schema
S[A], which is the relational schema obtained from projecting the overall relational schema
S on A. To be more precise, a tuple is a mapping that assigns to every principal attribute
Ai ∈ att(S[A]) a value from the domain of Ai. The domain of a nested attribute is then
defined to be the set of all sets of tuples over the relational schema S[A]. Because Definition
4.4 uses the powerset constructor to determine the set of possible sets of tuples over S[A],
the empty set of tuples is a value in the domain of attribute A. Also, the domain of a nested
attribute A is recursively defined in case that a principal attribute Ai ∈ att(S[A]) is a nested
attribute. This recursion is however always finite, since an attribute occurs exactly once in
a relational schema according to Definition 4.2. We now illustrate the domains of flat and
nested attributes by an example.
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Figure 4.3: The domain of a nested attribute.

Example 4.3 (domain and tuple) Let S be the relational schema depicted in the left of
Figure 4.3a, and let dom(B) = {1 } and dom(D) = {2 } be the domains of flat attributes B

and D. Then, the domain of nested attribute A is the set of all sets of tuples over relational
schema S[A], where S[A] = S since A = root(S). In particular, dom(A) is the set of all
sets of mappings from the principal attributes B and C of S[A] to the domains dom(B) and
dom(C), respectively. Since, C is again a nested attribute, the domain of A is recursively
defined, and we now illustrate how the domain of C is constructed. According to Definition
4.4, the domain of C is the set of all sets of tuples over relational schema S[C], which is
depicted in the left of Figure 4.3b. Since D is the only principal attribute in S[C], and since
dom(D) = {2 }, there is only one possible mapping from D to dom(D). If we denote this tuple
by t1 then t1(D) = 2 , and in common linear syntax t1 is of the form t1 = 〈2 〉. The domain
of C is then given by P(t1). Hence dom(C) = {∅, {〈2 〉}}, as depicted in the right of Figure
4.3b. We note that ∅ implicitly results from applying the powerset constructor. Given that
dom(C) = {∅, {〈2 〉}} and that dom(B) = {1 }, there are two possible tuples over S[A]. If we
denote these tuples by t2 and t3, then t2 = 〈1 , ∅〉 and t3 = 〈1 , {〈2 〉}〉. Hence, the domain of
attribute A, depicted in the right of Figure 4.3a, is finally given by dom(A) = P(t2, t3) ={∅,
{〈1 , ∅〉}, {〈1 , {〈2 〉}〉}, {〈1 , ∅〉, 〈1 , {〈2 〉}〉} }.

We define next a relation over a relational schema as a finite set of tuples.
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Definition 4.5 (Relation) Let S be a relational schema. A relation R over S is defined
to be a finite set of tuples over S. The relation R is defined to be a flat relation if S is a flat
relational schema, and R is defined to be a nested relation otherwise.

A couple of comments are appropriate. First, Definition 4.5 reflects the fact that the
value of a nested attribute is a relation and that a relation R over a relational schema S is
equally a set of tuples over S = (V ,E) and also a single value in the domain dom(root(S)).
Second, according to Definition 4.4, a tuple assigns a value to every attribute in a relational
schema, and therefore incomplete tuples are prohibited. As a consequence, our model of
relational data only allows for complete relations.

We finally extend the definition of a single relation over a relational schema to a set of
relations, i.e. a database, over a set of relational schemas, i.e. a database schema.

Definition 4.6 (Database and Database Schema) A database schema S is defined to
be S = {S1, . . . ,Sn}, where ∀i ∈ {1, . . . , n}, Si is a relational schema. A database R over S
is defined to be R = {R1, . . . ,Rn}, where ∀i ∈ {1, . . . , n}, Ri is a relation over Si.

4.1.2 Operators on Relations

We now introduce the most fundamental operators in the context of nested relations, i.e. the
nest and unnest operator. We will use these operators in defining our procedure for trans-
forming relational data to XML data. To define the nest and unnest operators, we require
the well known projection operator, which we define first for a single tuple.

Definition 4.7 (Projection of a Tuple) Let t be a tuple over a relational schema S, and
let {A1, . . . , An} ⊆ att(S) be a set of attributes. The projection of t on {A1, . . . , An},
denoted by t[A1, . . . , An], is defined to result in tuple t̄ over relational schema S̄ where

S̄ = S− S[Ai] for all Ai ∈ {att(S)− {A1, . . . , An}}
t̄ = restriction of t to {A1, . . . , An}.

According to Definition 4.4, a tuple t over a relational schema S is a function that
maps the principal attributes in S to values in the corresponding domains. Intuitively, to
project a tuple t on a set of attributes {A1, . . . , An} means to remove those attribute-value
assignments from t, where the attribute is not in the projected set {A1, . . . , An}. This
operation is commonly known as the restriction of a function, which is therefore used in
Definition 4.7 for specifying the projection of a tuple on a set of attributes. A consequence
of using the restriction of tuple in defining the projection operator is that the projection of
a tuple t over relational schema S is only defined with respect to the principal attributes of
S. Definition 4.7 therefore requires attributes {A1, . . . , An} to be a subset of the principal
attributes of S, i.e. {A1, . . . , An} ⊆ att(S) in Definition 4.7. Further, if t̄ is the tuple that
results from projecting a given tuple t over a relation schema S on attributes {A1, . . . , An},
then t̄ is a tuple over the relational schema S̄ having {A1, . . . , An} as principal attributes,
where S̄ differs from S if {A1, . . . , An} ⊂ att(S). We now illustrate the projection of a tuple.
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Example 4.4 (projection of a tuple) Let S be the relational schema depicted in Figure
4.4a, and consider the tuple t = 〈7 , 8 , {〈9 , 10 〉}〉 over S. Then, the projection of t on
attributes B and C is legal, since B and C are principal attributes of S. If we let t̄ be the tuple
that results from t[B, C], then t̄ is a tuple over the relational schema S̄ depicted in Figure
4.4b. Note that S̄ = S−S[D]. Therefore B and C are the only principal attributes in S̄. Since
t̄ is the restriction of t to {B, C} according to Definition 4.7, tuple t̄ results from removing
the assignment of attribute D to value {〈9 , 10 〉} in t. Hence, t̄ = t[B, C] = 〈7 , 8 〉. In contrast
to the projection of t on attributes B and C, the projection of t on attribute E is invalid, since
E /∈ att(S). Note that tuple t does not assign a value to attribute E.
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Figure 4.4: Projections of Tuples and Relations.

We now generalize the projection operator, so that it is applicable to a set of tuples.
That is, we generalize the projection on a set of attributes from a single tuple to a relation.

Definition 4.8 (Projection of a Relation) Let R be a relation over a relational schema
S, and let {A1, . . . , An} ⊆ att(S) be a set of principal attributes. The projection of relation
R on attributes A1, . . . , An, denoted by R[A1, . . . , An], is defined to be the relation R̄ over
the relational schema S̄ = (V̄ , Ē) given by

S̄ = S− S[Ai] for all Ai ∈ {att(S)− {A1, . . . , An}}
R̄ = {t̄ | ∃t ∈ R such that t̄ = t[A1, . . . , An]}

Intuitively, projecting a relation R over a relational schema S on a set of principal at-
tributes {A1, . . . , An} results in a relation R̄ which contains exactly the tuples in R when
they are projected on {A1, . . . , An}. Hence, analogously to the projection of a tuple, also
the projection of a relation R results in a relation R̄ over a new relational schema S̄ which
has {A1, . . . , An} as principal attributes. We now illustrate the projection of a relation.

Example 4.5 (projection of a relation) Let S be the relational schema depicted in the
top of Figure 4.4a, and let R be the relation over S depicted in the bottom of Figure 4.4a.
Also, let t1 and t2 be the two tuples in R. Then, the projection of R on attribute D is legal



94 CHAPTER 4. PRESERVING RELATIONAL SEMANTICS

since D ∈ att(S). This projection results in relation R̄ over relational schema S̄, which are
both depicted in Figure 4.4c. In particular, relation R̄ consists of tuples t1 and t2 when they
are projected on D, and so R̄ contains tuples t1[D] = 〈{〈3 , 4 〉, 〈5 , 6 〉}〉 and t2[D] = 〈{〈9 , 10 〉}〉.

We define next the nest and unnest operators, starting with the nest operator. Roughly
speaking, if R is a relation over a relational schema S, then nesting R on a set of principal
attributes {A1, . . . , An} in S means to group the tuples in R that agree on their values for
attributes att(S) − {A1, . . . , An}. To represent the nested relations that result from the
grouping, a new attribute A is added to S. In our definition of the nest operator, the new
attribute A and the principal attributes {A1, . . . , An} to be nested upon, are represented as
a relational schema S̈. In particular, the root attribute of S̈ indicates the new attribute A,
and the principal attributes of S̈ are the attributes to be nested upon.

Definition 4.9 (Nest Operator) Let R be a relation over a relational schema S = (V ,E).
Also, let S̈ = (V̈ , Ë) be a relational schema such that

(i) root(S̈) 6∈ V , and
(ii) att(S̈) ⊂ att(S), and
(iii) ∀Ai ∈ att(S̈), S̈[Ai] = S[Ai].

The operation of nesting relation R on attributes att(S̈) within attribute root(S̈), denoted
by nest(R, S̈), is defined to result in relation R̄ over relational schema S̄ = (V̄ , Ē) given by

S̄ = (S− S[Ai] for all Ai ∈ att(S̈)) + S̈

R̄ = {tuple t̄ over S̄ | t̄ [att(S̄)− {root(S̈)}] ∈ R[att(S)− att(S̈)] ∧
t̄ [root(S̈)] = {t[att(S̈)] | t ∈ R ∧

t[att(S)− att(S̈)] = t̄ [att(S̄)− {root(S̈)}]}}.

We now briefly comment on requirements (i) - (iii) in Definition 4.9. First, the root
attribute root(S̈) must not be contained within the attributes in S, since root(S̈) is added
to S in order to obtain the relational schema S̄ of the resulting relation R̄, and duplicate
attributes are not allowed in our model. Second, the principal attributes in S̈ must be a
subset of the principal attributes in S, for the obvious reason that nesting R on attributes
outside of S is not possible. Third, the relational schemas rooted at the common principal
attributes of S and S̈ are required to be pairwise the same, which ensures that the resulting
relation R̄ is indeed a relation over S̄. We now illustrate the nest operator.

Example 4.6 (nest operator) Let S be the relational schema depicted in the top of Figure
4.5a, and let R be the relation over S depicted in the bottom of Figure 4.5a. Suppose now,
that R is nested on attributes C and D inside attribute E, where E is the root attribute of
relational schema S̈ depicted in Figure 4.5b, where {C, D} = att(S̈). Note that this nesting
is legal according to Definition 4.9 since (i) E /∈ {A, B, C, D}, and (ii) {C, D} ⊂ {B, C, D}, and
(iii) S[C] = S̈[C] as well as S[D] = S̈[D]. The relational schema S̄ that results from this nesting
operation is given by S̄ = (S − S[C] − S[D]) + S̈, which is the relational schema depicted in
the top of Figure 4.5c. The relation R̄ over S̄ that results from this nesting is given by
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R̄ = {tuple t̄ over S̄ | (a) t̄ [B] ∈ R[B] ∧
(b) t̄ [E] = {t[C, D] | t ∈ R ∧ t[B] = t̄ [B]}}.

Relation R̄ is depicted in the bottom of Figure 4.5c. We now explain how the tuples in R̄ are
constructed. From a bird eyes view, the tuples in R̄ are all those tuples over S̄ that satisfy
requirements (a) and (b) above. A tuple t̄ satisfies (a) if t̄ [B] ∈ {1 , 2 } since R[B] = {〈1 〉, 〈2 〉}.
Requirement (b) is a bit more involved and depends on the value of t̄ [B]. In particular, if
t̄[B] = 1 then t̄ [E] is required to contain the projections on attributes C and D of all those tuples
in R that have 1 as value for B. So, if t̄ [B] = 1 , then t̄ [E] = {〈3 , 4 〉, 〈5 , 6 〉}. Analogously,
if t̄ [B] = 2 , then t̄ [E] = {〈7 , 8 〉}. Hence, t̄ is a tuple in R̄ iff t̄ is a tuple over S̄ and either
t̄ = 〈1, {〈3 , 4 〉, 〈5 , 6 〉}〉 or t̄ = 〈2, {〈7 , 8 〉}〉. From Definition 4.4, both 〈1, {〈3 , 4 〉, 〈5 , 6 〉}〉
and 〈2, {〈7 , 8 〉}〉 are tuples over S̄, and therefore R̄ contains exactly these two tuples.
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Figure 4.5: The operation of nesting a relation.

We now define the unnest operator, which is the inverse of the nest operator. The unnest
operator takes as input a relation R over a relational schema S and obtains a new relation
R̄ over S̄ by means of flatten the relations nested inside the tuples of R in an attribute A.

Definition 4.10 (Unnest Operator) Let R be a relation over a relational schema S, and
let A ∈ att(S) be a nested attribute. The operation of unnesting A in R, denoted by
unnest(R, A), is defined to result in relation R̄ over relational schema S̄ = (V̄ , Ē) given by

S̄ = S− S[A] + S[Ai] for all Ai ∈ att(S[A])
R̄ = {tuple t̄ over S̄ | ∃ t ∈ R such that

t̄ [att(S̄)− att(S[A])] = t[att(S)− {A}] ∧
t̄ [att(S[A])] ∈ t[A]}

We now illustrate the unnest operator by an example.

Example 4.7 (unnest operator) Let S be the relational schema depicted in the top of
Figure 4.5c, and let R be the relation over S depicted in the bottom of Figure 4.5c. Suppose
now that attribute E is unnested in R. Then, the relational schema S̄ that results from this
unnesting is given by S̄ = S − S[E] + S[C] + S[D], which is the relational schema depicted in
the top of Figure 4.5a. The resulting relation R̄ over S̄ is given by
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R̄ = {tuple t̄ over S̄ | ∃ t ∈ R such that (a) t̄ [B] = t[B] ∧
(b) t̄ [C, D] ∈ t[E]}

Relation R̄ is depicted in the bottom of Figure 4.5a. We now explain how the tuples in R̄
are constructed. As for the nest operator, also the unnest operator determines the tuples in
R̄ by means of restricting the set of all tuples over S̄. The requirement on a tuple t̄ to be
contained in R̄ is that there exists a tuple t ∈ R such that (a) and (b) above are satisfied.
In particular, (a) is satisfied if t̄ [B] = t[B]. Thus, if t̄ is a tuple in R̄ then t̄ [B] ∈ {〈1 〉, 〈2 〉}
since R[B] = {〈1 〉, 〈2 〉}. Requirement (b) depends on the choice of tuple t in (a), and states
that the projection on attributes C and D of t̄ must be in the relation nested within attribute
E in tuple t. Therefore, if t[B] = 〈1〉 then t[E] = {〈3 , 4 〉, 〈5 , 6 〉}, and t̄[C, D] must either be of
the form t̄[C, D] = 〈3 , 4 〉 or t̄[C, D] = 〈5 , 6 〉. If, instead, t[B] = 〈2〉 then t[E] = {〈7 , 8 〉}, and
so t̄[C, D] must be of the form t̄[C, D] = 〈3 , 4 〉. Hence, t̄ is a tuple in R̄ iff t̄ is a tuple over
S̄ and t̄ is of the form t̄ = 〈1 , 3 , 4 〉, or it is of the form t̄ = 〈1 , 5 , 6 〉, or it is of the form
t̄ = 〈2 , 7 , 8 〉. It follows directly from Definition 4.4 that each of these three tuples is a tuple
over S̄, and so these tuples are contained in R̄.

4.2 Transforming Relational Data to XML Data

In this section we present our procedure for transforming a flat relational database to an
XML tree. In our procedure the relations in the database are first transformed to separate
XML trees, and these XML trees are then added as primary subtrees to the final XML tree.

For transforming a single relation to an XML tree, we adopt the transformation procedure
originally proposed by Vincent et al. in [34]. This procedure allows the application developer
to govern the restructuring of information during the transformation process by applying an
arbitrary sequence of nesting operations to the initial flat relation prior to the mapping of the
relation to an XML tree. Roughly speaking, the nested relation obtained from applying the
sequence of nesting operations is mapped to XML so that each (nested) tuple is represented
by an element node which has child attribute nodes that represent the values in the tuple.

To increase the usability of the transformation procedure in [34], we propose the fol-
lowing enhancements. First, the original transformation procedure requires the application
developer to explicitly specify the sequence of nesting operations, which is likely to be cum-
bersome. In contrast, our transformation procedure only requires the application developer
to specify the nested relational schema and automatically derives the necessary nesting op-
erations. Second, when mapping the obtained nested relation to an XML tree, the original
transformation procedure uses consecutive numbers as labels for element nodes that repre-
sent (nested) tuples. The labels of element nodes are therefore meaningless. In contrast,
our transformation procedure reuses the nested attributes in the nested relational schema
as labels for element nodes. We now illustrate these enhancements by an example.

Example 4.8 (procedures for transforming a relation) Let S be the relational
schema depicted in the top of Figure 4.6a, and let R be the initial flat relation over S
depicted in the bottom of Figure 4.6a. Suppose now that relation R is transformed to
XML, by first nesting the relation on attribute C inside new attribute D. The nested
relation R̄ that results from this nesting is depicted in the bottom of Figure 4.6b, and the
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corresponding relational schema S̄ is depicted in the top of Figure 4.6b. When applying
the original transformation procedure, one has to explicitly specify the nesting operation
nest(R,S[D]), whereas one can simply specify the relational schema S̄ when applying the
enhanced transformation procedure.

In the second step, nested relation R̄ is mapped to an XML tree. The XML trees TO and
TE that result from this mapping when applying the original and the enhanced transformation
procedure, respectively, are depicted in Figures 4.6c and 4.6d. Both trees TO and TE contain
one element node per (nested) tuple in R̄, and so the structure of trees TO and TE is the
same. Nested tuples 〈c2 〉, 〈c3 〉 and 〈c5 〉 for example, are each represented as an element
node having a child attribute node labeled C with value c2 , c3 , and c5 , respectively. The
labels of these element nodes however differ between trees TO and TE. In particular, in
tree TO the meaningless label ID3 is assigned to these element nodes, whereas in tree TE
the label D is used, since 〈c2 〉, 〈c3 〉 and 〈c5 〉 are tuples over S̄[D]. Analogously, the two
overall tuples 〈b1 , {〈c2 〉, 〈c3 〉}〉 and 〈b4 , {〈c5 〉}〉 in R̄ are represented in trees TE and TO
by element nodes labeled A and ID2, respectively.

Since, TE and TO are both XML trees that conform to Definition 3.11, both XML trees
have a single root node, which is created in addition to the element nodes for representing
the (nested) tuples in R̄. The root node of tree TE has the custom label E assigned, whereas
the root node of tree TO has the generated label ID1.
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Figure 4.6: Two procedures for generating an XML tree from a flat relation..

We now specify our transformation procedure by precise algorithms in Subsections 4.2.1 -
4.2.4. In particular, Subsections 4.2.1 and 4.2.2 present algorithms FR2NR and NR2XML for
converting a single relation to a nested relation by applying an arbitrary sequence of nesting
operations, and for mapping a nested relation to an XML tree, respectively. Subsection 4.2.3
presents algorithm FR2XML which uses algorithms FR2NR and NR2XML and transforms a
flat relation to an XML tree. Apart from the two enhancements illustrated above, algorithms
FR2NR, NR2XML and FR2XML correspond to the transformation procedure proposed by
Vincent et al. in [34]. Finally, Subsection 4.2.4 presents algorithm DB2XML which uses
algorithm FR2XML in order to transform a relational database to an XML tree.



98 CHAPTER 4. PRESERVING RELATIONAL SEMANTICS

4.2.1 Converting Flat Relations to Nested Relations

Algorithm FR2NR essentially takes as input a flat relation, called source relation, together
with a nested relational schema, called its target schema, and converts the source relation
into a relation, possibly nested, over the target schema by recursively applying the nest
operator.

Because converting a source relation to a target relation is done by recursively perform-
ing nest operations, it is in general not possible to obtain a target relation for arbitrary
target schemas. In particular, the nest operator does not introduce new flat attributes, and
therefore the source schema and the target schema must agree on the flat attributes. Also,
the nest operator does not alter the structure of nested attributes in the source schema and
so these nested attributes must be contained one-to-one in the target schema. We now make
these requirements on a target schema more precise.

Definition 4.11 (Transformation) Let S and S̄ be relational schemas. The relational
schema S̄ is defined to be a transformation of S if

(i) A ∈ S is a flat attribute iff A ∈ S̄ is a flat attribute, and
(ii) if A ∈ att(S) is a nested attribute, then A ∈ S̄ and S[A] = S̄[A].
(iii) if Ā ∈ S̄ is a nested attribute, then ∃A ∈ att(Ā) which is a flat attribute.

If a target schema is a transformation of a source schema, and thus satisfies (i) - (iii) in
Definition 4.11, then the target schema allows for obtaining a target relation by recursively
applying nest operations. Requirements (i) and (ii) in Definition 4.11 reflect the require-
ments on target schemas discussed previously. The additional requirement in Definition
4.11 originates from the transformation procedure proposed by Vincent et al. in [34] and
states that every nested attribute in the target schema must have at least one flat principal
attribute. Our reason for including requirement (iii) in Definition 4.11 is so as to ensure that
our transformation procedure creates XML trees that essentially have the same properties
as those created by the original transformation procedure.

Algorithm FR2NR is a recursive algorithm that takes as input a source schema S, a
source relation R over S, a target schema S̄ and a distinguished nested attribute Ā in S̄. In
order to convert the source relation R to a target relation R̄ over S̄, the algorithm traverses
the target schema S̄ in post order and performs nesting operations on R in correspondence
to the nested attributes in S̄. The input attribute Ā specifies the nested attribute which is
visited in an invocation of the algorithm during the traversal of S̄. Clearly, Ā is required
to be the root attribute of S̄ when the algorithm is invoked first, in order to ensure that all
nested attributes in S̄ are visited.

In every recursive invocation of algorithm FR2NR, only certain parts of the entire con-
version are performed, and the algorithm therefore generates a temporary relational schema
S̈ serving as target schema for the recursive invocation (cf. Line 3 in Algorithm 4.1). When
algorithm FR2NR returns from a recursive invocation, the source schema S is replaced by
the temporary target schema S̈ (cf. Line 5 in Algorithm 4.1), and so S̈ is the source schema
for the next invocation of the algorithm.

Also, algorithm FR2NR does not perform a nest operation for the root attribute of S̄,
since the nested attributes in S̄ are traversed in post order and therefore the conversion of
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Algorithm 4.1 FR2NR - Convert Flat Relation to Nested Relation

in: source relational schema S = (V ,E)
source relation R over S
target relational schema S̄ = (V̄ , Ē) which is a transformation of S
nested attribute Ā ∈ S̄ such that Ā = root(S̄) when FR2NR is first invoked

out: transformed relation R̄ over S̄

1: R̄← R
2: for each nested attribute A ∈ att(S̄[Ā])− V do
3: S̈← S− S̄[A] + S̄[A]
4: R̄← FR2NR(S, R̄, S̈, A)
5: S← S̈
6: end for
7: if Ā 6= root(S̄) then R̄← nest(R̄, S̄[Ā]) end if
8: return R̄

R is finished before the root node of S̄ is visited. We now illustrate algorithm FR2NR by
an example.

Example 4.9 (algorithm FR2NR) Consider the source relation R1 over relational
schema S1 depicted in Figure 4.7a, and the target schema S̄1 depicted in Figure 4.7d. Also,
suppose that R1 is converted to a nested relation R̄1 by FR2NR(S1,R1, S̄1, Ā1), where Ā1 = A

is the root attribute in S̄1, as required by the algorithm. Then, R̄1 = R1 at Line 1 and the
algorithm iterates over the principal nested attributes in S̄1[A] which are not contained in
S1, i.e. C and G, within the loop at Line 2. Now, let S̈1a be the temporary target schema
at Line 3 within the first iteration of the loop at Line 2. Then S̈1a = S1 − S̄1[C] + S̄1[C],
which is depicted in Figure 4.7c. At Line 4, the algorithm is then recursively invoked by
FR2NR(S1, R̄1, S̈1a, C).

In this invocation, let S2 = S1, R2 = R̄1, S̄2 = S̈1a and Ā2 = C denote the input for
the algorithm. Note that C is not required to be the root of S2 since the algorithm has been
invoked recursively. Now, if R̄2 is the target relation in the second invocation, then R̄2 = R2

at Line 1, and the single principal nested attribute E in S̄2[C] is iterated in the loop at Line 2.
Thereby, if S̈2 is the temporary target schema at Line 3, then S̈2 = (S2 = S1)− S̄2[C] + S̄2[C],
which is depicted in Figure 4.7b. The algorithm is then again recursively invoked at Line 4
by FR2NR(S2, R̄2, S̈2, E).

In the third invocation, let S3 = S2, R3 = R̄2, S̄3 = S̈2 and Ā3 = E denote the input for
the algorithm. Then, the target relation R̄3 = R3 at Line 1, and the algorithm proceeds with
the test at Line 7, since there is no principal nested attribute in S̄3[E]. Because Ā3 = E 6= A,
where A is the root attribute in S̄3 (cf. Figure 4.7b), the test at Line 7 succeeds and so the nest
operator is applied to R̄3. In particular, nest(R̄3, S̄3[E]) is performed where R̄3 = R2 = R1.
That is, the tuples in R1 that agree on their values in B, D and H are grouped together. The
resulting relation is then returned at Line 8.

Back in the second invocation, R̄2 is the relation depicted in Figure 4.7b at Line 4, and
S2 = S̈2 at Line 5. The loop at Line 2 then exists, and because Ā2 = C 6= A, where A
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is the root attribute in S̄2 (cf. Figures 4.7c), the test at Line 7 succeeds. Consequently,
nest(R̄2, S̄2[C]) is returned at Line 8.

Back in the first iteration of the loop at Line 2 within the first invocation of the algorithm,
R̄1 is the relation depicted in Figure 4.7c at Line 4, and S1 = S̈1a at Line 5. So, in the
second iteration of the loop at Line 2, the temporary target schema S̈1b = (S1 = S̈1a) −
S̄1[G] + S̄1[G], which is the relational schema in Figure 4.7d. At Line 4, algorithm FR2NR is
then recursively invoked by FR2NR(S̈1a, R̄1, S̈1b, G). Note that S1 = S̈1a directly before this
invocation.

In the fourth invocation, only a nesting operation is performed, since there are no prin-
cipal nested attributes in S̈1b[G] and G 6= A at Line 7. In particular, relation R̄1, which is at
this state the relation depicted in Figure 4.7c, is nested by performing nest(R̄1, S̈1b[G]). The
resulting relation is depicted in Figure 4.7d.

Next, S1 = S̈1b at Line 5 within the second iteration of the loop at Line 2 in the first
invocation, and the loop at Line 2 then exists. Because Ā1 = A, which is the root attribute
in S̄1, the test at Line 7 fails. Hence, the algorithm finally returns at Line 8 the relation R̄1

which has been returned by the fourth invocation. Note that this relation, which is depicted
in Figure 4.7d, is indeed a relation over S̄1.
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Figure 4.7: Steps in converting a flat relation into a nested relation using algorithm
FR2NR.
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Because the nest operator is not associative, the structure of tuples in the target relation
depends not only on the performed nesting operations, but also on the specific order in which
nesting operations are performed. Since algorithm FR2NR performs the nesting operations
according to the nested attributes in the input target schema, the ordering of attributes
in the target schema in fact determines the form of tuples in the target relation. We now
illustrate this point by an example.
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Figure 4.8: Impact of the order of nested attributes in target schemas on the result of
algorithm FR2NR.

Example 4.10 (impact of attribute order on algorithm FR2NR) Consider again
the source relation R1 over source schema S1 from Example 4.9, and suppose this time that
R1 is to be converted to a target relation R̄1 over target schema S̄1 depicted in Figure 4.8d
by calling FR2NR(S1,R1, S̄1, A). Note that S̄1 differs from the target schema in Example 4.9
only in the order of nested attributes. In particular, the nested attribute G this time precedes
the nested attribute C in S̄1. The tuples in the target relation R̄1, depicted in Figure 4.8d,
obviously differ from the tuples in the target relation in Example 4.9, which is depicted in
Figure 4.7d. The reason for this is, that the order of nested attributes differs between S̄1

and the target schema in Example 4.9.
In particular, in Example 4.9 the first nesting operation grouped the tuples in R1 that

agree on their values in B, D and H. Note that R1 is depicted again in Figure 4.7a for reasons
of clarity. In this example however the first nesting operation groups the tuples in R1 that
agree on their values in B, D and F, since this nesting operation is performed according to
the nested attribute G. Note that the relations that result from the first nesting operation
already differ between this example (cf. Figure 4.8b) and Example 4.9 (cf. Figure 4.7b).
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The second nesting operation then groups the tuples that agree on their values in B, G

and D (cf. Figure 4.8c), and the third nesting operation groups the tuples that agree on their
values in D and E, which results in the final target relation depicted in Figure 4.8d.

4.2.2 Mapping Nested Relations to XML Trees

Algorithm NR2XML essentially takes a relational schema S and a relation R over S as input
and maps R to an XML tree T by representing each (nested) tuple by one element node
which has child attribute nodes for representing the values in the tuple. The nested and flat
attributes in S are used as labels for element and attribute nodes in T, respectively. Apart
from relational schema S and relation R over S, algorithm NR2XML has input a custom
element label l which is assigned to the root node of the resulting tree T. To obtain T from
R, the algorithm initially creates a trivial XML tree that has label l assigned to the root
node (cf. Line 1 in Algorithm 4.2). The actual mapping of the tuples in R is then performed
by the recursive procedure convert() at Line 4 in Algorithm 4.2.

Algorithm 4.2 NR2XML - Map Nested Relation to XML

in: relational schema S
relation R over S
element label l

out: XML tree T representing R

1: let T = (V ,E, lab, val) be a trivial XML tree where lab(root(T)) = l
2: convert(R,S, root(T))
3: return T

4: procedure convert(relational schema S, relation R, element node v)
5: for each t ∈ R do
6: v̄ ← newnode(V )
7: E ← E ∪ {(v, v̄)}
8: lab(v̄)← root(S)
9: for each A ∈ att(S) do

10: if A is a nested attribute then
11: convert(t[A],S[A], v̄)
12: else
13: v̈ ← newnode(V )
14: E ← E ∪ {(v, v̈)}
15: lab(v̈)← A
16: val(v̈)← t[A]
17: end if
18: end for
19: end for
20: end procedure
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Function newnode(V ) is used at Lines 6 and 13 in Algorithm 4.2 for creating new nodes.
This function in particular creates a new node v with respect to the input set of nodes V ,
adds v to V , and finally returns v. We now illustrate algorithm NR2XML by an example.
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Figure 4.9: A nested relation and the XML tree obtained by algorithm NR2XML.

Example 4.11 (algorithm NR2XML) Consider the relational schema S1, and the rela-
tion R1 over S1 depicted in Figure 4.9a. Suppose now that R1 is mapped to an XML tree
T by calling NR2XML(R1,S1, F), where F is the custom label chosen for the root node of T,
which is depicted in Figure 4.9b.

Initially, T is a trivial XML tree at Line 1 in Figure 4.2, and so T contains only the root
node root(T) which has label F assigned. Procedure convert() is then invoked at Line 2, which
actually performs the mapping of the tuples in R1 and creates the subtrees rooted at the two A

nodes in Figure 4.9b. In particular, procedure convert is invoked by convert(R1,S1, root(T)).
The tuples in R1, i.e. t1 = 〈b1 {〈d1 , e1 〉, 〈d2 , e2 〉}〉 and t′1 = 〈b2 {〈d3 , e3 〉}〉, are then iterated
within the loop at Line 5. Consider first the mapping of tuple t1 within the first iteration of
the loop at Line 5. In order to represent the entire tuple, a node v̄1 with label A is created
and added to T as child of root(T) at Lines 6 - 8. Note that v̄1 is an element node, since
A is a nested attribute in S, and therefore A ∈ LE. Next, in order to represent the values
in t1, the loop at Line 9 iterates over the principal attributes in S, i.e. B and C, and creates
nodes for representing values t1[B] and t1[C].

Concerning t1[B], the test at Line 10 fails because B is a flat attribute. Therefore, node
v̈1 with label B is created and added to T as a child of root(T) at Lines 13 - 15. In contrast
to the previously created node v̄1, node v̈1 is an attribute node, since B is a flat attribute, and
therefore B ∈ LA. Next, node v̈1 gets the value t1[B] assigned at Line 16, i.e. val(v̈1) = b1 .

Concerning t1[C], the test at Line 10 succeeds because C is a nested attribute. Hence,
procedure convert() is recursively invoked at Line 11 by convert(S2,R2, v̄1), where S2 = S1[C],
and R2 = t1[C] = {〈d1 , e1 〉, 〈d2 , e2 〉}. In this recursive invocation, tuples t2 = 〈d1 , e1 〉
and t′2 = 〈d2 , e2 〉 are then iterated within the loop at Line 5, and because C is the root
attribute in S2, one element node labeled C is created at Lines 6 - 8 for each tuple. If v̄2

and v̄′2 denote these nodes, then v̄2 and v̄′2 are child nodes of v̄1 (cf. left of Figure 4.9b).
Further, since the principal attributes D and E of S2 are flat attributes, the test at Line 10
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fails for both attributes when tuples t2 and t′2 are iterated within the loop at Line 5, and
therefore two pairs of attribute nodes v̈21

, v̈22
and v̈′21

, v̈′22
are created at Lines 13 - 16 such

that {v̈21
, v̈22
} = child(v̄2) and {v̈′21

, v̈′22
} = child(v̄′2). Thereby, lab(v̈21

) = lab(v̈′21
) = D

and lab(v̈22
) = lab(v̈′22

) = E, and also val(v̈21
) = d1 , val(v̈22

) = e1 , val(v̈′21
) = d2 and

val(v̈′22
) = e2 (cf. left of Figure 4.9b. The mapping of nested tuples t2 and t′2 is then

finished, and hence also the mapping of the overall tuple t1.
The mapping of the remaining tuple t′1 is then performed by first creating a node v̄′1

labeled A at Lines 6 - 8 in order to represent the entire tuple t′1, where node v̄′1 is added to T
as a child node of root(T). Next, an attribute node labeled B is created at Lines 13 - 16 and
added to T as child of v̄′1 for representing the value t′1[B] = b2 . Procedure convert() is then
recursively invoked at Line 11 by convert(t′1[C],S[C], v̄′1) in order to map the nested relation
t′1[C] = {〈d3 , e3 〉}. In this final invocation, a node v̄3 labeled C is created at Lines 6 - 8 and
added to T as child of v̄′1. Finally, two attribute nodes labeled D and E with values d3 and
e3 are created and added to T as child nodes of v̄3. Algorithm NR2XML then terminates
and returns at Line 3 the final tree T.

4.2.3 Transforming Single Relations

Algorithm FR2XML takes as input a flat relation R over a relational schema S together
with a relational schema S̄ and an element label l. At Line 1 in Algorithm 4.3, relation R is
converted to a nested relation R̄ over S̄ by invoking algorithm FR2NR, and R̄ is then mapped
to an XML tree T by invoking algorithm NR2XML at Line 2. The label l is thereby used
as label for the root node of T, which is finally returned at Line 3. Note that the relational
schema S̄ serves both as target schema for converting R to R̄, and as template for mapping
R̄ to T. In order to serve as target schema, S̄ is required to be a transformation of S.

Algorithm 4.3 FR2XML - Transform Flat Relation to XML.

in: relational schema S
flat relation R over S
relational schema S̄ = (V ,E) which is a transformation of S
element label l

out: XML tree T representing R

1: R̄← FR2NR(S,R, S̄, root(S̄))
2: T← NR2NR(S̄, R̄, l)
3: return T

We now illustrate algorithm FR2XML by an example.

Example 4.12 (algorithm FR2XML) Consider the flat relation R over relational
schema S depicted in Figure 4.10a, and let S̄ be the relational schema depicted in Figure
4.10b. Suppose now, that R is transformed to XML by FR2XML(S,R, S̄, E), where E is the
custom label chosen for the root node of the resulting XML tree T, and S̄ is a transformation
of S as required by the algorithm. Then, at Line 1 in Algorithm 4.3, relation R is converted
into the nested relation R̄ depicted in Figure 4.10b by FR2NR(S,R, S̄, A), where A is the root
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attribute in S̄. At Line 2, relation R̄ is then mapped to the XML tree T, depicted in Figure
4.10c, by NR2XML(S̄, R̄, E). XML tree T is finally returned at Line 3.
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Figure 4.10: Flat and nested relation, and the XML tree obtained by algorithm FR2XML.

Vincent et al. established the important result that if a flat relation is mapped to an
XML tree by first applying a sequence of nest operations and then mapping the relation
directly to XML, two leaf nodes in the obtained XML tree satisfy the closest property
iff the corresponding values appear in the same tuple in the initial relation [20]. Because
algorithm FR2XML adopts the transformation procedure proposed by Vincent et al., the
correspondence between leaf nodes that satisfy the closest property and values that appear
in the same tuple also holds in the context of our transformation procedure. In order to
be self-contained we now repeat this major result, which we will then use for showing that
XKeys and XINDs preserve the semantics of relational keys and inclusion dependencies.

Lemma 4.1 (Closest Nodes in Generated XML Trees) Let flat relation R over rela-
tional schema S be mapped to XML tree T = (V ,E, lab, val) by FR2XML(S,R, S̄, l), where l
is an element label, and S̄ is a nested relational schema which is a transformation of S. Also,
let {A1, . . . , An} ⊆ att(S) be a set of principal attributes in S, and let for all i ∈ {1, . . . , n},
Pi be the walk in S̄ such that first(Pi) = root(S̄) and last(Pi) = Ai. Then, there exist nodes
v1, . . . , vn in T such that

(i) for all i ∈ {1, . . . , n}, vi ∈ nodes(l.Pi,T), and
(ii) for all i, j ∈ {1, . . . , n}, closest(vi, vj) = true,

iff there exists tuple t ∈ R such that for all i ∈ {1, . . . , n}, t[Ai] = val(vi).

We do not repeat the proof of Lemma 4.1 here, but refer the interested reader to the
proof of Lemma 21 in [20] instead. We now illustrate Lemma 4.1 by an example.

Example 4.13 (closest nodes in generated XML trees) Referring to Example 4.12,
consider again the transformation of relation R, depicted in Figure 4.10a, to XML tree
T, depicted in Figure 4.10c. Regarding for instance the principal attributes B and C in S,
depicted in Figure 4.10a, A.B and A.D.C are the walks in S̄, depicted in Figure 4.10b, that
lead to B and C, respectively. Also, the custom root label l in the transformation of R to T is
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label E according to Example 4.12. So, from Lemma 4.1 there exist nodes v and v′ in XML
tree T which are reachable over paths E.A.B and E.A.D.C, respectively, and which satisfy the
closest property, iff there exists tuple t ∈ R such that t[B] = val(v) and t[C] = val(v′). Now,
if we let v = v3 and v′ = v5 in XML tree T, then v3 ∈ nodes(E.A.B) and v5 ∈ nodes(E.A.D.C)
and also closest(v3, v5) = true. Hence, from Lemma 4.1, there exists tuple t ∈ R such that
t[B, C] = 〈b1 , c2 〉, which is obviously the case. If we let v = v3 and v′ = v11 instead, then
closest(v3, v11) = false and in fact there does not exist tuple t ∈ R such that t[B, C] = 〈b1 , c5 〉,
which is expected according to Lemma 4.1.

4.2.4 Transforming Relational Databases

The procedure of algorithm DB2XML is straightforward. The algorithm has input a flat
database R = {R1, . . . ,Rn} over a database schema S = {S1, . . . ,Sn}, together with a
single element label ldb, a set of element labels {l1, . . . , ln}, and a set of nested relational
schemas {S̄1, . . . , S̄n} which are transformations of flat relational schemas {S1, . . . ,Sn}. The
algorithm first creates a trivial XML tree T at Line 1 (cf. Algorithm 4.4) for representing
the entire database R, where custom label ldb is the label for the root node in T. The
algorithm then iterates the relations in R within the loop at Line 2, and creates for every
relation Ri ∈ R a separate tree T̄i that represents Ri. For this purpose algorithm FR2XML
is invoked at Line 3 such that label li ∈ {l1, . . . , ln} is the label of the root node in XML tree
T̄i returned by algorithm FR2XML. At Line 4, T̄i is then added to T as principal subtree.
After adding a tree T̄i for every relation Ri ∈ R to T, the algorithm terminates.

Algorithm 4.4 DB2XML - Map Relational Database to XML Tree.

in: database schema S = {S1, . . . ,Sn}
database R = {R1, . . . ,Rn} over S
element label ldb

set of element labels lrel = {l1, . . . , ln}
set of relational schemas {S̄1, . . . , S̄n} which are transformations of {S1, . . . ,Sn}

out: XML tree T representing R

1: let T = (V ,E, lab, val) be a trivial XML tree where lab(root(T)) = ldb

2: for i = 1 to n do
3: T̄← FR2XML(Si,Ri, S̄i, li)
4: T← T + T̄
5: end for
6: return T.

We now illustrate the procedure of algorithm DB2XML in the context of our running
example in the context of a phone company.

Example 4.14 (algorithm DB2XML) Suppose that the flat relational database R =
{R1,R2} over database schema S = {S1,S2} is transformed to XML by algorithm DB2XML,
where R1 and R2 are relations Invoice and Phone over relational schemas S1 and S2,
which are depicted in Figures 4.11a and 4.11b, respectively. Referring to Example 1.6,
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Figure 4.11: Flat relations Invoice and Phone and the corresponding nested relations in
an application of algorithm DB2XML.

it is intended that relation Invoice is restructured during the transformation in contrast
to relation Phone. In particular, it is expected that the invoices are grouped according to
the invoice period and the addressed customer. The nested relational schemas S̄1 and S̄2

depicted in Figures 4.11c and 4.11d specify the intended restructuring of information in
relations Invoice and Phone. Compared to S1, the nested relational schema S̄1 has the ad-
ditional nested attribute Line which indicates that the code, no and amt of invoices which
address the same customer and have the same invoice period, are to be represented as invoice
lines. We note that S2 equals S̄2 since the information in relation Phone is not intended
to be restructured during the transformation. Further, again referring to Example 1.6, the
custom labels Invoices and Phones are intended as labels for the subtrees in the result-
ing XML tree T that represent entire relations Invoice and Phone, and the custom label
Company is intended as the label of the root node of T. This transformation of R is achieved
by DB2XML({S1,S2}, {R1,R2}, Company, {Invoices, Phones}, {S̄1, S̄2}). In particular, ini-
tially at Line 1, XML tree T is a trivial XML tree, where the root node has the custom
label Company assigned. Then, in the first iteration of the loop at Line 2, XML tree T̄1

is obtained from relation Invoice by FR2XML(S1,R1, S̄1, Invoices), where flat relation
Invoice is converted to the nested relation depicted in Figure 4.11c prior to the mapping.
XML tree T̄1, which is the subtree rooted at node v2 in Figure 4.12, is then added as prin-
cipal subtree to T at Line 4. In the second iteration of the loop at Line 2, XML tree T̄2 is
obtained from relation Phone by FR2XML(S2,R2, S̄2, Phones). Whereas flat relation Phone
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is converted to the nested relation depicted in Figure 4.11d prior to the mapping, it is not
restructured, since S̄1 = S1 and thus no nesting operation is performed. XML tree T̄2, which
is the subtree rooted at node v23 in Figure 4.12, is then added as principal subtree to T at
Line 4, and XML tree T is finally returned at Line 6.
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Figure 4.12: XML tree obtained from flat relations Invoice and Phone by algorithm
DB2XML.

4.3 Translating Relational Semantics to XML

In this section we present our main result on preserving the semantics of relational keys
and inclusion dependencies by XKeys and XINDs when a relational database is transformed
to an XML tree by algorithm DB2XML. We briefly review relational keys and inclusion
dependencies in Subsection 4.3.1. We then specify in Subsection 4.3.2 how XKeys and XINDs
are derived from relational keys and inclusion dependencies, and we show that derived XKeys
and XINDs in fact preserve the semantics or relational keys and inclusion dependencies.

4.3.1 Relational Keys and Inclusion Dependencies

A relational key asserts that every tuple in a relation is unique with respect to the values in
specified attributes. Syntactically, a relational key is therefore specified as a set of attributes
in a relational schema that identify the tuples in conforming relations. We now make this
idea more precise.

Definition 4.12 (Relational Key) A relational key is defined to be

{A1, . . . , An} → S,
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where S is a relational schema and {A1, . . . , An} ⊆ att(S). A relation R over S satisfies the
key σrel = {A1, . . . , An} → S, denoted by R � σrel, if whenever there exist tuples t ∈ R and
t′ ∈ R such that t[A1, . . . , An] = t′[A1, . . . , An], then t = t′.

We now illustrate relational keys by an example.

Example 4.15 (relational key) Referring to Examples 1.6 and 4.14, if we let R be the
relation over relational schema Invoice depicted in Figure 4.11a, then the key for R is
{prd, code, no} → Invoice. This key asserts that at most one phone charge is invoiced for
a certain phone in a certain period, and therefore requires that no two tuples in relation
Invoice have the same values in these attributes. Relation R clearly satisfies this key.

We define next a relational inclusion dependency which asserts a subset relationship
between distinguished values in tuples of two not necessarily distinct relations.

Definition 4.13 (Relational Inclusion Dependency) A relational inclusion depen-
dency (IND) is defined to be

S[A1, . . . , An] ⊆ S̄[Ā1, . . . , Ān],

where S and S̄ are relational schemas, and [A1, . . . , An] ∈ att(S) and [Ā1, . . . , Ān] ∈ att(S̄)
are lists of attributes. Relations R over S and R̄ over S̄ satisfy the IND σ = S[A1, . . . , An] ⊆
S̄[Ā1, . . . , Ān], denoted by (R, R̄) � σ, if for every tuple t ∈ R there exists tuple t̄ ∈ R̄ such
that t[A1, . . . , An] = t̄ [Ā1, . . . , Ān].

We now illustrate relational inclusion dependencies by an example.

Example 4.16 (relational inclusion dependency) Referring again to Examples 1.6
and 4.14, there is the inclusion dependency Invoice[cno, code, no] ⊆ Pone[cno, code, no]
between relations Invoice and Phone depicted in Figures 4.11a and 4.11b, respectively. This
inclusion dependency requires that the cno, code, no values in tuples of relation Invoice

have matching counterparts in the tuples of relations Phone. Relations Invoice and Phone

satisfy this inclusion dependency, since the only combinations of cno, code, no values in
tuples of relation Invoice are {C1 , 0660 , 1010 }, and {C1 , 0990 , 2020 }, and {C2 , 0660 , 2020 },
which obviously have matching counterparts in the tuples of relation Phone.

4.3.2 Mapping Relational Constraints to XKeys and XINDs

We specify subsequently how to derive XKeys and XINDs from relational keys and inclusion
dependencies. According to Definitions 4.12 and 4.13, relational keys and inclusion depen-
dencies are syntactically specified on the basis of relational schemas and principal attributes
in the relational schemas. Our intention in deriving XKeys and XINDs is to establish a
correspondence between relational schemas and principal attributes in relational keys and
inclusion dependencies on the one side, and selectors and fields in XKeys and XINDs on the
other side. We now make this idea more precise.
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Definition 4.14 (Derived Selector and Field) Let database R over database schema S
be mapped to an XML tree by DB2XML(S,R, ldb, lrel, S̄), where ldb and lrel = {l1, . . . , ln}
are element labels, and S̄ = {S̄1, . . . , S̄n} are nested relational schemas. Then, with respect
to a relational schema Si ∈ S and an attribute Aj ∈ att(Si),

(i) the selector obtained for Si, denoted by path(Si), is defined to be

path(Si) = ldb.li. root(S̄i).

(ii) the field obtained for Aj , denoted by path(Si, Aj), is defined to be

path(Si, Aj) = Ā1. · · · .Ān,

where root(S̄i).Ā1. · · · .Ān is the walk in S̄i such that Ān = Aj .

In deriving selectors and fields from relational schemas and principal attributes, we take
into account the restructuring of relational schemas during the transformation of a relational
database to an XML tree by algorithm DB2XML. As will be made more clear soon, this
achieves that if an XKey or XIND is derived from a relational key or inclusion dependency,
then the syntax of the XKey or XIND directly reflects the intention of the relational key or
inclusion dependency. We now illustrate how we derive selectors and fields from relational
schemas and principal attributes by an example.

Example 4.17 (derived selector and field) Referring to Example 4.14, suppose that a
selector is to be derived for the flat relational schema S1 depicted in Figure 4.11a, which
is the schema for relation Invoice. Then, since ldb = Customer, and l1 = Invoices,
and root(S̄1) = Invoice, where S̄1 is the nested relational schema depicted in Figure 4.11c,
path(S1) = Customer.Invoices.Invoice. Suppose further that fields are to be derived for the
principal attributes cno and code in S1. Then, the walks in S̄1 that lead to cno and code are
Invoice.cno and Invoice.Line.code, respectively. Hence, given that root(S̄1) = Invoice,
path(S1, cno) = cno and path(S1, code) = Line.code.

Based on the notions of derived selectors and fields, we define next how XKeys and
XINDs are derived from relational keys and inclusion dependencies.

Definition 4.15 (Derived XKey and XIND) Let database R over database schema S
be mapped to an XML tree by DB2XML(S,R, ldb, lrel, S̄), where ldb and lrel = {lrel1 , . . . , lreln }
are element labels, and S̄ = {S̄1, . . . , S̄n} are nested relational schemas. The XKey derived
from a relational key {A1, . . . , An} → S, where S ∈ S, is defined to be(

path(S), {path(S, A1), . . . ,path(S, An)}
)
.

The XIND derived from a relational inclusion dependency S[A1, . . . , An] ⊆ S̄[Ā1, . . . , Ān],
where S ∈ S and also S̄ ∈ S, is defined to be(

path(S), [ path(S, A1), . . . ,path(S, An) ]
)
⊆
(

path(S̄), [ path(S̄, Ā1), . . . ,path(S̄, Ān) ]
)
.
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We now illustrate XKeys and XINDs that are derived from relational keys and inclusion
dependencies.

Example 4.18 (derived XKey and XIND) Referring once more to Example 4.14, we
derive the XKey κ = (Company.Invoices.Invoice, {prd, Line.code, Line.no}) from the
relational key κrel = {prd, code, no} → Invoice introduced in Example 4.15. Note that
the intention of κrel is that invoices are identified by the combinations of prd, code, no,
which is precisely expressed by the derived XKey κ. Also, from the relational inclusion
dependency σrel = Invoice[cno, code, no] ⊆ Pone[cno, code, no] introduced in Example
4.16, we derive the XIND σ = (Company.Invoices.Invoice, [cno, Line.code, Line.no]) ⊆
(Company.Phones.Phone, [cno, code, no]). As for XKey κ and the relational key κrel, there
is also an obvious correspondence between σrel and the derived XIND σ.

We now present the first main result in this chapter, which is on preserving the semantics
of relational keys when relational data is transformed to XML data by algorithm DB2XML.

Theorem 4.1 (Preserving the Semantics of Keys) If database R over database
schema S is mapped to XML tree T by algorithm DB2XML and a relation R ∈ R satisfies
the relational key σrel then T satisfies the XKey obtained from σrel.

Referring to Examples 4.14 and 4.18, consider for the purpose of illustration rela-
tion Invoice depicted in Figure 4.11a which satisfies the relational key κrel = {prd,
code, no} → Invoice. The XML tree T depicted in Figure 4.12, which is obtained
from relations Invoice and Phone by algorithm DB2XML, satisfies the derived XKey
κ = (Company.Invoices.Invoice, {prd, Line.code, Line.no}), which is expected given
Theorem 4.1. We note that the converse of Theorem 4.1 is not true. That is κrel may not
be a key in a relation R but the derived XKey κ can be satisfied in the generated XML
tree T. This is a consequence of the fact that the nest operator results in the removal of
duplicates from the attributes not being nested upon, and so the nested relation will not
necessarily contain duplicate values, even if R did.

In order to show Theorem 4.1, we first establish two preliminary results. The first prelim-
inary result is on the existence of a common ancestor node for a set of nodes that pairwise
satisfy the closest property, and the second preliminary result is on the correspondence
between tuples in a relation and maximum combinations of field nodes.

Lemma 4.2 Let P1, . . . , Pn be paths and v1, . . . , vn be nodes in an XML tree T such that
∀i ∈ {1, . . . , n}, vi ∈ nodes(Pi) and ∀i, j ∈ {1, . . . , n}, closest(vi, vj) = true. Then there
exists node v̄ such that

(i) v̄ ∈ nodes(P1 ∩ · · · ∩ Pn), and
(ii) ∀i ∈ {1, . . . , n}, v̄ ∈ anc-or-self(vi).

Proof (Lemma 4.2) It is shown subsequently by induction over the nodes in v1, . . . , vn that
for all k ∈ {1, . . . , n}, Lemma 4.2 holds true for the subset v1, . . . , vk.

Base Case: The set of nodes containing the single node v1 is used as base case for the
induction, i.e. k = 1 in the base case. Now, given that v1 ∈ nodes(P1), v1 satisfies (i) in
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Lemma 4.2, and v1 also satisfies (ii) in Lemma 4.2, since v1 ∈ anc-or-self(v1) per definition,
which establishes the base case.

Inductive Step: Assume now that Lemma 4.2 holds true for some k, where k ≥ 1, and
note that the inductive step is established if Lemma 4.2 also holds true for the set of nodes
v1, . . . , vk+1, which is shown subsequently.

Note that the inductive assumption implies the existence of node ṽ such that

- ṽ ∈ nodes(P1 ∩ · · · ∩ Pk), and
- ∀i ∈ {1, . . . , k}, ṽ ∈ anc-or-self(vi).

Note further that closest(vk, vk+1) is true per assumption, and that therefore node v̂
exists such that

- v̂ ∈ nodes(Pk ∩ Pk+1), and
- v̂ ∈ anc-or-self(vk), and
- v̂ ∈ anc-or-self(vk+1).

Now, given that {v̂, ṽ} ⊆ anc-or-self(vk) it follows that either ṽ ∈ anc-or-self(v̂) or
v̂ ∈ anc-or-self(ṽ).

Suppose first that ṽ ∈ anc-or-self(v̂). Then ṽ ∈ anc-or-self(vk+1) given that v̂ ∈
anc-or-self(vk+1), and consequently for all i ∈ {1, . . . , k + 1}, ṽ ∈ anc-or-self(vi), since ṽ ∈
anc-or-self(vi) from the inductive assumption if i ≤ k. Hence, ṽ satisfies (ii) in Lemma 4.2
w.r.t. nodes v1, . . . , vk+1 and it therefore remains to be shown that ṽ ∈ nodes(P1∩· · ·∩Pk+1).
Thereby, since ṽ ∈ nodes(P1 ∩ · · · ∩ Pk) per assumption, ṽ ∈ nodes(P1 ∩ · · · ∩ Pk+1) if
P1 ∩ · · · ∩ Pk = P1 ∩ · · · ∩ Pk+1, which is shown next.

Note that P1 ∩ · · · ∩ Pk+1 ⊆ P1 ∩ · · · ∩ Pk, since if to the contrary P1 ∩ · · · ∩ Pk+1 6⊆
P1 ∩ · · · ∩ Pk, then (P1 ∩ · · · ∩ Pk) ⊂ (P1 ∩ · · · ∩ Pk) ∩ Pk+1 according to Definition 3.13,
and combining this with the fact that (P1 ∩ · · · ∩ Pk) ∩ Pk+1 ⊆ (P1 ∩ · · · ∩ Pk) means that
P1 ∩ · · · ∩ Pk ⊂ P1 ∩ · · · ∩ Pk, which is however clearly a contradiction.

Hence P1 ∩ · · · ∩ Pk+1 ⊆ P1 ∩ · · · ∩ Pk and therefore P1 ∩ · · · ∩ Pk = P1 ∩ · · · ∩ Pk+1 if
P1 ∩ · · · ∩ Pk ⊆ P1 ∩ · · · ∩ Pk+1. Thereby, given that ṽ ∈ nodes(P1 ∩ · · · ∩ Pk) and that
v̂ ∈ nodes(Pk ∩ Pk+1) and that ṽ ∈ anc-or-self(v̂), it follows that P1 ∩ · · · ∩ Pk ⊆ Pk ∩ Pk+1.
Combining this with the fact that Pk ∩ Pk+1 ⊆ Pk+1 shows that P1 ∩ · · · ∩ Pk ⊆ Pk+1.
Consequently, for all i ∈ {1, . . . , k + 1}, P1 ∩ · · · ∩ Pk ⊆ Pi, since if i < k + 1, then
P1 ∩ · · · ∩ Pk ⊆ Pi per definition. Given that for all i ∈ {1, . . . , k + 1}, P1 ∩ · · · ∩ Pk ⊆ Pi,
it follows that P1 ∩ · · · ∩ Pk ⊆ P1 ∩ · · · ∩ Pk+1, since P1 ∩ · · · ∩ Pk+1 is required to be the
longest common prefix of paths P1, . . . , Pk+1 per definition.

Hence, P1∩· · ·∩Pk = P1∩· · ·∩Pk+1 and thus ṽ also satisfies (i) in Lemma 4.2 w.r.t. nodes
v1, . . . , vk+1, i.e. ṽ ∈ nodes(P1∩· · ·∩Pk+1), which establishes the inductive step for the case
that ṽ ∈ anc-or-self(v̂).

Suppose now instead that v̂ ∈ anc-or-self(ṽ). Then ∀i ∈ {1, . . . , k+1}, v̂ ∈ anc-or-self(vi),
since v̂ ∈ anc-or-self(vk+1) as shown above, and if i < k+ 1, then v̂ ∈ anc-or-self(vi) follows
from v̂ ∈ anc-or-self(ṽ) and ṽ ∈ ancestor(vi). Hence v̂ satisfies (ii) in Lemma 4.2 w.r.t. nodes
v1, . . . , vk+1 and it therefore remains to be shown that v̂ ∈ nodes(P1 ∩ · · · ∩Pk+1). Thereby,
since v̂ ∈ nodes(Pk ∩ Pk+1) per assumption, v̂ ∈ nodes(P1 ∩ · · · ∩ Pk+1) if Pk ∩ Pk+1 =
P1 ∩ · · · ∩ Pk+1, which is shown next.
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Analogous to the previous argumentation, P1 ∩ · · · ∩ Pk+1 ⊆ Pk ∩ Pk+1, since if instead
P1 ∩ · · · ∩ Pk+1 6⊆ Pk ∩ Pk+1, then Pk ∩ Pk+1 ⊂ P1 ∩ · · · ∩ Pk ∩ Pk+1 according to Definition
3.12. Combining this with the fact that P1 ∩ · · · ∩ Pk ∩ Pk+1 ⊆ Pk ∩ Pk+1 then means that
Pk ∩ Pk+1 ⊂ Pk ∩ Pk+1, which is however clearly a contradiction.

Hence P1 ∩ · · · ∩ Pk+1 ⊆ Pk ∩ Pk+1 and therefore Pk ∩ Pk+1 = P1 ∩ · · · ∩ Pk+1 if
Pk ∩ Pk+1 ⊆ P1 ∩ · · · ∩ Pk+1. This however follows directly from the assumptions that
v̂ ∈ nodes(Pk ∩ Pk+1) and that ṽ ∈ nodes(P1 ∩ · · · ∩ Pk+1) and that v̂ ⊆ ṽ.

Consequently, Pk ∩ Pk+1 = P1 ∩ · · · ∩ Pk+1 and thus v̂ also satisfies (i) in Lemma 4.2
w.r.t. nodes v1, . . . , vk+1, i.e. v̂ ∈ nodes(P1∩· · ·∩Pk+1), which establishes the inductive step
also for the case that v̂ ∈ anc-or-self(ṽ). �

We now establish the second preliminary result on the correspondence between tuples in
a relation and maximum combinations of field nodes.

Lemma 4.3 (Field Nodes in Generated XML Trees) Let database R over database
schema S be mapped to XML tree T by algorithm DB2XML. Also, let S be the selector
obtained from any relational schema Sx ∈ S, and let {F1, . . . , Fn} be any set of fields such
that for all i ∈ {1, . . . , n}, Fi is obtained from attribute Ai ∈ att(Sx). Then, there exists a
selector node v ∈ nodes(S,T) and a maximum combination of field nodes {v1, . . . , vm} for
v with respect to {F1, . . . , Fn} iff m = n and there exists tuple t ∈ Rx, where Rx is the
relation in R over relational schema Sx such that for all i ∈ {1, . . . ,m}, t[Ai] = val(vi).

Proof (Lemma 4.3) Suppose that database R = {R1, . . . ,Rz} over database schema S =
{S1, . . . ,Sz} was mapped to XML in particular by DB2XML(S,R, ldb, lrel, S̄), where ldb and
lrel = {l1, . . . , lz} are element labels, and S̄ = {S̄1, . . . , S̄z} are nested relational schemas
such that for all i ∈ {1, . . . , z}, S̄i is a transformation of Si.

We first establish a correspondence between the selector S and the fields F1, . . . , Fn on
the one side, and the paths in T on the other side. We show in particular that ∀i ∈ {1, . . . , n},
S.Fi = ldb.lx.Pi, where Pi is the walk in S̄x such that first(Pi) = root(S̄x) and last(Pi) = Ai.
We note that the walk Pi exists in S̄x since per assumption S̄x is a transformation of Sx and
Ai ∈ att(Sx). According to (i) in Definition 4.14, S = ldb.lx. root(S̄x) given that S is obtained
from Sx, and therefore ∀i ∈ {1, . . . , n}, ldb.lx.Pi = S.Fi if ldb.lx.Pi = ldb.lx. root(S̄x).Fi.
Consequently, ∀i ∈ {1, . . . , n}, ldb.lx.Pi = S.Fi if Pi = root(S̄x).Fi. According to (ii) in
Definition 4.14, root(S̄x).Fi is the walk in S̄x such that last(S̄x.Fi) = Ai given that Fi
is obtained from Ai. From this and the assumption that Pi is the walk in S̄x such that
first(Pi) = root(S̄x) and last(Pi) = Ai it follows that Pi = root(S̄x).Fi since obviously
first(S̄x.Fi) = root(S̄x).

If: We show that if there exists tuple t ∈ Rx, then there exists selector node v ∈ nodes(S,T)
and a maximum combination of field nodes {v1, . . . , vn} for v with respect to {F1, . . . , Fn}
such that for all i ∈ {1, . . . , n}, val(vi) = t[Ai].

From the procedure of algorithm DB2XML, relation Rx ∈ R has been mapped in itera-
tion x of the loop at Line 2 in Algorithm 4.4, and so XML tree Tx = FR2XML(Sx,Rx, S̄x, lx)
was added as principal subtree to T at Line 4 in Algorithm 4.4. Then, from Lemma 4.1,
there exist nodes v1, . . . , vn in Tx such that
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(a) ∀i ∈ {1, . . . , n}, vi ∈ nodes(lx.Pi,Tx);
(b) ∀i, j ∈ {1, . . . , n}, closest(vi, vj) = true;
(c) ∀i ∈ {1, . . . , n}, t[Ai] = val(vi).

From (a) and the observation that Tx is a principal subtree of T it follows that ∀i ∈
{1, . . . , n}, vi ∈ nodes(ldb.lx.Pi,T) since lab(root(T)) = ldb according to Line 1 in Algorithm
4.4. Therefore, ∀i ∈ {1, . . . , n}, vi ∈ nodes(S.Fi,T) given that ldb.lx.Pi = S.Fi. Now,
given (a) and (b), there exists a node v̂ ∈ nodes(S.F1 ∩ · · · ∩ S.F1,T) such that ∀i ∈
{1, . . . , n}, v̂ ∈ anc-or-self(vi) according to Lemma 4.2. From this and the observation that
S ⊂ S.F1 ∩ · · · ∩ S.F1 since ∀i ∈ {1, . . . , n}, S ⊂ S.F1, we deduce that there exists node
v ∈ nodes(S,T) such that v ∈ ancestor(v̂). Consequently, ∀i ∈ {1, . . . , n}, v ∈ ancestor(vi)
given that v̂ ∈ ancestor(vi). That is, there exists selector node v ∈ nodes(S,T) such that for
all ∀i ∈ {1, . . . , n}, v ∈ ancestor(vi) and vi ∈ nodes(S.Fi,T). Hence, nodes v and v1, . . . , vn
satisfy (ii) in Definition 3.23. According to (b) nodes v1, . . . , vn also satisfy (i) in Definition
3.23, and nodes v1, . . . , vn trivially satisfy (iii) in Definition 3.23 given that the number of
nodes in v1, . . . , vn equals the number of fields F1, . . . , Fn. Hence, v1, . . . , vn is a maximum
combination of field nodes for v with respect to F1, . . . , Fn such that, according to (c), for
all i ∈ {1, . . . , n}, t[Ai] = val(vi).

Only If: We show that if there exists selector node v ∈ nodes(S,T) and a maximum combi-
nation of field nodes {v1, . . . , vm} for v with respect to {F1, . . . , Fn}, then m = n and there
exists tuple t ∈ Rx such that for all i ∈ {1, . . . ,m}, t[Ai] = val(vi).

According to (ii) in Definition 3.23, ∀i ∈ {1, . . . , n}, vi ∈ nodes(S.Fj ,T) for some
j ∈ {1, . . . , n}. For the ease of presentation but without loss of generality we as-
sume subsequently that ∀i ∈ {1, . . . ,m}, vi ∈ nodes(S.Fi,T). Then, ∀i ∈ {1, . . . ,m},
vi ∈ nodes(ldb.lx.Pi,T) given that S.Fi = ldb.lx.Pi. From combining this with (i) in
Definition 3.23 we deduce that there exists node vx ∈ nodes(ldb.lx,T) such that ∀i ∈
{1, . . . ,m}, vx ∈ ancestor(vi). Now, since ∀i ∈ {1, . . . ,m}, vi ∈ nodes(ldb.lx.Pi,T) and
vx ∈ ancestor(vi), and given that vx ∈ nodes(ldb.lx,T), it follows that ∀i ∈ {1, . . . ,m},
vi ∈ nodes(lx.Pi,T[vx]), where T[vx] is the subtree of T rooted at node vx.

Further, T [vx] is a principal subtree of T given that vx ∈ nodes(ldb.lx), and from the
procedure of algorithm DB2XML, T[vx] has been created in iteration x of the loop at
Line 2 in Algorithm 4.4, i.e. T[vx] = FR2XML(Sx,Rx, lx, S̄x). From this together with the
observation above that ∀i ∈ {1, . . . ,m}, vi ∈ nodes(lx.Pi,T[vx]), and (i) in Definition 3.23,
Lemma 4.1 applies to nodes v1, . . . , vm. Consequently, there exists tuple t ∈ Rx such that
∀i ∈ {1, . . . ,m}, t[Ai] = val(vi). Also, m = n since T[vx] = FR2XML(Sx,Rx, lx, S̄x) and
therefore if instead m < n, then Rx contains at least one incomplete tuple, which clearly
contradicts our model of relational data where only complete relations are permitted. �

Having established Lemma 4.3, the proof of Theorem 4.1 is now straightforward.

Proof (Theorem 4.1) Let σrel = {A1, . . . , An} → S, where S is the relational schema in S
such that R is the relation in R defined over S. Also, let σ = (S, {F1, . . . , Fn}) be the XKey
obtained from σrel. We show that R � σrel ⇒ T � σ by showing the contrapositive that
T 2 σ ⇒ R 2 σrel.



4.3. TRANSLATING RELATIONAL SEMANTICS TO XML 115

Because σ is obtained from σrel, selector S is obtained from relational schema S, as well as
for all i ∈ {1, . . . , n}, field Fi is obtained from attribute Ai ∈ att(S) according to Definition
4.15. Hence, from Lemma 4.3, whenever there exists selector node v̈ ∈ nodes(S,T) and a
maximum combination of field nodes {v̈1, . . . , v̈m} for v̈ with respect to {F1, . . . , Fn}, then
m = n. Consequently, from Definition 3.24 and given that T 2 σ, there exist selector nodes
v, v′ ∈ nodes(S,T) and, with respect to {F1, . . . , Fn}, there exist maximum combinations of
field nodes {v1, . . . , vn} for v and {v′1, . . . , v′n} for v′ such that

(a) for all i ∈ {1, . . . , n}, val(vi) = val(v′i), and
(b) for at least one z ∈ {1, . . . , n}, vz 6= v′z.

Then, from Lemma 4.3, there exist tuples t and t′ in R such that for all i ∈ {1, . . . , n},
t[Ai] = val(vi) and t′[Ai] = val(v′i). Consequently, for all i ∈ {1, . . . , n}, t[Ai] = t′[Ai] from
(a), and therefore if t 6= t′ then R 2 σrel according to Definition 4.12. From the procedure
of Algorithm DB2XML, each value in R maps to a single node, and combining this with (b)
we deduce that t 6= t′ and thus R 2 σrel. �

We now present the second main result in this chapter on preserving the semantics
of relational inclusion dependencies when relational data is transformed to XML data by
algorithm DB2XML.

Theorem 4.2 (Preserving the Semantics of INDs) If database R over database
schema S is mapped to XML tree T by algorithm DB2XML, relations R and R̄ in R satisfy
the relational IND σrel iff T satisfies the XIND obtained from σrel.

It is worth mentioning that unlike for the case of keys, a database satisfies a relational
inclusion dependency if and only if the generated XML tree satisfies the derived XIND.
For the purpose of illustration, referring to Examples 4.14 and 4.18, consider relations
Invoice and Phone depicted in Figure 4.11a which satisfy the relational inclusion depen-
dency σrel = Invoice[cno, code, no] ⊆ Pone[cno, code, no]. The XML tree T depicted in
Figure 4.12, which is obtained from relations Invoice and Phone by algorithm DB2XML,
satisfies the derived XIND σ = (Company.Invoices.Invoice, [cno, Line.code, Line.no]) ⊆
(Company.Phones.Phone, [cno, code, no]), which is expected given Theorem 4.2.

As for Theorem 4.1, also the subsequent proof of Theorem 4.2 is based on Lemma 4.3.

Proof (Theorem 4.2) Let σrel = S[A1, . . . , An] ⊆ S̄[Ā1, . . . , Ān], where S and S̄ are the
relational schemas in S such that R and R̄ are the relations in R defined over S and S̄. Also,
let σ = (S, [F1, . . . , Fn]) ⊆ (S̄, [F̄1, . . . , F̄n]) be the XIND obtained from σrel.

If: We establish that T � σ ⇒ (R, R̄) � σrel by showing the contrapositive that (R, R̄) 2
σrel ⇒ T 2 σ. Given that (R, R̄) 2 σrel, there exists tuple t ∈ R such that for no tuple t̄ ∈ R̄,
t [A1, . . . , An] = t̄ [Ā1, . . . , Ān] according to Definition 4.13. Because σ is obtained from σrel,
selector S is obtained from relational schema S, as well as for all i ∈ {1, . . . , n}, field Fi
is obtained from attribute Ai ∈ att(S) according to Definition 4.15. Hence, from Lemma
4.3, there exists selector node v ∈ nodes(S,T) and a maximum combination of field nodes
v1, . . . , vn for v with respect to F1, . . . , Fn such that for all i ∈ {1, . . . , n}, t [Ai] = val(vi).
Then, from Definition 3.25, if T � σ, there exists selector node v̄ ∈ nodes(S̄,T) and a
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maximum combination of field nodes v̄1, . . . , v̄n for v̄ with respect to F̄1, . . . , F̄n such that
for all i ∈ {1, . . . , n}, val(v̄i) = val(vi). Again, because σ is obtained from σrel, selector S̄ is
obtained from relational schema S̄, as well as for all i ∈ {1, . . . , n}, field F̄i is obtained from
attribute Āi ∈ att(S̄) according to Definition 4.15. Then, from Lemma 4.3, there exists tuple
t̄ ∈ R̄ such that for all i ∈ {1, . . . , n}, t̄ [Āi] = val(v̄i). This however clearly contradicts the
fact that (R, R̄) 2 σrel since for all i ∈ {1, . . . , n}, val(v̄i) = val(vi) and thus t [Ai] = t̄ [Āi]
given that t̄ [Āi] = val(v̄i) and t [Ai] = val(vi). Hence, T 2 σ.

Only If: We establish that (R, R̄) � σrel ⇒ T � σ by showing the contrapositive that

T 2 σ ⇒ (R, R̄) 2 σrel. Because σ is obtained from σrel, selector S is obtained from
relational schema S, as well as for all i ∈ {1, . . . , n}, field Fi is obtained from attribute
Ai ∈ att(S) according to Definition 4.15. Hence, from Lemma 4.3, whenever there exists
selector node v̈ ∈ nodes(S,T) and a maximum combination of field nodes {v̈1, . . . , v̈m} for
v̈ with respect to {F1, . . . , Fn}, then m = n. Consequently, from Definition 3.25 and given
that T 2 σ, there exist selector node v ∈ nodes(S,T) and a maximum combination of field
nodes {v1, . . . , vn} for v with respect to {F1, . . . , Fn}, but there do not exist selector node
v̄ ∈ nodes(S̄,T) and maximum combination of field nodes {v̄1, . . . , v̄n} for v̄ with respect to
{F̄1, . . . , F̄n} such that for all i ∈ {1, . . . , n}, val(vi) = val(v̄i).

Now, from Lemma 4.3, there exists tuple t ∈ R such that for all i ∈ {1, . . . , n}, t [Ai] =
val(vi). Then, from Definition 4.13, if (R, R̄) � σrel, there exists tuple t̄ ∈ R̄ such that
t [A1, . . . , An] = t̄ [Ā1, . . . , Ān]. Consequently, from Lemma 4.3, there exists selector node
v̄ ∈ nodes(S̄,T) and maximum combination of field nodes {v̄1, . . . , v̄n} for v̄ with respect
to {F̄1, . . . , F̄n} such that for all i ∈ {1, . . . , n}, val(v̄i) = t̄ [Āi]. This however clearly
contradicts the fact that T 2 σ since for all i ∈ {1, . . . , n}, t [Ai] = t̄ [Āi] and thus val(vi) =
val(v̄i) given that val(vi) = t [Ai] and val(v̄i) = t̄ [Ai]. Hence, (R, R̄) 2 σrel. �



Part II

Reasoning

117





Chapter 5

The Context for Reasoning
about XKeys and XINDs
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This chapter presents the context for our reasoning about XKeys and XINDs in Chapters
6 and 7, respectively. Section 5.1 introduces the class of complete XML trees which we will
consider in solving the implication and consistency problems related to XKeys and XINDs.
The class of complete XML trees has originally been proposed by Vincent et al. [20, 25],
and Section 5.1 repeats central definitions related to complete XML trees in order for this
thesis to be self-contained. Section 5.2 then revisits the definitions of XKeys and XINDs in
the context of complete XML trees.
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5.1 The Class of Complete XML Trees

As discussed in Chapter 1, our reason for considering complete XML trees in our reasoning
is that they are a natural subclass of XML trees used in ‘data-centric’ business applications
of XML that involve regularly structured XML data [7]. We start our discussion by making
the concept of a complete XML tree more precise in Subsection 5.1.1. We then present in
Subsections 5.1.2 and 5.1.3 certain properties of paths and nodes in complete XML trees
which we will frequently require in our reasoning.

5.1.1 Conforming and Complete XML Trees

From a general point of view, before requiring the data in an XML tree to be complete,
one first has to specify the structure of the information that the XML tree is expected to
represent. We do this by requiring the a priori existence of a set of paths that are valid for
an XML tree, and then define the notion of an XML tree conforming to such a set of paths
as follows.

Definition 5.1 (Conforming XML Tree) An XML tree T conforms to a set of paths
P , if for every node v in T, if P is the path such that v ∈ nodes(P ) then P ∈ P .

We note that the set of paths for an XML tree could be obtained from a DTD, if
one exists, or from other schema information if no DTD exists. We now illustrate the
conformance of an XML tree to a set of paths.

Example 5.1 (conforming XML tree) If we use T to denote the XML tree in Figure
5.1a, then T conforms to the set of paths P given in Figure 5.1b since every node in
T is reachable over a path in P . In contrast, T does not conform to the set of paths
P ′ = P − {Customers.Customer.name}, since v3 ∈ nodes(Customers.Customer.name) but
Customers.Customer.name /∈ P ′.

(a)

Customers

Customer

1

2

3 4
Phone

0660

code
1010

no
Jones

name

5 6
Customers.Customer.Phone.code
Customers.Customer.Phone.no

Customers
Customers.Customer
Customers.Customer.name
Customers.Customer.Phone

(b)

Customers
Customers.Customer
Customers.Customer.name

Customers.Customer.Phone.code
Customers.Customer.Phone.no

Customers.Customer.Phone
Customers.Customer.status

(c)

Figure 5.1: An XML tree and two sets of paths.

In order to clarify the intuition behind a complete XML tree, consider the set of paths
P given in Figure 5.1c and the XML tree T in Figure 5.1a. Then T also conforms to P ,
but we do not consider T to be complete with respect to P since the existence of path
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Customers.Customer.status means that we expect every customer to have some status,
like being a premium customer for example, and this is not satisfied for customer Jones in
XML tree T. We now make this idea more precise.

Definition 5.2 (Complete XML Tree) If T is an XML tree that conforms to a set of
paths P , then T is defined to be complete with respect to P if whenever P and P̄ are paths
in P such that P ⊂ P̄ and there exists node v ∈ nodes(P ), then there also exists a node
v̄ ∈ nodes(P̄ ) such that v ∈ ancestor(v̄).

We now illustrate Definition 5.2 by an example.

Example 5.2 (complete XML tree) Referring to Example 5.1, the XML tree T depicted
in Figure 5.1a is not complete with respect to the set of paths P given in Figure 5.1c, since
P contains path Customers.Customer.status but node v2 ∈ nodes(Customers.Customer) is
not an ancestor of a node reachable over path Customers.Customer.status. The XML tree
T is however complete with respect to the set of paths given in Figure 5.1b.

Example 5.2 illustrates an important point. In the relational case, a relation conforms
to exactly one relational scheme and either the relation is complete with respect to this
relational scheme or not. The completeness of an XML tree is however only defined with
respect to a specific set of paths and so, as we have just seen, an XML tree may conform to
two different sets of paths, but may be complete with respect to one set but not the other.

5.1.2 Properties of Paths in Complete XML Trees

We now introduce a couple of properties of a set of valid paths P for a complete XML
tree. First, if an XML tree is complete with respect to P , then P has what we call the
downward-closed property, which is defined as follows.

Definition 5.3 (Downward-closed Paths) A set of paths P is downward-closed if for
every pair of paths P and P ′ in P , if P ′ ∈ P and P ⊂ P ′ then P ∈ P .

For instance, if we use T to denote the XML tree in Figure 5.1a, then T is complete
with respect to the set of paths P given in Figure 5.1b, which is downward-closed since
every prefix of a path in P is also a path in P . However, the set of paths P ′ = P −
{Customers.Customer} is not downward-closed, since, for instance, Customers.Customer ⊂
Customers.Customer.name but Customers.Customer /∈ P ′. Also, T is not complete with
respect to P ′, since if T is complete with respect to a set of paths, then T must conform to
this set of paths, which is obviously not the case for P ′.

Next, because all prefixes of paths are contained in a downward-closed set of paths P ,
there is a distinguished path of length one which is a prefix of every path in P . This path
leads to the root node in XML trees that conform to P , and we now make the idea of the
root path in a downward-closed set of paths more precise.
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Definition 5.4 (Root Path) Let P be a downward-closed set of paths, and let T be an
XML tree that is complete with respect to P . The root path in P , denoted by ρ(P ), is
defined to be

ρ(P ) = {P ∈ P | P ⊆ P̄ for all P̄ ∈ P }.

We note that the root path ρ(P ) in a downward-closed set of paths P is of length 1.
Also, we will omit to explicitly state P in denoting the root path if P is understood from
the context. For instance, if we let P be the downward-closed set of paths in Figure 5.1b,
then ρ = Customers.

In general, two paths do not necessarily have an intersection path, which is the case if
the paths do not start with the same label. Because the root path in a downward-closed set
of paths P is a prefix of any path in P , any pair of paths in P have an intersection path.
This property of downward-closed paths will be useful in our reasoning, and we now make
this property more precise.

Lemma 5.1 If P and P̄ are paths in a downward-closed set of paths P then P ∩ P̄ ∈ P .

5.1.3 Properties of Nodes in Complete XML Trees

We now introduce a couple of properties related to nodes in a complete XML tree which
satisfy the closest property.

Lemma 5.2 Let P1, P2, P3 be paths such that P1 ∩ P3 ⊆ P2 ∩ P3, and let v1 ∈ nodes(P1),
v2 ∈ nodes(P2), v3 ∈ nodes(P3) be nodes in an XML tree T such that closest(v1, v2) = true
and closest(v2, v3) = true. Then closest(v1, v3) = true.

Proof (Lemma 5.2) Throughout this proof, let P 1
2 , P 1

3 and P 2
3 denote paths P1∩P2, P1∩P3

and P2 ∩ P3, respectively. Then, given that closest(v1, v2) = true, there exists node v1
2

according to Definition 3.22 such that v1
2 ∈ anc-or-self(v1), and v1

2 ∈ anc-or-self(v2) and
v1

2 ∈ nodes(P 1
2 ). Also, given that closest(v2, v3) = true, there exists node v2

3 such that
v2

3 ∈ anc-or-self(v2), and v2
3 ∈ anc-or-self(v3) and v2

3 ∈ nodes(P 2
3 ).

Further, given that v1
2 ∈ anc-or-self(v2) and that v2

3 ∈ anc-or-self(v2), it follows that
either v1

2 ∈ anc-or-self(v2
3) or that v2

3 ∈ ancestor(v1
2). Assume first that v1

2 ∈ anc-or-self(v2
3),

which is illustrated in Figure 5.2(b). Then, in order to demonstrate that closest(v1, v3) =
true, it is shown that node v1

2 satisfies (i) - (iii) in Definition 3.22 w.r.t. nodes v1 and v3.
In particular v1

2 ∈ anc-or-self(v1) per assumption, which establishes (i) in Definition 3.22
with respect to nodes v1 and v3. Also, v1

2 ∈ anc-or-self(v3) since v1
2 ∈ anc-or-self(v2

3) per
assumption and v2

3 ∈ anc-or-self(v3) as shown above, which establishes (ii) in Definition 3.22
with respect to nodes v1 and v3.

Therefore, closest(v1, v3) = true if v1
2 ∈ nodes(P 1

3 ). Note that if P 1
2 = P 1

3 , which is
shown next, then v1

2 ∈ nodes(P 1
3 ), since v1

2 ∈ nodes(P 1
2 ) as shown above. Thereby, P 1

2 = P 1
3

is established subsequently by first showing that P 1
2 ⊆ P 1

3 and then that P 1
3 ⊆ P 1

2 .
Note that if P 1

2 is a common prefix of paths P1 and P3, then P 1
2 ⊆ P 1

3 , since P 1
3 is

required to be the longest common prefix of paths P1 and P3. Thereby, P 1
2 ⊆ P1 follows

directly from the definition of path intersection. It therefore remains to be shown that also
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v3

P2 ∩ P3

root(T )

v23

v12 P1 ∩ P2

root(T )

(b)(a)

v2 v1

P1 ∩ P2v12

v23v1 P2 ∩ P3

v2 v3

Figure 5.2: Possible constellations of nodes in Lemma 5.2.

P 1
2 ⊆ P3. Thereby, v1

2 ∈ anc-or-self(v3), since v1
2 ∈ anc-or-self(v2

3) per assumption, and
v2

3 ∈ anc-or-self(v3) as show above. Given that v1
2 ∈ anc-or-self(v3) it follows that P 1

2 ⊆ P3,
since v1

2 ∈ nodes(P 1
2 ) as shown above and v3 ∈ nodes(P3) per assumption. Hence, P 1

2 ⊆ P 1
3 .

To show that P 1
3 ⊆ P 1

2 , it will be shown that P 1
3 ⊆ P1 and P 1

3 ⊆ P2, from which it
follows that P 1

3 ⊆ P 1
2 since P 1

2 is by definition the longest common prefix of paths P1 and
P2. First, P 1

3 ⊆ P1 follows directly from the definition of path intersection. Also, P 1
3 ⊆ P2

since P 1
3 ⊆ P 2

3 per assumption, and P 2
3 ⊆ P2 according to the definition of path intersection.

Hence, P 1
2 = P 1

3 and thus closest(v1, v3) is true in case that v1
2 ∈ anc-or-self(v2

3).

Assume now instead that v2
3 ∈ ancestor(v1

2), which is illustrated in Figure 5.2a. Then
closest(v1, v3) = true, if v2

3 satisfies (i) - (iii) in Definition 3.22 with respect to nodes v1

and v3, which is shown next. In particular v2
3 ∈ anc-or-self(v1), since v2

3 ∈ ancestor(v1
2)

per assumption, and v1
2 ∈ anc-or-self(v1) as shown above, which establishes (i) in Definition

3.22 with respect to nodes v1 and v3. Also, v2
3 ∈ anc-or-self(v3) as shown above, which

establishes (ii) in Definition 3.22 with respect to nodes v1 and v3.

Therefore, closest(v1, v3) = true if v2
3 ∈ nodes(P 1

3 ), which is shown next by showing that
P 2

3 = P 1
3 , from which it follows that v2

3 ∈ nodes(P 1
3 ) since v2

3 ∈ nodes(P 2
3 ) per assumption.

Since P 1
3 ⊆ P 2

3 per assumption, to show that P 2
3 = P 1

3 it remains to verify that P 2
3 ⊆

P 1
3 . First, P 2

3 ⊆ P3 follows directly from the definition of path intersection. Next, v2
3 ∈

anc-or-self(v1) since v2
3 ∈ ancestor(v1

2) per assumption, and v1
2 ∈ anc-or-self(v1) as shown

above. Given that v2
3 ∈ anc-or-self(v1) it follows that P 2

3 ⊆ P1, since v2
3 ∈ nodes(P 2

3 ) and
v1 ∈ nodes(P1) per assumption. Thus P 2

3 is a prefix of both P3 and P1, and so P 2
3 ⊆ P1∩P3.

Hence, P 2
3 = P 1

3 and thus closest(v1, v3) is true also in case that v2
3 ∈ anc-or-self(v1

2), which
establishes the result. �

Lemma 5.3 Let P be a downward-closed set of paths and let T be an XML tree that
is complete with respect to P . Also, let {P1, . . . , Pm} and {Pm+1, . . . , Pn} be non-empty
subsets of P and let v1, . . . , vm be a set of nodes in T such that

(a) ∀i ∈ {1, . . . ,m}, vi ∈ nodes(Pi), and
(b) for all i, j ∈ {1, . . . ,m}, closest(vi, vj) = true.

Then, there exist nodes vm+1, . . . , vn in T such that

(i) for all i ∈ {m+ 1, . . . , n}, vi ∈ nodes(Pi), and
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(ii) for all i, j ∈ {1, . . . , n}, closest(vi, vj) = true.

Proof (Lemma 5.3) In order to demonstrate Lemma 5.3, the following preliminary result is
established first: If {R1, . . . , Rx} ⊂ P and Rx+1 ∈ P and there exist nodes v̄1, . . . , v̄x in T
such that for all i ∈ {1, . . . , x}, v̄i ∈ nodes(Ri) and for all i, j ∈ {1, . . . , x}, closest(v̄i, v̄j) is
true, then there exists node v̄x+1 in T such that

(A) v̄x+1 ∈ nodes(Rx+1), and
(B) for all i, j ∈ {1, x+1}, closest(v̄i, v̄j) = true.

From Definition 3.13 and Lemma 5.1, for all i ∈ {1, . . . , x}, Ri ∩ Rx+1 ⊆ Rx+1. Hence,
one can choose y ∈ [1, x] such that for all i ∈ {1, . . . , x}, Ri ∩ Rx+1 ⊆ Ry ∩ Rx+1. Then,
since v̄y ∈ nodes(Ry) per assumption, there exists node v̂ such that v̂ ∈ nodes(Ry ∩Rx+1),
and v̂ ∈ anc-or-self(v̄y).

Further, Ry ∩ Rx+1 ∈ P since Ry ∩ Rx+1 ⊆ Rx+1 per definition, and Rx+1 ∈ P and
P is a downward-closed set of paths, per assumption. Therefore, given that T is complete
w.r.t. P and that v̂ ∈ nodes(Ry ∩Rx+1) it follows from Definition 5.2 that there exists node
v̄ ∈ nodes(Rx+1) such that v̂ ∈ anc-or-self(v̄x+1), which establishes (A).

In order to verify (B), note that closest(v̄x+1, v̄x+1) is true trivially holds, since function
closest is reflexive. It therefore remains to be shown that closest(v̄x+1, v̄i) is true for all
i ∈ {1, . . . , x}, since closest(v̄i, v̄j) is true for all i, j ∈ {1, . . . , x} per assumption.

It is shown first that closest(v̄x+1, v̄y) is true. Thereby, closest(v̂, v̄y) is true and
closest(v̂, v̄x+1) is true follows directly from Definition 3.22 and the assumption that
v̂ ∈ anc-or-self(v̄y) and v̂ ∈ anc-or-self(v̄x+1), respectively. Consequently, closest(v̄y, v̄x+1)
is true according to Lemma 5.2 (when choosing P1 = Ry, P2 = (Ry ∩ Rx+1), P3 = Rx+1,
and v1 = v̄y, v2 = v̂, v3 = v̄x+1) since Ry ∩ Rx+1 ⊆ (Ry ∩ Rx+1) ∩ Rx+1 from Definition
3.13.

It is shown next that also closest(v̄x+1, v̄i) = true for all i ∈ {1, . . . , x}, where i 6= y.
Thereby, for all i ∈ {1, . . . , x}, closest(v̄i, v̄y) = true per assumption and closest(v̄y, v̄x+1) =
true as shown above. Consequently, closest(v̄x+1, v̄i) = true according to Lemma 5.2 (when
choosing P1 = Ri, P2 = Ry, P3 = Rx+1, and v1 = v̄i, v2 = v̄y, v3 = v̄x+1) since per
assumption Ri ∩Rx+1 ⊆ Ry ∩Rx+1.

Now, Lemma 5.3 follows immediately, since one can choose for all i ∈ {m+ 1, . . . , n}, vi
to be the node that exists according to the result just established. �

5.2 XKeys and XINDs in Complete XML Trees

We now revisit our definitions of XKeys and XINDs in the context of complete XML trees.
In particular, Subsections 5.2.1 and 5.2.2 illustrate effects on the syntax and semantics of
XKeys and XINDs in the context of complete XML trees.

5.2.1 Conforming XKeys and XINDs

Given that the expected information in a complete XML tree T is determined by the set of
paths that the tree conforms to, it is natural to expect also that if an XKey or XIND σ is
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intended to apply to T, then the paths in σ should belong to the information represented by
T. This leads us to the notion of XKeys and XINDs that conform to a set of paths, which
we now make more precise by first defining the set of paths in an XKey or XIND.

Definition 5.5 (Paths in XKeys and XINDs) Let σ be an XKey of the general form
(S, {F1, . . . , Fn}) or an XIND of the general form (S, [F1, . . . , Fn]) ⊆ (S̄, [F̄1, . . . , F̄n]). The
set of paths in σ, denoted by paths(σ), is defined to be

paths(σ) =

{
{S.F1, . . . , S.Fn} σ is an XKey

{S.F1, . . . , S.Fn} ∪ {S̄.F̄1, . . . , S̄.F̄n} σ is an XIND

Using the definition of the set of paths in an XKey or XIND σ, we define next what it
means for σ to conform to a set of paths P .

Definition 5.6 (Conforming XKeys and XINDs) An XKey or XIND σ is defined to
conform to a set of paths P , if paths(σ) ⊆ P . A set of XKeys or XINDs Σ conforms to a
set of paths P if every σ ∈ Σ conforms to P .

We now illustrate Definition 5.6 by the example of an XKey.

Example 5.3 (conforming XKey) Consider the XKey σ = (Customers.Customers,
{Phone.code, Phone.no}) which asserts that the code and number of each phone identifies
the customer who owns the phone. Applying σ to the XML tree T depicted in Figure 5.1a
is plausible, given that T represents information about customers and their phones. In fact,
σ conforms to the set of paths P depicted in Figure 5.1b which specifies the structure of
T. In particular, σ conforms to P because paths(σ) = {Customers.Customers.Phone.code,
Customers.Customers.Phone.no} and hence paths(σ) ⊆ P . In contrast, the XKey σ =
(Customers.Customers, {cno}) for instance does not conform to P , which is however intu-
itively correct, since customer numbers (cno) are not represented in T, and hence cannot be
used for the identification of customers.

Next, because we require an XKey or XIND σ to conform to the set of paths P that
specifies the structure of XML trees to which σ is intended to apply, the selectors of σ must
start with ρ(P ). We now make this effect on the syntax of an XKey or XIND more precise.

Lemma 5.4 Let P be a downward-closed set of paths, and let σ be an XKey or XIND.
Then, for every path P ∈ paths(σ), first(P ) = ρ(P ).

For instance, referring to Example 5.3, the XKey σ = (Customers.Customers,
{Phone.code, Phone.no}) conforms to the downward-closed set of paths P depicted
in Figure 5.1b, where ρ(P ) = Customers is also the first label in the paths
Customers.Customers.Phone.code and Customers.Customers.Phone.no in σ.
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5.2.2 Satisfaction of XKeys and XINDs in Complete XML Trees

We now review our definitions of the semantics of XKey and XINDs in the context of
complete XML trees. In this regard, the peculiarity in the context of complete XML trees is
that maximum combinations of field nodes are always complete, which makes checking the
satisfaction of XKeys and XINDs easier. We now make this observation more precise.

Lemma 5.5 Let P be a downward-closed set of paths and let T be an XML tree that is
complete with respect to P . Also, let S be a selector and let {F1, . . . , Fn} be a set of fields
such that for all i ∈ {1, . . . , n}, S.Fi ∈ P . Then, a set of nodes v1, . . . , vm is a maximum
combination of field nodes for a selector node v ∈ nodes(S) with respect to {F1, . . . , Fn} iff
(a) m = n
(b) ∀{1, . . . , n}, vi ∈ nodes(S.Fi), and
(c) ∀i, j ∈ {1, . . . , n}, closest(vi, vj) = true.

Proof (Lemma 5.5) If: It is shown that if there exists a selector node v ∈ nodes(S) and a
maximum combination of field nodes v1, . . . , vm for v with respect to F1, . . . , Fn then nodes
v1, . . . , vm satisfy (a) - (c) in Lemma 5.5.

We establish m = n by showing that if instead m < n, then this contradicts Lemma 5.3.
Given that m < n, there does not exist node v̄ ∈ desc(v) according to (iii) in Definition 3.23
such that

(i) ∀i ∈ {1, . . . ,m}, v̄ 6= vi;
(ii) ∀i ∈ {1, . . . ,m}, closest(vi, v̄);
(iii) for some y ∈ {1, . . . , n}, v̄ ∈ nodes(S.Fy).

Referring to (ii) in Definition 3.23, we now assume for ease of presentation but without
loss of generality that for all i ∈ {1, . . . ,m}, vi ∈ nodes(S.Fi). Then, since ∀i ∈ {1, . . . ,m},
S.Fi ∈ P per assumption and ∀i, j ∈ {1, . . . ,m}, closest(vi, vj) = true according to (i)
in Definition 3.23, Lemma 5.3 implies the existence of a node v̈ ∈ nodes(S.Fy), where
y ∈ {m, . . . , n}, such that for all i ∈ {1, . . . ,m}, closest(vi, v̈) = true. Hence, if v̈ ∈ desc(v)
then v̈ satisfies (ii) and (iii) above. Also, since y ∈ {m, . . . , n} and v̈ ∈ nodes(S.Fy), v̈ satisfies
(i) above, given that for all i ∈ {1, . . . ,m}, vi ∈ nodes(S.Fi). That is, if v̈ ∈ desc(v) then
this shows the desired contradiction. From Lemma 4.2, there exists node v̂ ∈ nodes(S.Fy ∩
S.F1 ∩ · · · ∩ S.Fm) such that v̂ ∈ anc-or-self(v̈) and ∀i ∈ {1, . . . ,m}, v̂ ∈ anc-or-self(vi).
From this and (ii) in Definition 3.23, i.e. that ∀i ∈ {1, . . . ,m}, v ∈ ancestor(vi), we deduce
that v ∈ ancestor(v̂) since S ⊆ (S.Fy ∩S.F1 ∩ · · · ∩S.Fm) and T is a tree. Then, v̈ ∈ desc(v)
follows directly from v ∈ ancestor(v̂) and v̂ ∈ anc-or-self(v̈). Hence, nodes v1, . . . , vm satisfy
(a) in Lemma 5.5. Given that m = n, (ii) in Definition 3.23 implies that nodes v1, . . . , vm
satisfy (b) in Lemma 5.5, and (c) in Lemma 5.5 is given by (iii) in Definition 3.23.

Only If: It is shown that if there exist nodes v1, . . . , vn that satisfy (a) - (c) in Lemma 5.5,
then there exists selector node v and v1, . . . , vn is a maximum combination of field nodes for
v with respect to F1, . . . , Fn.

Assume for the moment that there exists node v ∈ nodes(S) such that for all i ∈
{1, . . . , n}, v ∈ ancestor(vi). Then, v1, . . . , vn satisfy (i) and (ii) in Definition 3.23 because
of (c) and (b) in Lemma 5.5, and v1, . . . , vn trivially satisfy (iii) in Definition 3.23 given
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that the number of nodes v1, . . . , vn equals the number of fields F1, . . . , Fn. It therefore
remains to be shown that there exists node v ∈ nodes(S) such that for all i ∈ {1, . . . , n},
v ∈ ancestor(vi).

From Lemma 4.2, there exists node v̈ ∈ nodes(S.F1 ∩ · · · ∩ S.Fn) such that for all i ∈
{1, . . . , n}, v̈ ∈ anc-or-self(vi). From this and the observation that S ⊆ S.F1 ∩ · · · ∩S.Fn we
deduce that there exists node v ∈ nodes(S) such that v ∈ anc-or-self(v̈) since T is a tree.
Then, since for all i ∈ {1, . . . , n}, v̈ ∈ anc-or-self(vi) and S ⊂ S.Fi, also v ∈ ancestor(vi). �

As discussed at the beginning of this section, we do not need to consider the case of
incomplete combinations of field nodes in our reasoning, where we only consider complete
XML trees. We can even further simplify checking the satisfaction of XKeys and XINDs in
complete XML trees by not explicitly considering selector nodes, because the existence of a
selector node is implied by the existence of a maximum combination of field nodes. We now
make these ideas more precise, and we present our result on the semantics of an XKey in
the context of complete XML trees.

Lemma 5.6 (XKey Satisfaction in Complete XML Trees) Let T be an XML tree
that is complete w.r.t. a downward-closed set of paths P , and let σ = (F, {S1, . . . , Sn})
be an XKey conforming to P . Then, T � σ iff whenever there exist nodes v1, . . . , vn and
v′1, . . . , v

′
n such that

(i) ∀i ∈ {1, . . . , n}, {vi, v′i} ⊆ nodes(S.Fi);
(ii) ∀i, j ∈ {1, . . . , n}, closest(vi, vj) = closest(v′i, v

′
j) = true;

(iii) ∀i ∈ {1, . . . , n}, val(vi) = val(v′i),
then ∀i ∈ {1, . . . , n}, vi = v′i.

Proof (Lemma 5.6) If: It is shown that if T � σ, then whenever there exist nodes v1, . . . , vn
and v′1, . . . , v

′
n that satisfy (i) - (iii) in Lemma 5.6, then for all i ∈ {1, . . . , n}, vi = v′i. We

show in particular the contrapositive that if there exist nodes v1, . . . , vn and v′1, . . . , v
′
n that

satisfy (i) - (iii) in Lemma 5.6 and for at least one i ∈ {1, . . . , n}, vi 6= v′i, then T 2 σ.
From Lemma 5.5, there exist selector nodes {v, v′} ∈ nodes(S) such that v1, . . . , vn and

v′1, . . . , v
′
n are maximum combinations of field nodes for v and v′, respectively. Also, because

of (iii) and (i) in Lemma 5.6, requirements (i) and (ii) in Definition 3.24 are satisfied, and
therefore T 2 σ given that vi 6= v′i for at least one i ∈ {1, . . . , n}.

Only if: It is shown that if for all i ∈ {1, . . . , n}, vi = v′i whenever there exist nodes
v1, . . . , vn and v′1, . . . , v

′
n that satisfy (i) - (iii) in Lemma 5.6, then T � σ. We show in

particular the contrapositive that if T 2 σ, then there exist nodes v1, . . . , vn and v′1, . . . , v
′
n

that satisfy (i) - (iii) in Lemma 5.6 such that for at least one i ∈ {1, . . . , n}, vi 6= v′i.
Given that T 2 σ, there exist selector nodes {v, v′} ∈ nodes(S) and maximum combi-

nations of field nodes v1, . . . , vm for v and v′1, . . . , v
′
m for v′ with respect to F1, . . . , Fn such

that for all i ∈ {1, . . . ,m}, val(vi) = val(v′i) and for at least one i ∈ {1, . . . ,m}, vi = v′i.
From (a) in Lemma 5.5, m = n. Hence, because of (b) and (c) in Lemma 5.5, v1, . . . , vm and
v′1, . . . , v

′
m satisfy (i) and (ii) in Lemma 5.6. Nodes v1, . . . , vm and v′1, . . . , v

′
m also satisfy

(iii) in Lemma 5.6 given that m = n, since i ∈ {1, . . . ,m}, val(vi) = val(v′i) per assump-
tion. Finally, for at least one i ∈ {1, . . . ,m}, vi 6= v′i per assumption, and so the result is
established. �
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As for XKeys, we also do not need to consider selector nodes or incomplete combinations
of field nodes in checking XIND satisfaction in our reasoning, and we now present our result
on the semantics of an XIND in the context of complete XML trees.

Lemma 5.7 (XIND Satisfaction in Complete XML Trees) Let T be an XML tree
that is complete with respect to a downward-closed set of paths P , and let σ =
(S, [F1, . . . , Fn]) ⊆ (S′, [S′1, . . . , S

′
n]) be an XIND that conforms to P . Then T � σ iff

whenever there exist nodes v1, . . . , vn such that
(i) for all i ∈ {1, . . . , n}, vi ∈ nodes(S.Fi), and

(ii) for all i, j ∈ {1, . . . , n}, closest(vi, vj) = true,
then there exist nodes v′1, . . . , v

′
n such that

(i’) for all i ∈ {1, . . . , n}, v′i ∈ nodes(S′.F ′i ), and
(ii’) for all i, j ∈ {1, . . . , n}, closest(v′i, v

′
j) = true,

(iii’) for all i ∈ {1, . . . , n}, val(vi) = val(v′i).

Proof (Lemma 5.7) If: It is shown that if T � σ, then whenever there exist nodes v1, . . . , vn
that satisfy (i) and (ii) in Lemma 5.7, then there also exist nodes v′1, . . . , v

′
n that satisfy

(i’) - (iii’) in Lemma 5.7. We show in particular the contrapositive that if there exist nodes
v1, . . . , vn and there do not exist nodes v′1, . . . , v

′
n, then T 2 σ.

From Lemma 5.5, there exists selector node v ∈ nodes(S) such that v1, . . . , vn is a
maximum combination of field nodes for v with respect to F1, . . . , Fn. Now, if T � σ
then there exists selector node v′ ∈ nodes(S′) and a maximum combination of field nodes
v′1, . . . , v

′
n for v′ with respect to F ′1, . . . , F

′
n such that for all i ∈ {1, . . . , n}, val(vi) = val(v′i).

Then, from (b) and (c) in Lemma 5.5 there exist nodes v′1, . . . , v
′
n which satisfy (i’) and (ii’)

in Lemma 5.7. This is however clearly a contradiction, since v′1, . . . , v
′
n also satisfy (iii’) in

Lemma 5.7 given that for all i ∈ {1, . . . , n}, val(vi) = val(v′i) if T � σ. Hence T 2 σ.

Only if: It is shown that if there exist nodes v′1, . . . , v
′
n that satisfy (i’) - (iii’) in Lemma

5.7 whenever there exist nodes v1, . . . , vn that satisfy (i) and (ii) in Lemma 5.7, then T � σ.
We show in particular the contrapositive that if T 2 σ then for at least one set of nodes
v1, . . . , vn which satisfy (i) and (ii) in Lemma 5.7, there do not exist nodes v′1, . . . , v

′
n which

satisfy (i’) - (iii’) in Lemma 5.7.
Given that T 2 σ there exists selector node v ∈ nodes(S) and a maximum combination of

field nodes v1, . . . , vm for v with respect to F1, . . . , Fn, and there does not exist selector node
v′ ∈ nodes(S′) and a maximum combination of field nodes v′1, . . . , v

′
m for v′ with respect to

F ′1, . . . , F
′
n such that for all i ∈ {1, . . . ,m}, val(vi) = val(v′i) and if vi ∈ nodes(S.Fj), where

j ∈ {1, . . . , n}, then v′i ∈ nodes(S′.F ′j). We now assume for ease of presentation but without
loss of generality that for all i ∈ {1, . . . ,m}, vi ∈ nodes(S.Fi).

From (a) in Lemma 5.5, m = n. Hence, because of (b) and (c) in Lemma 5.5, v1, . . . , vm
satisfy (i) and (ii) in Lemma 5.7. Now, if there exist nodes v′1, . . . , v

′
m which satisfy (i’) - (iii’)

in Lemma 5.7, then, from Lemma 5.5, there exists selector node v′ ∈ nodes(S′) such that
v′1, . . . , v

′
m is a maximum combination of field nodes for v′ with respect to F1, . . . , Fn. This

however clearly contradicts that T 2 σ, given that for all i ∈ {1, . . . , n}, val(vi) = val(v′i).
Hence, T 2 σ. �
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This chapter presents our results on the consistency and implication problems related to
XKeys in the context of complete XML trees. These important problems are addressed in
Sections 6.1 and 6.2, respectively. Whereas it is straightforward to decide the consistency
of XKeys, the implication problem is more involved. To solve the implication problem for
XKeys, we first present a set of sound inference rules in Subsection 6.2.1 and then present
a decision procedure which is based on our inference rules in Subsection 6.2.2. We finally
establish the soundness and completeness of the decision procedure in Subsections 6.2.3
and 6.2.4, where we also establish completeness of our inference rules as a corollary of the
completeness result for the decision procedure.
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6.1 Consistency of XKeys

Intuitively, a set of XKeys is consistent if there exists at least one XML tree that satisfies
the set of XKeys. This idea is now made more precise in the context of complete XML trees.

Definition 6.1 (Consistency of XKeys) A set of XKeys Σ is consistent if for every
downward-closed set of paths P such that Σ conforms to P , there exists an XML tree
T which is complete with respect to P and also satisfies Σ.

It is important to note in Definition 6.1 that although the notion of a complete XML
tree is only defined w.r.t. a specific set of paths, consistency is independent of a specific set
of paths since it requires the existence of a complete XML tree for every set of paths that
Σ conforms to. We have the following result on the consistency problem related to XKeys
in the context of complete XML trees.

Theorem 6.1 (Consistency of XKeys) Every set of XKeys is consistent.

Proof (Theorem 6.1) The correctness of Theorem 6.1 follows from the observation that given
Σ and any P that Σ conforms to, one can construct an XML tree TP ,Σ that is complete
with respect to P and has distinct values for all leaf nodes. Then TP ,Σ satisfies Σ is a direct
consequence of Lemma 5.6 and the fact that no two distinct leaf nodes in TP ,Σ have the
same value. �

6.2 Implication of XKeys

Intuitively, a single XKey σ is implied by a set of XKeys Σ if every XML tree that satisfies
Σ also satisfies σ. We now make the implication of a single XKey by a set of XKeys more
precise within the context of complete XML trees.

Definition 6.2 (Implication of XKeys) A set of XKeys Σ implies a single XKey σ, if
for every downward-closed set of paths P such that Σ∪{σ} conforms to P and every XML
tree T that is complete with respect to P , if T � Σ then T � σ.

As per our comment on the definition of XKey consistency, we note that our definition
of XKey implication is independent of a specific set of paths that Σ and σ conform to.

On basis of Definition 6.2 we now formulate the implication problem as the question
of whether Σ � σ is decidable. We answer this question in the following subsections. In
particular, we first present a set of inference rules for XKey implication in Subsection 6.2.1,
where we also establish the soundness of our inference rules. On the basis of the inference
rules we then develop a decision procedure for the implication of XKeys in Subsection
6.2.2. In Subsections 6.2.3 and 6.2.4 we then show that the decision procedure is sound and
complete for the implication of XKeys, i.e. we show that XKey implication is decidable.
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6.2.1 Inference Rules for the Implication of XKeys

Table 6.1 gives a set of inference rules for the implication of XKeys. The symbol ` denotes
that the XKeys in the premise of a rule derive the XKeys in the conclusion of the rule. We
also note that the downward-closed set of paths P that the XKeys in a rule conform to is
not explicitly stated.

R1 Upshift
(S, (R.F1, . . . , R.Fn)) `(S.R, (F1, . . . , Fn))

R2 Downshift
(S.R, (F1, . . . , Fn)) `(S, (R.F1, . . . , R.Fn))

R3 Split
(ρ, ({F1, . . . , Fm} ∪ {F̄1, . . . , F̄n})) ` (ρ, (F1, . . . , Fm))
if ρ.Fi ∩ ρ.F̄j = ρ ∀ (i, j) ∈ {1, . . . ,m} × {1, . . . , n}
R4 Union
(S, (F1, . . . , Fm}) ∧(S, (F̄1, . . . , F̄n)) `(S, ({F1, . . . , Fm} ∪{F̄1, . . . , F̄n}))
R5 Augmentation

(S, (F1, . . . , Fm)) ∧(S, ({F̄1, . . . , F̄n} ∪{F̂1, . . . , F̂o})) `(S, ({F1, . . . , Fm} ∪{F̄1, . . . , F̄n}))
if ∃k ∈ {1, . . . ,m} such that S.F̄i ∩ S.F̂j ⊆ S.Fk ∀ (i, j) ∈ {1, . . . , n} × {1, . . . , o}
R6 Expansion
(S, (F1, . . . , Fn}) ` (S, (F1, . . . , Fn, F̄ ))
if last(F̄ ) ∈ LA and ∃i ∈ {1, . . . , n} such that parent(S.F̄ ) ⊆ S.Fi
R7 Unique Root Attribute
` (ρ, (F )) if last(F ) ∈ LA and parent(ρ.F ) = ρ

Table 6.1: Inference rules for the implication of XKeys in complete XML trees.

We now illustrate rules R1 - R7. We note that as a consequence of achieving the identifi-
cation of selector nodes by the uniqueness of field nodes, a set of field nodes in fact identifies
every common ancestor node, which is accommodated by rules R1 and R2. In particular,
rule R1 allows one to shift a path from the start of the fields up to the end of the selec-
tor. For instance, from the XKey (Customers.Customer, (Phone.code, Phone.no)), rule R1
derives (Customers.Customer.Phone, (code, no)), whereby the first label Phone in the fields
has been shifted up to the end of the selector. Rule R2 is the reverse of rule R1, whereby a
path from the end of the selector is shifted down to the start of the fields.

Rule R3 is a rule that, roughly speaking, allows one to derive two subkeys from a given
XKey by means of splitting the fields of the given XKey in two subsets, provided that the
fields in the subsets intersect only at the root path.

Further, rules R4 - R6 state three special cases where it is valid, unlike in the gen-
eral case, to obtain a superkey from a given XKey. In particular, rule R4 allows one to
union the fields of two given XKeys. For example, from the XKeys (Customers.Customer,
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(Name.S)) and (Customers.Customer, (Phone.code, Phone.no)), rule R4 derives the XKey
(Customers.Customer, (Name.S, Phone.code, Phone.no)).

Rule R5 allows one to augment the set of fields of an XKey with a subset of the
fields of another XKey. For example, given the XKeys (Customers.Customer.Phone,
(Serial.S)) and (Customers.Customer.Phone, (code, number)), rule R5 allows to augment
field code to the first XKey, which yields (Customers.Customer.Phone, (Serial.S, code)).
Note that this application of rule R5 is valid, since Customers.Customer.Phone.code
∩ Customers.Customer.Phone.no = Customers.Customer.Phone and
Customers.Customer.Phone ⊆ Customers.Customer.Phone.Serial.S.

Rule R6 allows one to expand the set of fields of an XKey by a new field that
ends in an attribute label if the parent path of this field is a prefix of at least one of
the fields of the given XKey. For example, given that path Customers.Customer.cno
ends in an attribute label and that (Customers.Customer, (Phone.code, Phone.no)) is
an XKey, one can obtain the XKey (Customers.Customer, (Phone.code, Phone.no, cno))
since parent(Customers.Customer.cno) = Customers.Customer and Customers.Customer
⊆ Customers.Customer.Phone.code. We note that rule R6 accommodates the restriction of
the XML specification [5] on element nodes to have at most one child per attribute label
(cf. (4.ii) in Definition 3.11). A consequence of this restriction is that every attribute node
of the root node of a tree is unique, which is finally accommodated by rule R7.

It is also worth noting that our inference rules only contain a restricted type of superkey
rule in the form of Rules R4 - R6, rather than an unrestricted superkey rule as in the
relational case. That is, (S, (F1, . . . , Fn)) 6` (S, (F1, . . . , Fn, F

′)) for an arbitrary field F ′,
whereas in the relational case if a set of attributes X is a key, then so is X ∪ Y for an
arbitrary set of attributes Y . The reason for this difference is that the identification and
uniqueness properties of a key coincide in the relational case, but not for XML which allows
duplicate nodes. So, referring to the running example of the phone company, although the
code and number of a phone identifies a customer, this does not necessarily imply that every
combination of code and no and an additional text node, lets say a customer’s address, is
unique simply because in general a customer may have duplicate addresses. We note however
that the absence of an unrestricted superkey rule does not contradict Theorem 4.1, since we
consider the implication of XKeys in complete XML trees, which are a more general class
of XML trees then those generated from complete relations.

We now denote by Σ ` σ if there is a derivation sequence of σ from Σ using inference
rules R1 - R7 in Table 6.1. We have the following result on the soundness of rules R1 - R7.

Theorem 6.2 (Soundness of Inference Rules for XKeys) Given a set of XKeys Σ
and a single XKey σ, if Σ ` σ then Σ � σ.

Proof (Theorem 6.2) Rule R1: We show that given a downward-closed set of paths P and
a conforming set of XKeys Σ ∪ {σ} where

- σ = (S.R, (F1, . . . , Fn)), and
- (S, (R.F1, . . . , R.Fn)) ∈ Σ,

there does not exist an XML tree T that is complete w.r.t. P such that T � Σ and T 2 σ.
For this purpose assume to the contrary that T 2 σ. Then there exist nodes v1, . . . , vn and
v′1, . . . , v

′
n such that
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- ∀i ∈ {1, . . . , n}, {vi, v′i} ⊆ nodes(S.R.Fi), and
- ∀i, j ∈ {1, . . . , n}, closest(vi, vj) is true and closest(v′i, v

′
j) is true, and

- ∀i ∈ {1, . . . , n}, val(vi) = val(v′i), and
- for at least one i ∈ {1, . . . , n}, vi 6= v′i.

Then however v1, . . . , vn and v′1, . . . , v
′
n clearly violate (S, (R.F1, . . . , R.Fn)) according to

Lemma 5.6. Hence T 2 Σ, which is a contradiction.

Rule R2: We show that given a downward-closed set of paths P and a conforming set of
XKeys Σ ∪ {σ} where

- σ = (S, (R.F1, . . . , R.Fn)), and
- (S.R, (F1, . . . , Fn)) ∈ Σ,

there does not exist an XML tree T that is complete w.r.t. P such that T � Σ and T 2 σ.
For this purpose assume to the contrary that T 2 σ. Then there exist nodes v1, . . . , vn and
v′1, . . . , v

′
n such that

- ∀i ∈ {1, . . . , n}, {vi, v′i} ⊆ nodes(S.R.Fi), and
- ∀i, j ∈ {1, . . . , n}, closest(vi, vj) is true and closest(v′i, v

′
j) is true, and

- ∀i ∈ {1, . . . , n}, val(vi) = val(v′i), and
- for at least one i ∈ {1, . . . , n}, vi 6= v′i.

Then however nodes v1, . . . , vn and v′1, . . . , v
′
n clearly violate (S.R, (F1, . . . , Fn)) according

to Lemma 5.6. Hence T 2 Σ, which is a contradiction.

Rule R3: We show that given a downward-closed set of paths P and a conforming set of
XKeys Σ ∪ {σ} where

- σ = (ρ, (F1, . . . , Fm)) and
- (ρ, ({F1, . . . , Fm} ∪ {F̄1, . . . , F̄n})) ∈ Σ such that ρ.Fi ∩ ρ.F̄j = ρ ∀(i, j) ∈ {1, . . . ,m} ×
{1, . . . , n},

there does not exist an XML tree T that is complete w.r.t. P such that T � Σ and T 2 σ.
For this purpose assume to the contrary that T 2 σ. Then there exist nodes v1, . . . , vm and
v′1, . . . , v

′
m such that

- ∀i ∈ {1, . . . ,m}, {vi, v′i} ⊆ nodes(ρ.Fi), and
- ∀i, j ∈ {1, . . . ,m}, closest(vi, vj) is true and closest(v′i, v

′
j) is true, and

- ∀i ∈ {1, . . . ,m}, val(vi) = val(v′i), and
- for at least one i ∈ {1, . . . ,m}, vi 6= v′i.

Note that Lemma 5.3 applies to the sets of paths {ρ.F1, . . . , ρ.Fm} and {ρ.F̄1, . . . , ρ.F̄n}
and the set of nodes v1, . . . , vm, given that vi ∈ nodes(ρ.Fi) for all i ∈ {1, . . . ,m} and
closest(vi, vj) is true for all i, j ∈ {1, . . . ,m}. Hence, there exist nodes v̂1, . . . , v̂n such that

- ∀i ∈ {1, . . . , n}, v̂i ∈ nodes(ρ.F̄i), and
- ∀i, j ∈ {1, . . . , n}, closest(v̂i, v̂j) is true, and
- ∀(i, j) ∈ {1, . . . ,m} × {1, . . . , n}, closest(vi, v̂j) is true.
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Consequently, if also closest(v′i, v̂j) is true for all (i, j) ∈ {1, . . . ,m} × {1, . . . , n}, then
the sets of nodes v1, . . . , vm, v̂1, . . . , v̂n and v′1, . . . , v

′
m, v̂1, . . . , v̂n violate (ρ, ({F1, . . . , Fm} ∪

{F̄1, . . . , F̄n})) in T, which establishes the desired contradiction that T 2 Σ if T 2 σ. It
is easily verified that for all (i, j) ∈ {1, . . . ,m} × {1, . . . , n}, closest(v′i, v̂j) is true since
vρ ∈ anc-or-self(v′i) and also vρ ∈ anc-or-self(v̂j), and further vρ ∈ nodes(ρ.Fi ∩ ρ.F̄j), given
that ρ.Fi ∩ ρ.F̄j = ρ.

Rule R4: We show that given a downward-closed set of paths P and a conforming set of
XKeys Σ ∪ {σ} where

- σ = (S, ({F1, . . . , Fm} ∪ {F̄1, . . . , F̄n})), and
- {(S, (F1, . . . , Fm))} ∪ {(S, (F̄1, . . . , F̄n))} ⊆ Σ,

there does not exist an XML tree T that is complete w.r.t. P such that T � Σ and T 2 σ.
For this purpose assume to the contrary that T 2 σ. Then there exist nodes {v1, . . . , vm} ∪
{v̄1, . . . , v̄n} and {v′1, . . . , v′m} ∪ {v̄′1, . . . , v̄′n} such that

- ∀i ∈ {1, . . . ,m}, {vi, v′i} ⊆ nodes(S.Fi) and ∀i ∈ {1, . . . , n}, {v̄i, v̄′i} ⊆ nodes(S.F̄i), and
- ∀i, j ∈ {1, . . . ,m}, closest(vi, vj) = closest(v′i, v

′
j) = true, and

- ∀i, j ∈ {1, . . . , n}, closest(v̄i, v̄j) = closest(v̄′i, v̄
′
j) = true, and

- ∀(i, j) ∈ {1, . . . ,m} × {1, . . . , n}, closest(vi, v̄j) = closest(v′i, v̄
′
j) = true, and

- ∀i ∈ {1, . . . ,m}, val(vi) = val(v′i) and ∀i ∈ {1, . . . , n}, val(v̄i) = val(v̄′i), and
- for at least one i ∈ {1, . . . ,m}, vi 6= v′i and/or for at least one i ∈ {1, . . . , n}, v̄i 6= v̄′i.

However, if vi 6= v′i for some i ∈ {1, . . . ,m} then nodes v1, . . . , vm and v′1, . . . , v
′
m violate

(S, (F1, . . . , Fm)) in T. Also, if v̄i 6= v̄′i for some i ∈ {1, . . . , n} then nodes v̄1, . . . , v̄n and
v̄′1, . . . , v̄

′
n violate (S, (F̄1, . . . , F̄n)) in T. Consequently, if T 2 σ then this contradicts the

assumption that T � Σ.

Rule R5: We show that given a downward-closed set of paths P and a conforming set of
XKeys Σ ∪ {σ} where

- σ = (S, ({F1, . . . , Fm} ∪ {F̄1, . . . , F̄n})), and
- {(S, (F1, . . . , Fm))} ∪ {(S, ({F̄1, . . . , F̄n} ∪ {F̂1, . . . , F̂o}))} ⊆ Σ, and
- for all (i, j) ∈ {1, . . . , n} × {1, . . . , o} and at least one k ∈ {1, . . . ,m}, S.F̄i ∩ S.F̂j ⊆ S.Fk,

there does not exist a tree T that is complete w.r.t. P such that T � Σ but T 2 σ. For this
purpose assume to the contrary that T 2 σ. Then there exist sets of nodes {v1, . . . , vm} ∪
{v̄1, . . . , v̄n} and {v′1, . . . , v′m} ∪ {v̄′1, . . . , v̄′n} such that

- ∀i ∈ {1, . . . ,m}, {vi, v′i} ⊆ nodes(S.Fi) and ∀i ∈ {1, . . . , n}, {v̄i, v̄′i} ⊆ nodes(S.F̄i), and
- ∀i, j ∈ {1, . . . ,m}, closest(vi, vj) = closest(v′i, v

′
j) = true, and

- ∀i, j ∈ {1, . . . , n}, closest(v̄i, v̄j) = closest(v̄′i, v̄
′
j) = true, and

- ∀(i, j) ∈ {1, . . . ,m} × {1, . . . , n}, closest(vi, v̄j) = closest(v′i, v̄
′
j) = true , and

- ∀i ∈ {1, . . . ,m}, val(vi) = val(v′i) and ∀i ∈ {1, . . . ,m}, val(v̄i) = val(v̄′i), and
- for at least one i ∈ {1, . . . ,m}, vi 6= v′i and/or for at least one i ∈ {1, . . . , n}, v̄i 6= v̄′i.

Note that nodes v1, . . . , vm and v′1, . . . , v
′
m violate (S, (F1, . . . , Fm)) if vi 6= v′i for at least

one i ∈ {1, . . . ,m}. Hence, T 2 σ ⇒ T 2 Σ if vi 6= v′i for at least one i ∈ {1, . . . ,m}.
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Assume now instead that v̄i 6= v̄′i for at least one i ∈ {1, . . . , n}. In order to
verify that T 2 Σ also in this case, note that T is complete w.r.t. P per assump-
tion, and that {S.Fk} ∪ {S.F̂1, . . . , S.F̂o} ⊆ P , since both XKeys (S, (F1, . . . , Fm)) and
(S, (F̄1, . . . , F̄n} ∪ {F̂1, . . . , F̂o})) conform to P per assumption. Therefore, Lemma 5.3 ap-
plies to the unary set of nodes {vk} ⊆ {v1, . . . , vm} and the sets of paths {S.Fk} and
{S.F̂1, . . . , S.F̂o}. Consequently, there exist nodes v̂1, . . . , v̂o in T such that

- ∀i ∈ {1, . . . , o}, v̂i ∈ nodes(S.F̂i), and
- ∀i ∈ {1, . . . , o}, closest(vk, v̂i) is true, and
- ∀i, j ∈ {1, . . . , o}, closest(v̂i, v̂j) is true.

Observe that the sets of nodes {v̄1, . . . , v̄n} ∪ {v̂1, . . . , v̂o} and {v̄′1, . . . , v̄′n} ∪ {v̂1, . . . , v̂o}
achieve the following properties:

- ∀i ∈ {1, . . . , n}, {v̄i, v̄′i} ⊆ nodes(S.F̄i) and ∀i ∈ {1, . . . , o}, v̂i ∈ nodes(S.F̂i), and
- ∀i, j ∈ {1, . . . , n}, closest(v̄i, v̄j) = closest(v̄′i, v̄

′
j) = true, and

- ∀i, j ∈ {1, . . . , o}, closest(v̂i, v̂j) = true, and
- ∀i ∈ {1, . . . ,m}, val(v̄i) = val(v̄′i).

Therefore, the sets of nodes {v̄1, . . . , v̄n}∪{v̂1, . . . , v̂o} and {v̄′1, . . . , v̄′n}∪{v̂1, . . . , v̂o} violate
(S, ({F̄1, . . . , F̄n}∪{F̂1, . . . , F̂o})) in T if closest(v̄i, v̂j) = closest(v̄′i, v̂j) = true for all (i, j) ∈
{1, . . . , n} × {1, . . . , o}, since val(v̂i) = val(v̂i) trivially holds true for all i ∈ {1, . . . , o}, and
v̄i 6= v̄′i for at least one i ∈ {1, . . . , n} per assumption.

In order to verify that closest(v̄i, v̂j) = closest(v̄′i, v̂j) = true for all (i, j) ∈ {1, . . . , n} ×
{1, . . . , o} recall first that

- ∀j ∈ {1, . . . , o}, closest(v̂j , vk) is true, and
- ∀i ∈ {1, . . . ,m}, closest(v̄i, vk) is true, and
- ∀i ∈ {1, . . . ,m}, closest(v̄′i, vk) is true given that closest(v̄′i, v

′
k) is true and v′k = vk.

Hence, from Lemma 5.2, closest(v̄i, v̂j) is true (where P1 = S.F̄i, P2 = S.Fk, P3 = S.F̂j and
v1 = v̄i, v2 = vk, v3 = v̂j) and also that closest(v̄′i, v̂j) is true (where P1 = S.F̄i, P2 = S.Fk,

P3 = S.F̂j and v1 = v̄′i, v2 = vk, v3 = v̂j), if S.F̄i ∩ S.F̂j ⊆ S.Fk ∩ S.F̂j , which is what we
show next.

Thereby, S.F̄i∩S.F̂j ⊆ S.Fk per assumption and S.F̄i∩S.F̂j ⊆ S.F̂j according to Definition

3.13. Hence S.F̄i ∩ S.F̂j is a common prefix of paths S.Fk and F̂j . Clearly, S.Fk ∩ S.F̂j is

also a common prefix of paths S.Fk and F̂j , and therefore either S.F̄i ∩ S.F̂j ⊆ S.Fk ∩ S.F̂j
or S.Fk ∩ S.F̂j ⊂ S.F̄i ∩ S.F̂j .

If S.Fk ∩S.F̂j ⊂ S.F̄i ∩S.F̂j then however S.Fk ∩S.F̂j is not the longest common prefix of

paths S.Fk and F̂j , since length(S.Fk ∩ S.F̂j) < length(S.F̄i ∩ S.F̂j) given that S.Fk ∩ S.F̂j ⊂
S.F̄i ∩ S.F̂j . Therefore, if S.Fx ∩ S.F̂j ⊂ S.F̄i ∩ S.F̂j then this contradicts Definition 3.13 and

this case is therefore excluded. Hence, S.F̄i ∩ S.F̂j ⊆ S.Fx ∩ S.F̂j and thus closest(v̄i, v̂j) =
closest(v̄′i, v̂j) = true for all i, j ∈ {1, . . . , n} × {1, . . . , o}, which establishes the result.

Rule R6: We show that given a downward-closed set of paths P and a conforming set of
XKeys Σ ∪ {σ} where
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- σ = (S, (F1, . . . , Fn, F̄ )), and
- (S, (F1, . . . , Fn)) ∈ Σ, and
- last(F̄ ) ∈ LA and parent(S.F̄ ) ⊆ S.Fk for at least one k ∈ {1, . . . , n},
there does not exist an XML tree T that is complete w.r.t. P such that T � Σ but T 2 σ. For
this purpose assume to the contrary that T 2 σ. Then there exist sets of nodes v1, . . . , vn, v̄
and v′1, . . . , v

′
n, v̄
′ such that

- ∀i ∈ {1, . . . , n}, {vi, v′i} ⊆ nodes(S.Fi) and {v̄i, v̄′i} ⊆ nodes(S.F̄ ), and
- ∀i, j ∈ {1, . . . , n}, closest(vi, vj) = closest(v′i, v

′
j) = true, and

- ∀i ∈ {1, . . . , n}, closest(vi, v̄) = closest(v′i, v̄
′) = true, and

- ∀i ∈ {1, . . . , n}, val(vi) = val(v′i) and val(v̄) = val(v̄′), and
- for at least one i ∈ {1, . . . , n}, vi 6= v′i and/or v̄ 6= v̄′.

Note that if vi 6= v′i for at least one i ∈ {1, . . . , n}, then nodes v1, . . . , vn and v′1, . . . , v
′
n

violate (S, (F1, . . . , Fn)) in T, which clearly contradicts the assumption that T � Σ.

If instead vi = v′i for all i ∈ {1, . . . , n} then v̄ 6= v̄′, given that T 2 σ. In order to
verify that this situation may not occur, let S.Fk be a path in {S.F1, . . . , S.Fn} such that
parent(S.F̄ ) ⊆ S.Fk. Note that at least one such path exists per assumption. Then, since
closest(vk, v̄) = closest(v′k, v̄

′) = true per assumption, there exist nodes v̂ and v̂′ according
to Definition 3.22 such that

- {v̂, v̂′} ⊆ nodes(S.Fk ∩ S.F̄ ), and
- v̂ ∈ anc-or-self(vk) and v̂′ ∈ anc-or-self(v′k), and
- v̂ ∈ anc-or-self(v̄) and v̂′ ∈ anc-or-self(v̄′).

However, given that vi = v′i for all i ∈ {1, . . . , n}, also vk = v′k. Consequently, {v̂, v̂′} ∈
anc-or-self(vk) and hence v̂ = v̂′, given that {v̂, v̂′} ⊆ nodes(S.Fk ∩ S.F̄ ) and that vk ∈
nodes(S.Fk). Further, S.Fk ∩ S.F̄ = parent(S.F̄ ) since per assumption parent(S.F̄ ) ⊆ S.Fk
and last(S.F̄ ) is an attribute label. Therefore, parent(v̄) = parent(v̄′) = v̂ follows from the
assumptions that v̂ ∈ anc-or-self(v̄), and that v̂ ∈ anc-or-self(v̄′), and that v̂ ∈ nodes(S.Fk ∩
S.F̄ ). This however clearly contradicts (ii) in Definition 3.11, since v̄ and v̄′ are distinct
attribute nodes and lab(v̄) = lab(v̄′) = last(S.F̄ ), given that {v̄, v̄′} ∈ nodes(S.F̄ ) and that
last(S.F̄ ) is an attribute label. Hence, if v̂ 6= v̂′ then T does not conform to the tree model
in Definition 3.11, which establishes the contradiction that T 2 Σ if T 2 σ.

Rule R7: We show that given a downward-closed set of paths P and a conforming XKey
σ = (ρ, (F )), where last(F ) ∈ LA and parent(ρ.F ) = ρ, there does not exist a tree T that
is complete w.r.t. P such that T 2 σ. For this purpose assume to the contrary that T 2 σ.
Then there exists nodes v, v′ such that

- {v, v′} ⊆ nodes(ρ.F ), and
- closest(v, v′) = true, and
- val(v) = val(v′), and
- v 6= v′.

Then parent(v) = parent(v′) = vρ given that parent(ρ.F ) = ρ and that {v, v′} ⊆ nodes(ρ.F ).
This however clearly contradicts (ii) in Definition 3.11, since v and v′ are distinct attribute
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nodes and lab(v) = lab(v′) = last(ρ.F ), given that {v, v′} ⊆ nodes(ρ.F ) and that last(F ) ∈
LA. Hence, T does not conform to Definition 3.11 if T 2 σ. Consequently, T � σ. �

6.2.2 A Decision Procedure for XKey Implication

We now introduce algorithm DXKI, which is a decision procedure for the implication of
XKeys in complete XML trees and is based on inference rules R1 - R7. Algorithm DXKI
takes as input a set of XKeys Σ and a single XKey σ, and incrementally computes the
largest subkey1 σ̂ of σ that is implied by Σ. The paths in σ̂ are represented by the set X,
which is initially the empty set (cf. Line 1 in Algorithm 6.1). The algorithm adds paths
from paths(σ) to X at Lines 4, 7, and 10, and the algorithm terminates at Line 12 when
no more paths from paths(σ) can be added to X. Then algorithm DXKI returns true at
Line 12 if X = paths(σ), i.e. Σ � σ, and false otherwise. Note that paths are never removed
from X once added, and that paths(σ), from which the paths in X are taken, is finite.
Consequently, the number of paths in X is bounded from above by the number of paths in
paths(σ) and since during every iteration of the loop at Line 2 either the number of paths
in X strictly increases or the loop exits, it follows that algorithm DXKI always terminates.

Algorithm 6.1 DXKI - Decide XKey Implication.

in: a set of XKeys Σ and a single XKey σ
out: true if Σ � σ and false if Σ 2 σ
1: X ← ∅;
2: repeat
3: if ∃X̄∈X∪ {ρ} and R∈paths(σ)−X such that last(R)∈LA ∧ parent(R)⊆X̄ then
4: X ←X ∪ {R};
5: end if
6: if ∃ σ̄ ∈ Σ such that paths(σ̄) ⊆ paths(σ)−X then
7: X ←X ∪ paths(σ̄);
8: end if
9: if ∃X̄ ∈X ∪ {ρ} and σ̄ ∈ Σ and {R1, . . . , Ru} ⊆ paths(σ̄)∩ paths(σ)−X such that

∀Ri ∈ {R1, . . . , Ru} and ∀R̄ ∈ paths(σ̄)− {R1, . . . , Ru}, Ri ∩ R̄ ⊆ X̄ then
10: X ←X ∪ {R1, . . . , Ru};
11: end if
12: until no more change to X is possible;
13: return (X = paths(σ));

We now illustrate the algorithm by an example.

Example 6.1 (algorithm DXKI) Let Σ = {σ1, σ2} be a set of XKeys, where σ1 =
(ρ, (A.B.C.S, D.E.S)) and σ2 = (ρ.A, (B.E.S, B.D.S)), and let σ = (ρ.A, (B.C.S, B.E.S, a)) be
a single XKey. Thereby, a is an attribute label and all other labels, with the exception of S,
are element labels. We first note that paths(σ1) = {ρ.A.B.C.S, ρ.D.E.S}, and that paths(σ2) =

1This means that the selector in σ̂ is the same as the selector in σ, and the fields in σ̂ are a subset of the
fields in σ.
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{ρ.A.B.E.S, ρ.A.B.D.S}, and that paths(σ) = {ρ.A.B.C.S, ρ.A.B.E.S, ρ.A.a}. Consider then the
operation of algorithm DXKI. Initially, X = ∅ and so the first time that Line 3 is executed,
the only path in X ∪ {ρ} is ρ and so X̄ = ρ. So the test at Line 3 fails because there is
no path R ∈ paths(σ) such that last(R) ∈ LA and parent(R) ⊆ X̄. Hence the first time
that Line 6 is executed, X = ∅ and so the test at Line 6 fails because paths(σ1) 6⊆ paths(σ)
and paths(σ2) 6⊆ paths(σ). Thus the first time that Line 9 is executed, X̄ = ρ. Also,
paths(σ)−X = paths(σ) and so if we let σ̄ = σ1 and R1 = ρ.A.B.C.S, then R1 satisfies the
test at Line 9 if we let R̄ = ρ.D.E.S since R1 ∩ R̄ = ρ and ρ ⊆ X̄ given that X̄ = ρ. Thus the
test succeeds and so X = {ρ.A.B.C.S} at the end of the first iteration of the loop at Line 2.

The second time that Line 3 is executed, X∪{ρ} = {ρ.A.B.C.S, ρ} and so the test succeeds
when we let X̄ = ρ.A.B.C.S and R = ρ.A.a. Thus ρ.A.a is added to X, i.e. X = {ρ.A.B.C.S,
ρ.A.a}. The test at Line 6 then fails since paths(σ1) 6⊆ {ρ.A.B.E.S} and paths(σ2) 6⊆
{ρ.A.B.E.S}. So when Line 9 is next executed, X = {ρ.A.B.C.S, ρ.A.a} and so the test re-
turns true when we let X̄ = ρ.A.B.C.S, σ̄ = σ2, R1 = ρ.A.B.E.S and R̄ = ρ.A.B.C.S. Thus
ρ.A.B.E.S is added to X which becomes X = {ρ.A.B.C.S, ρ.A.B.E.S, ρ.A.a}. Algorithm DXKI
then terminates at Line 12, and returns true since X = paths(σ).

6.2.3 Soundness of the Decision Procedure

We show subsequently that algorithm DXKI is sound, i.e. that if algorithm DXKI returns
true for an input set of XKeys Σ and a single XKey σ, then Σ � σ. To establish the
soundness of algorithm DXKI, we first establish an important preliminary result.

Lemma 6.1 Let Σ be a set of XKeys, and let σ be a single XKey. If DXKI(Σ, σ) = true
then σ ∈ Σ or Σ ` σ.

We now illustrate this result by an example and then present the proof of Lemma 6.1.

Example 6.2 Consider the computation of DXKI(Σ, σ) as given in Example 6.1. Initially
X = ∅. The first time that a path is added to X is at Line 9 when ρ.A.B.C.S is added. In
this case, X̄ = ρ and so Σ ` (ρ.A, (B.C.S)) follows from rule R3 and σ1. The next time that
a path is added to X is at Line 3, when ρ.A.a is added. In this case Σ ` (ρ.A, (B.C.S, a))
follows from Rule 6 and the previously derived XKey (ρ.A, (B.C.S)), since parent(ρ.A.a) = ρ.A
⊆ ρ.A.B.C.S. The final time that a path is added to X is at Line 9 when ρ.A.B.E.S is added.
In this case Σ ` (ρ.A, (B.C.S, B.E.S, a)) = σ follows from rule R5 and the previously derived
XKey (ρ.A, (B.C.S, a)).

We note that rules R1 and R2 are also needed, but we do not explicitly show the appli-
cation in this example for reasons of brevity. We also note that in the case where the test at
Line 3 evaluates to true when X̄ = ρ, then soundness follows from Rule R7 and Rule R4.
If the test at Line 6 evaluates to true, then soundness follows from the fact that σ̄ ∈ Σ and
rule R4, and if the test at Line 9 evaluates to true when X̄ = ρ, then soundness follows from
R3 followed by R4.
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Proof (Lemma 6.1) Throughout this proof it is assumed that σ is of the general form σ =
(S, (F1, . . . , Fn)). Referring to the XKey σ̄ at Lines 6 and 9 in Algorithm 6.1, it is assumed
that σ̄ is of the form σ̄ = (S̄, (F̄1, . . . , F̄m)). Hence

paths(σ) = {S.F1, . . . , S.Fn}
paths(σ̄) = {S̄.F̄1, . . . , S̄.F̄m}.

We observe that a set of paths is added to the set of paths X (cf. Line 1 in Algorithm 6.1)
within the run DXKI(Σ, σ), then these paths are taken from paths(σ) (cf. Lines 4, 7, 10 in
Algorithm 6.1). We therefore claim that whenever a set of paths {S.Fϕ(1), . . . , S.Fϕ(x)} ⊆
paths(σ) is added to X then Σ contains or derives the XKey σ̂ such that

σ̂ = (S, ({Fφ(1), . . . , Fφ(y)} ∪ {Fϕ(1), . . . , Fϕ(x)})),

where {S.Fφ(1), . . . , S.Fφ(y)} are the paths such thatX = {S.Fφ(1), . . . , S.Fφ(y)} before paths
{S.Fϕ(1), . . . , S.Fϕ(x)} are added. We simply refer to this claim as the claim subsequently.

In order to demonstrate the claim, it is first established that if a set of paths
{S.Fϕ(1), . . . , S.Fϕ(x)} ⊆ σ is added to X within the run DXKI(Σ, σ)

(A) at Line 4 and the condition at Line 3 is satisfied because X̄ = ρ, or
(B) at Line 7, or
(C) at Line 10 and the condition at Line 9 is satisfied because X̄ = ρ,

then Σ contains or derives the XKey

(S, (Fϕ(1), . . . , Fϕ(x))). (6.1)

(A) Since paths {S.Fϕ(1), . . . , S.Fϕ(x)} are added to X at Line 4 per assumption,
{S.Fϕ(1), . . . , S.Fϕ(x)} contains exactly one path. Hence (6.1) is of the form

(S, (Fϕ(1))) (6.2)

and it is therefore shown next that Σ ` (6.2). Thereby, given that S.Fϕ(1) is added to X
at Line 4, path S.Fϕ(1) satisfies the condition at Line 3 and therefore parent(S.Fϕ(1)) ⊆ X̄.
This together with the assumption that X̄ = ρ implies that parent(S.Fϕ(1)) = ρ. Also,
last(S.Fϕ(1)) is an attribute label, given that the condition at Line 3 is satisfied, and therefore
rule R7 (Unique Root Attribute) applies to path S.Fϕ(1). Hence, Σ ` (6.2). Note that S = ρ
if parent(S.Fϕ(1)) = ρ.

(B) Given that the set of paths {S.Fϕ(1), . . . , S.Fϕ(x)} is added to X at Line 7, the con-
dition at Line 6 is satisfied. Thus, there exists XKey σ̄ ∈ Σ such that paths(σ̄) ⊆ paths(σ)−
X and paths(σ̄) = {S.Fϕ(1), . . . , S.Fϕ(x)}. Consequently, {S̄.F̄θ(1), . . . , S̄.F̄θ(m)} =
{S.Fϕ(1), . . . , S.Fϕ(x)} since paths(σ̄) = {S̄.F̄θ(1), . . . , S̄.F̄θ(m)} per assumption, and it is
therefore assumed subsequently without loss of generality that S̄.F̄θ(i) = S.Fϕ(i) for all
i ∈ {1, . . . , x}. Note that x = m. Now if S̄ = S, σ̄ equals (6.1) and therefore (6.1) ∈ Σ ∨
Σ ` (6.1) since σ̄ ∈ Σ per assumption. If instead S̄ 6= S, then either S ⊂ S̄ or S̄ ⊂ S, given
that S̄.F̄θ(i) = S.Fϕ(i) for all i ∈ {1, . . . , x}. Suppose first that S ⊂ S̄ and choose R such
that S.R = S̄. Then, σ̄ is of the form

(S.R, (F̄θ(1), . . . , F̄θ(x))). (6.3)
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Note that applying rule R2 (Downshift) to (6.3) for path R yields (6.1) since for all i ∈
{1, . . . , x}, R.F̄θ(i) = Fϕ(i), given that S̄ = S.R and that S̄.F̄θ(i) = S.Fϕ(i). Hence, (6.1) ∈ Σ
∨ Σ ` (6.1) in case that S ⊂ S̄.

If instead S̄ ⊂ S, let R̃ be the path such that S̄.R̃ = S. Then, for all i ∈ {1, . . . , x},
S.Fϕ(i) = S̄.R̃.Fϕ(i), and therefore S̄.F̄θ(i) = S̄.R̃.Fϕ(i) since S̄.F̄θ(i) = S.Fϕ(i) per assump-

tion. Consequently, F̄θ(i) = R̃.Fϕ(i) for all i ∈ {1, . . . , x} and therefore σ̄ is of the form

(S̄, (R̃.Fϕ(1), . . . , R̃.Fϕ(x))). (6.4)

Note that applying rule R1 (Upshift) to (6.4) for path R̃ yields (6.1) since S̄.R̃ = S per
assumption. Hence, (6.1) ∈ Σ ∨ Σ ` (6.1) also in case that S̄ ⊂ S.

(C) Given that the set of paths {S.Fϕ(1), . . . , S.Fϕ(x)} is added to X at Line 10, the
condition at Line 9 is satisfied and therefore {S.Fϕ(1), . . . , S.Fϕ(x)} ⊆ paths(σ̄)∩paths(σ)−
X. Consequently, {S.Fϕ(1), . . . , S.Fϕ(x)} ⊆ paths(σ̄) and thus there exist the subsets
{S̄.F̄θ(1), . . . , S̄.F̄θ(x)} and {S̄.F̄ϑ(1), . . . , S̄.F̄ϑ(z)} of paths(σ̄) such that

{S̄.F̄θ(1), . . . , S̄.F̄θ(x)} = {S.Fϕ(1), . . . , S.Fϕ(x)}
{S̄.F̄ϑ(1), . . . , S̄.F̄ϑ(z)} = paths(σ̄)− {S.Fϕ(1), . . . , S.Fϕ(x)}

Now, note that paths(σ̄) = {S̄.F̄θ(1), . . . , S̄.F̄θ(x)}∪{S̄.F̄ϑ(x+1), . . . , S̄.F̄ϑ(z)}, and that there-
fore σ̄ is of the form

(S̄, ({F̄θ(1), . . . , F̄θ(x)} ∪ {F̄ϑ(1), . . . , F̄ϑ(z)})). (6.5)

Further, given that the condition at Line 9 is satisfied, S̄.F̄θ(i) ∩ S̄.F̄ϑ(j) ⊆ X̄ for all (i, j) ∈
{1, . . . , x} × {1, . . . , z}. From this together with the assumption that X̄ = ρ, it follows
that S̄.F̄θ(i) ∩ S̄.F̄ϑ(j) = ρ for all (i, j) ∈ {1, . . . , x} × {1, . . . , z}. Consequently, S̄ = ρ and
therefore rule R3 (Split) applies to (6.5) which yields

(ρ,(F̄θ(1), . . . , F̄θ(x))) and (6.6)

(ρ,(F̄ϑ(1), . . . , F̄ϑ(z))). (6.7)

Recall that {S̄.F̄θ(1), . . . , S̄.F̄θ(x)} = {S.Fϕ(1), . . . , S.Fϕ(x)} and assume, without loss of gen-
erality, that for all i ∈ {1, . . . , x}, S̄.F̄θ(i) = S.Fϕ(i). Then (6.6) equals (6.1) if S = ρ, since
S̄ = ρ as shown above. Hence Σ ` (6.1) in case that S = ρ. If instead S 6= ρ, then there exists
path R such that for all i ∈ {1, . . . , x}, ρ.F̄θ(i) = ρ.R.Fϕ(i), since S̄.F̄θ(i) = ρ.F̄θ(i) = S.Fϕ(i)

per assumption. Consequently, (6.6) is of the form

(ρ, (R.Fϕ(1), . . . , R.Fϕ(x))) (6.8)

Note that rule R1 (Upshift) applies to (6.8) for path R, which yields (6.1) since ρ.R = S,
given that ρ.R.Fϕ(i) = S.Fϕ(i) for all i ∈ {1, . . . , x}. Hence, Σ ` (6.1) also in case that
S 6= ρ, which establishes the result.

Based on this preliminary result, the claim is now demonstrated by induction over the
sets of paths that are added to X within the run DXKI(Σ, σ).
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Base Case: The first time where a set of paths {S.Fϕ(1), . . . , S.Fϕ(x)} is added to X within
the run DXKI(Σ, σ) is used as base case for the induction. Note that according to Line 1,
X = ∅ before a set of paths is added to X for the first time. Consequently, if the conditions
at Lines 3 or 9 are satisfied then X̄ /∈ X and therefore X̄ = ρ. Further, given that X = ∅,
also {S.Fφ(1), . . . , S.Fφ(y)} = ∅ since {S.Fφ(1), . . . , S.Fφ(y)} = X per assumption. Therefore,
σ̂ is of the form

(S, (Fϕ(1), . . . , Fϕ(x))) (6.9)

in the base case, and it is therefore shown that (6.9) ∈ Σ ∨ Σ ` (6.9).
This is however easily verified, since if paths {S.Fϕ(1), . . . , S.Fϕ(x)} are added to X at

Line 4, 7, or 10 then (A), (B) or (C) applies, respectively, given that X̄ = ρ, and obviously
(6.9) equals (6.1). Hence, (6.9) ∈ Σ ∨ Σ ` (6.9) follows from the preliminary result that
(6.1) ∈ Σ ∨ Σ ` (6.1).

Inductive Step: Assume now that the claim holds true until a certain, positive number of
sets of paths were added to X. The inductive step is then established by showing that the
claim also holds true for the next set of paths that is added to X.

Note that S.Fφ(1), . . . , S.Fφ(y) are the paths that have already been added to X within
the run of DXKI(Σ, σ) per assumption. Consequently, the inductive assumption implies that
Σ contains or derives the XKey

(S, (Fφ(1), . . . , Fφ(y))). (6.10)

Observe that if paths S.Fϕ(1), . . . , S.Fϕ(x) are added to X at Line 4, 7, or 10 and the
conditions at Lines 3 and 9 are satisfied because X̄ = ρ, then (A), (B), or (C) applies,
respectively, and σ̂ equals the XKey that results from applying rule R4 (Union) to (6.1) and
(6.10). Hence, σ̂ ∈ Σ ∨ Σ ` σ̂ if paths S.Fϕ(1), . . . , S.Fϕ(x) are added to X at Line 4, 7, or
10 and the conditions at Lines 3 and 9 are satisfied because X̄ = ρ.

In order to establish the inductive step it therefore remains to be shown that σ̂ ∈ Σ ∨
Σ ` σ̂ if paths S.Fϕ(1), . . . , S.Fϕ(x) are added to X at Line 4 or 10 and the conditions at
Lines 3 or 9 are satisfied for some path X̄ ∈X. Suppose first that paths S.Fϕ(1), . . . , S.Fϕ(x)

are added to X at Line 4. Then S.Fϕ(1), . . . , S.Fϕ(x) contains exactly one path and therefore
σ̂ is of the form

(S, ({Fφ(1), . . . , Fφ(y)} ∪ {Fϕ(1)})). (6.11)

It has to be shown therefore that (6.11) ∈ Σ ∨ Σ ` (6.11). Thereby, given that the condition
at Line 3 is satisfied, last(S.Fϕ(1)) is an attribute label and parent(S.Fϕ(1)) ⊆ X̄. From
this together with the observation that X̄ ∈ paths((6.10)), since X = {S.Fφ(1), . . . , S.Fφ(y)}
and X̄ ∈X per assumption, it follows that rule R6 (Expansion) applies to (6.10) and path
S.Fϕ(1), which yields (6.11). Hence, (6.11) ∈ Σ ∨ Σ ` (6.11) if paths S.Fϕ(1), . . . , S.Fϕ(x)

are added to X at Line 4 and the condition at Line 3 is satisfied for some X̄ ∈X.
Suppose now that paths {S.Fϕ(1), . . . , S.Fϕ(x)} are added to X at Line 10 and that the

condition at Line 9 is satisfied for some X̄ ∈ X. Then {S.Fϕ(1), . . . , S.Fϕ(x)} ⊆ paths(σ̄) ∩
paths(σ)−X. Consequently, {S.Fϕ(1), . . . , S.Fϕ(x)} ⊆ paths(σ̄) and thus there exist (again)
the subsets {S̄.F̄θ(1), . . . , S̄.F̄θ(x)} and {S̄.F̄ϑ(1), . . . , S̄.F̄ϑ(z)} of paths(σ̄) such that

{S̄.F̄θ(1), . . . , S̄.F̄θ(x)} = {S.Fϕ(1), . . . , S.Fϕ(x)}
{S̄.F̄ϑ(1), . . . , S̄.F̄ϑ(z)} = paths(σ̄)− {S.Fϕ(1), . . . , S.Fϕ(x)}
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Now, note that paths(σ̄) = {S̄.F̄θ(1), . . . , S̄.F̄θ(x)}∪{S̄.F̄ϑ(x+1), . . . , S̄.F̄ϑ(z)}, and that there-
fore σ̄ is of the form

(S̄, ({F̄θ(1), . . . , F̄θ(x)} ∪ {F̄ϑ(1), . . . , F̄ϑ(z)})). (6.12)

Further, given that the condition at Line 9 is satisfied, S̄.F̄θ(i) ∩ S̄.F̄ϑ(j) ⊆ X̄ for all
(i, j) ∈ {1, . . . , x} × {1, . . . , z}. From this together with the observation that X̄ ∈ paths(σ),
since X̄ ∈X and X = {S.Fφ(1), . . . , S.Fφ(y)} per assumption, it follows that rule R5 (Aug-
mentation) applies to (6.10) and (6.12) if S̄ = S, which yields

(S, ({Fφ(1), . . . , Fφ(y)} ∪ {F̄θ(1), . . . , F̄θ(x)})). (6.13)

Note that (6.13) equals σ̂, since {F̄θ(1), . . . , F̄θ(x)} = {Fϕ(1), . . . , Fϕ(x)}, given that
{S̄.F̄θ(1), . . . , S̄.F̄θ(x)} = {S.Fϕ(1), . . . , S.Fϕ(x)} and that S̄ = S.

It therefore remains to be shown that σ̂ ∈ Σ ∨ Σ ` σ̂ if S̄ 6= S. Assume for this purpose
without loss of generality that for all i ∈ {1, . . . , x}, S̄.F̄θ(i) = S.Fϕ(i), and observe that if
S̄ 6= S then either S ⊂ S̄ or S̄ ⊂ S, given that S̄.F̄θ(i) = S.Fϕ(i) for all i ∈ {1, . . . , x}.

Assume now that S ⊂ S̄ and let R be the path such that S.R = S̄. It follows then from
(6.12) that σ̄ is of the form

(S.R, ({F̄θ(1), . . . , F̄θ(x)} ∪ {F̄ϑ(1), . . . , F̄ϑ(z)})). (6.14)

and therefore, by applying rule R2 (Downshift) to (6.14), Σ derives the XKey

(S, ({R.F̄θ(1), . . . , R.F̄θ(x)} ∪ {R.F̄ϑ(1), . . . , R.F̄ϑ(z)})). (6.15)

Observe that rule R5 (Augmentation) applies to (6.10) and (6.15), since for all (i, j) ∈
{1, . . . , x}×{1, . . . , z}, S.R.F̄θ(i)∩S.R.F̄ϑ(j) ⊆ X̄, given that S̄.F̄θ(i)∩ S̄.F̄ϑ(j) ⊆ X̄ and that
S.R = S̄. Note that X̄ ∈ paths(σ̄) as shown above. Further, the XKey that results from
this application of rule R5 is of the form

(S, ({Fφ(1), . . . , Fφ(y)} ∪ {R.F̄θ(1), . . . , R.F̄θ(x)})), (6.16)

which equals σ̂, since for all i ∈ {1, . . . , x}, R.F̄θ(i) = Fϕ(i), given that S̄.F̄θ(i) = S.Fϕ(i) and
that S.R = S̄.

Assume now instead that S̄ ⊂ S and let R̃ be the path such that S̄.R̃ = S. Then (6.10)
is of the form

(S̄.R̃, (Fϕ(1), . . . , Fϕ(x))) (6.17)

and therefore, by applying rule R2 (Downshift) to (6.18a), Σ derives the XKey

(S̄, (R̃.Fφ(1), . . . , R̃.Fφ(y))) (6.18)

Note that X̄ ∈ paths((6.18)) since X̄ ∈ X per assumption and X =
{S̄.R̃.Fφ(1), . . . , S̄.R̃.Fφ(y)}, given that X = {S.Fφ(1), . . . , S.Fφ(1)} and S̄.R̃ = S. From this
together with the result above that S̄.F̄θ(i)∩S̄.F̄ϑ(j) ⊆ X̄ for all (i, j) ∈ {1, . . . , x}×{1, . . . , z},
it follows that rule R5 (Augmentation) applies to (6.18) and (6.12), which yields

(S̄, ({R̃.Fφ(1), . . . , R̃.Fφ(y)} ∪ {F̄θ(1), . . . , F̄θ(x)})) (6.19)
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Further, for all i ∈ {1, . . . , x}, F̄θ(i) = R̃.Fϕ(i) since S̄.F̄θ(i) = S̄.R̃.Fϕ(i) given that S̄.F̄θ(i) =

S.Fϕ(i) and S̄.R̃ = S. Consequently, (6.19) is of the form

(S̄, ({R̃.Fφ(1), . . . , R̃.Fφ(y)} ∪ {R̃.Fϕ(1), . . . , R̃.Fϕ(x)})) (6.20)

Note finally that rule R1 (Upshift) applies to (6.20) and path R̃, which yields σ̂ given that
S̄.R̃ = S. Hence, the inductive step is established. �

We now present our result on the soundness of algorithm DXKI.

Theorem 6.3 (Soundness of Algorithm DXKI) Given a set of XKeys Σ and a single
XKey σ, if DXKI(Σ, σ) = true then Σ � σ.

Proof (Theorem 6.3) If DXKI(Σ, σ) = true then either σ ∈ Σ or Σ ` σ from Lemma 6.1.
Now, if σ ∈ Σ then Σ � σ from Definition 6.2, and if Σ ` σ then Σ � σ from Theorem 6.2.�

6.2.4 Completeness of the Decision Procedure

We show next the completeness of algorithm DXKI, i.e. that if a set of XKeys Σ implies a sin-
gle XKey σ then DXKI(Σ, σ) returns true. We then use this result to establish completeness
of inference rules R1 - R7 for the implication of XKeys, i.e. if Σ � σ then Σ ` σ.

Theorem 6.4 (Completeness of Algorithm DXKI) Given a set of XKeys Σ and a sin-
gle XKey σ, if Σ � σ then DXKI(Σ, σ) = true.

We first give an overview on the proof of Theorem 6.4. We establish completeness by
showing the contrapositive that DXKI(Σ, σ) = false ⇒ Σ 2 σ. Note that if DXKI(Σ, σ) =
false then X ⊂ paths(σ) when the algorithm terminates. We therefore construct a counter
example tree Tσ that essentially contains duplicate nodes for the paths in paths(σ) −X,
and then show that Tσ 2 σ but Tσ � Σ and so Σ 2 σ.

The counter example tree Tσ is generated by the algorithm GCEXKI (cf. Algorithm
6.2). The algorithm has input a downward-closed set of paths P , a subset D of the paths
in paths(σ) −X and a single path D̈ such that for all D ∈ D, D̈ ⊂ D. The choice of the
specific input for algorithm GCEXKI is involved and depends on the set of XKeys Σ ∪ {σ}
and the set of paths X. We will detail on this issue later. Roughly speaking, P determines
the structure of the counter example tree Tσ, and so algorithm GCEXKI iterates the paths
in P and creates nodes correspondingly. In particular, if input path D̈ is a prefix of the
intersection of a path P ∈ P and at least one path in D, then algorithm GCEXKI creates
two nodes, and so the final XML tree Tσ contains two isomorphic subtrees rooted at the
specific node in Tσ which is reachable over path D̈. Let T̄σ and T̄′σ denote these isomorphic
subtrees for the moment. Then, since D̈ ⊂ D for every path D ∈ D, T̄σ and T̄′σ contain
duplicate nodes reachable over the paths in D, and since D ⊆ paths(σ)−X, these duplicate
nodes cause σ to be violated in Tσ. To ensure that the XKeys in Σ are satisfied, two nodes
v in T̄σ and v′ in T̄′σ that are reachable over the same path P have distinct values assigned
if P /∈D. We now illustrate algorithm GCEXKI by an example.
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Algorithm 6.2 GCEXKI - Generate Counter Example for XKey Implication

in: a downward-closed set of paths P

a single path D̈ ∈ P
a set of paths D ⊆ P such that ∀D ∈D
- last(D) ∈ LA ∪ {S} and

- last(D) /∈ LA if parent(D) = D̈
out: XML tree Tσ which is complete w.r.t. P and contains duplicate nodes on paths D

1: let Z = Z ′ = ∅
2: let Tσ = (V ,E, lab, val) be a trivial tree where lab(root(Tσ)) = ρ(P )
3: let {R1, . . . , Rm} = P such that ∀ i, j ∈ {1, . . . ,m}, length(Ri) ≤ length(Rj) if i ≤ j
4:

5: for i = 2 to m do
6: if ∃D ∈D such that D̈ ⊂ (Ri ∩D) then . create duplicate nodes
7: v ← newnode(V ); v′ ← newnode(V )
8: Z ← Z ∪ {v}; Z ′ ← Z ′ ∪ {v′}
9: lab(v)← last(Ri); lab(v′)← last(Ri)

10: if D̈ = parent(Ri) then
11: let {v̂} = nodes(parent(Ri))
12: E ← E ∪ {(v̂, v), (v̂, v′)}
13: else
14: let {v̂} = nodes(parent(Ri)) ∩Z and let {v̂′} = nodes(parent(Ri)) ∩Z ′
15: E ← E ∪ {(v̂, v), (v̂′, v′)}
16: end if
17: if Ri ∈D then
18: val(v)← 1; val(v′)← 1
19: else if last(Ri) ∈ LA ∪ {S} then
20: val(v)← 1; val(v′)← 2
21: end if
22: else . create single node
23: v ← newnode(V )
24: lab(v)← last(Ri)
25: let {v̂} = nodes(parent(Ri))
26: E ← E ∪ {(v̂, v)}
27: if last(Ri) ∈ LA ∪ {S} then val(v)← 1; end if
28: end if
29: end for
30: return Tσ

Example 6.3 (algorithm GCEXKI) Let Σ = {σ1, σ2} be as in Example 6.1, so σ1 =
(ρ, (A.B.C.S, D.E.S)) and σ2 = (ρ.A, (B.E.S, B.D.S)), but let σ = (ρ.A, (B.C.S, B.F.f)). Then
following Example 6.1, algorithm DXKI(Σ, σ) terminates with X = {ρ.A.B.C.S} ⊂ paths(σ)
and algorithm DXKI returns false. The input to algorithm GCEXKI is then
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P ={ρ, ρ.A, ρ.A.B, ρ.A.B.C, ρ.A.B.C.S, ρ.D, ρ.D.E, ρ.D.E.S, ρ.A.B.E,
ρ.A.B.E.S, ρ.A.B.D, ρ.A.B.D.S, ρ.A.B.F, ρ.A.B.F.f},

D̈ = ρ.A.B,
D ={ρ.A.B.F.f}.

Algorithm GCEXKI proceeds as follows. At Line 3, tree Tσ contains only the root node and
at Line 4 the paths in P are placed in the order ρ, ρ.A, ρ.D, ρ.A.B, ρ.D.E, ρ.A.B.C, ρ.D.E.S,
ρ.A.B.E, ρ.A.B.D, ρ.A.B.F, ρ.A.B.C.S, ρ.A.B.E.S, ρ.A.B.D.S, ρ.A.B.F.f. At Line 5, all the paths in
P are processed in the order just given. For each path in P before path ρ.A.B.F, the test at
Line 6 fails and so Lines 23 - 27 are executed, resulting in the tree shown in Figure 6.1a.

Consider then the case where Ri = ρ.A.B.F. Since D = ρ.A.B.F.@F , this means that Line
6 evaluates to true and so Lines 7 - 9 are executed, and since the test at Line 10 evaluates
to true, Lines 11 - 12 are executed and then neither test at Line 17 nor 18 evaluates to true.
So at the end of this iteration of the loop at Line 29, Tσ is shown in Figure 6.1b.

The test at Line 6 then fails for the paths ρ.A.B.C.S, ρ.A.B.E.S, ρ.A.B.D.S in P , but succeeds
for ρ.A.B.F.f, the final path in P and so Lines 7 - 9 are executed. The test at Line 10 then
fails, so Lines 14 - 15 are executed, and then the test at Line 17 evaluates to true and hence
Line 18 is executed. At this stage the algorithm terminates with the final tree Tσ shown in
Figure 6.1c, and it can easily be seen that Tσ is complete with respect to P and satisfies Σ
but violates σ and so Σ 2 σ.
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Figure 6.1: Counter example tree generated by algorithm GCEXKI.

In order to demonstrate Theorem 6.4, we now establish first some preliminary results
related to the procedure of algorithm GCEXKI and the counter example tree Tσ. We will
frequently need to refer to the root node of Tσ created at Line 2 in Algorithm 6.2. For ease
of presentation, we will use vρ for denoting the root node of Tσ in the following. To be more
precise, in the remainder of this chapter vρ = root(Tσ).

Lemma 6.2 If P is a path in P within a run of algorithm GCEXKI(P ,D, D̈), then
(i) parent(P) = D̈ if P satisfies the condition at Line 6 and length(P ) = 2.
(ii) parent(P ) satisfies the condition at Line 6 if P satisfies the condition at Line 6 and

D̈ 6= parent(P ).
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(iii) parent(P ) does not satisfy the condition at Line 6 if parent(P ) = D̈.
(iv) P̄ does not satisfy the condition at Line 6 if P does not satisfy the condition at Line

6 and P̄ ⊆ P .
(v) P̄ satisfies the condition at Line 6 if P satisfies the condition at Line 6 and P ⊆ P̄ .
(vi) P does not satisfy the condition at Line 6 if P = ρ.

Proof (Lemma 6.2) (i) Given that P satisfies the condition at Line 6, there exists path
D ∈ D such that D̈ ⊂ P ∩ D. Also, P ∩ D ⊆ P for all D ∈ D from Definition 3.13,
and therefore length(P ∩ D) ≤ 2, given that length(P ) = 2. Hence D̈ = ρ, since ρ is
the only strict prefix of any path of length 2 in a downward-closed set of paths. Further,
parent(P ) = ρ given that P ∈ P , which is a downward-closed set of paths per assumption,
and consequently parent(P ) = D̈.

(ii) Given that P satisfies the condition at Line 6, there exists path D ∈ D such that
D̈ ⊂ P ∩ D. From this together with Definition 3.13 it follows that D̈ ⊆ parent(P ) ∩ D.
Consequently, if parent(P ) does not satisfy the condition at Line 6, then D̈ = parent(P )∩D.
Now suppose for the moment that if D̈ = parent(P ) ∩ D then D̈ = parent(P ). Then
parent(P ) must satisfy the condition at Line 6, since otherwise D̈ = parent(P ), which
clearly contradicts the assumption that D̈ 6= parent(P ).

In order to verify that D̈ = parent(P ) if D̈ = parent(P )∩D, note that parent(P )∩D ⊆
P ∩ D follows directly from Definition 3.13. Therefore either parent(P ) ∩ D = P ∩ D or
parent(P ) ∩ D ⊂ P ∩ D. If parent(P ) ∩ D = P ∩ D, then D̈ = P ∩ D follows from the
observation above that D̈ = parent(P )∩D, and D̈ = P∩D clearly contradicts the assumption
that D̈ ⊂ P ∩D. Hence, parent(P ) ∩D 6= P ∩D and thus parent(P ) ∩D ⊂ P ∩D.

Next, given that parent(P ) ∩ D ⊂ P ∩ D, Definition 3.13 implies that P ⊆ D and
consequently P ∩D = P . Further, given that P ∩D = P , again Definition 3.13 implies that
parent(P )∩D = parent(P ) and thus D̈ = parent(P ) follows from combining parent(P )∩D =
parent(P ) with the previous observation that D̈ = parent(P ) ∩D.

(iii) Assume to the contrary that parent(P ) satisfies the condition at Line 6. Then there
exists path D ∈D such that D̈ ⊂ D∩parent(P ), and from this together with the assumption
that D̈ = parent(P ) it follows then that D̈ is a strict prefix of D ∩ D̈. However this is a
contradiction since when combined with the fact that D∩ D̈ is a prefix of D̈ from Definition
3.13, it would imply that D̈ is a strict prefix of D̈. Hence parent(P ) does not satisfy the
condition at Line 6.

(iv) Assume to the contrary that P̄ satisfies the condition at Line 6. Then there exists
path D ∈D such that D̈ ⊂ D∩ P̄ , and consequently also D̈ ⊂ D∩P according to Definition
3.13, which however clearly contradicts the assumption that P does not satisfy the condition
at Line 6.

(v) Given that P satisfies the condition at Line 6, there exists path D ∈ D such that
D̈ ⊂ P ∩D. It follows directly from Definition 3.13 that P ∩D ⊆ P̄ ∩D, given that P ⊆ P̄
and hence combining with the fact that D̈ ⊂ D ∩ P it follows P̄ also satisfies the condition
at Line 6.

(vi) If to the contrary P = ρ satisfies the condition at Line 6, then there exists path
D ∈D such that D̈ ⊂ D∩ρ. However, since D ∈ P , which is a downward-closed set of paths
per assumption, first(D) = ρ, and therefore D ∩ ρ = ρ. Hence, if ρ satisfies the condition at
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Line 6, then D̈ ⊂ ρ. This is however a contradiction since no path is a strict prefix of path
ρ which is of length 1. Hence, P does not satisfy the condition at Line 6, if P = ρ. �

Lemma 6.3 In a run of algorithm GCEXKI(P ,D, D̈), let {R1, . . . , Rm} be the paths at
Line 3 in Algorithm 6.2. Then, in an iteration k of the loop at Line 5, where 1 ≤ k < m,
the algorithm creates exactly

(i) two nodes v, v′ such that {v} = nodes(Rk+1) ∩ Z and {v′} = nodes(Rk+1) ∩ Z ′ and
anc-or-self(v)∩Z ′ = anc-or-self(v′)∩Z = ∅, where Z,Z ′ are the sets of paths at Line
1, if path Rk+1 satisfies the condition at Line 6;

(ii) one node v such that {v} = nodes(Rk+1) and anc-or-self(v) ∩ (Z ∪ Z ′) = ∅, if path
Rk+1 does not satisfy the condition at Line 6.

Proof (Lemma 6.3) The proof is by induction over the iterations of the loop at Line 5. Note
that the root node vρ is the only node which is created before the loop at Line 5 is entered
for the first time, and that {vρ} = nodes(ρ) at Line 2.

Base Case: The first iteration of the loop at Line 5 is used as the base case for the induction.
That is k = 1 in the base case. Note that the loop variable i = 2 in this iteration, and that
therefore Lemma 6.3 holds true for the base case if

- two nodes v, v′ are created such that {v} = nodes(R2)∩Z and {v′} = nodes(R2)∩Z ′ and
anc-or-self(v) ∩Z ′ = anc-or-self(v′) ∩Z = ∅, if path R2 satisfies the condition at Line 6;

- one node v is created such that {v} = nodes(R2) and anc-or-self(v)∩ (Z ∪Z ′) = ∅, if path
R2 does not satisfy the condition at Line 6.

Because paths R1, . . . , Rm are downward-closed per assumption and ordered by length ac-
cording to Line 3, length(R2) = 2 and so parent(R2) = ρ since R2 ∈ P , which is a downward-
closed set of paths per assumption.

Now, assume first that R2 satisfies the condition at Line 6. Then distinct nodes v
and v′ are created at Line 7. Further, edges (vρ, v) and (vρ, v

′) are added at Line 12, since

D̈ = parent(R2) according to (i) in Lemma 6.2, and parent(R2) = ρ according to our previous
observations. Recall that {vρ} = nodes(ρ) at Line 2, and that therefore the assumption
at Line 11 that nodes(parent(Ri)) contains exactly one node is met. The resulting path
instances vρ.v and vρ.v

′ are defined over path R2 since lab(v) = lab(v′) = last(R2) according
to Line 9, and R2 = ρ. last(R2), given that R2 is a path of length 2. Consequently, {v, v′} ⊆
nodes(R2). Further, v ∈ Z and v′ ∈ Z ′ according to Line 8. In particular {v} = Z and
{v′} = Z ′, since nodes v and v′ are the first nodes that are created within the loop at Line
5. Therefore, {v} = nodes(R2) ∩ Z and {v′} = nodes(R2) ∩ Z ′ and anc-or-self(v) ∩ Z ′ =
anc-or-self(v′) ∩Z = ∅. Hence, Lemma 6.3 holds true.

Assume now that R2 does not satisfy the condition at Line 6. Then the algorithm creates
the single node v at Line 23, and adds edge (vρ, v) at Line 26, since parent(R2) = ρ, given that
length(R2) = 2. Likewise to the previous case {vρ} = nodes(ρ), and therefore the assumption
at Line 25 that nodes(parent(Ri)) contains exactly one node is met. The resulting path
instance vρ.v is defined over path R2 since lab(v) = last(R2) according to Line 24, and
R2 = ρ. last(R2), since R2 is a path of length 2. Consequently, v ∈ nodes(R2). Further,
{v} = nodes(R2) follows again from the observation that node v is the first node created
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within the loop at Line 5. Also anc-or-self(v) ∩ (Z ∪Z ′) = ∅ since anc-or-self(v) = {vρ, v},
given that {v} = nodes(R2), and the algorithm has neither added vρ nor v to Z or Z ′ and
thus Z = Z ′ = ∅ from Line 1. Hence, Lemma 6.3 also holds true in case that R2 does not
satisfy the condition at Line 5, which establishes the base case.

Inductive Step: Assume now that Lemma 6.3 holds true until iteration x of the loop at
Line 5, where x ≥ 1. Then the inductive step is established if Lemma 6.3 also holds true for
the iteration x+1 of the loop at Line 5, which is what we show next. Note that the inductive
assumption implies that for every node v created in the loop at Line 5 before iteration x+1,
v /∈ nodes(ρ) since paths R2, . . . , Rm are ordered by length and therefore ρ /∈ {R2, . . . , Rm}.
From this together with the observation that {vρ} = nodes(ρ) initially at Line 2 it follows
that also {vρ} = nodes(ρ) before iteration x+ 1 of the loop at Line 5 is entered.

Further, the loop variable i = x+ 2 in iteration x+ 1 of the loop at Line 5, and therefore
Lemma 6.3 holds true for this iteration if

− two nodes v, v′ are created such that {v} = nodes(Rx+2)∩Z and {v′} = nodes(Rx+2)∩Z ′
and anc-or-self(v) ∩Z ′ = anc-or-self(v′) ∩Z = ∅, if path Rx+2 satisfies the condition at
Line 6;

− one node v is created such that {v} = nodes(Rx+2) and anc-or-self(v) ∩ (Z ∪Z ′) = ∅, if
path Rx+2 does not satisfy the condition at Line 6.

Assume first that Rx+2 satisfies the condition at Line 6. Then it is assumed at Line 11
that there exists node v̂ such that {v̂} = nodes(parent(Rx+2)) in case that the condition at
Line 10 is met, and otherwise it is assumed at Line 14 that there exist distinct nodes v̂ and
v̂′ such that {v̂} = nodes(parent(Rx+2)) ∩ Z and {v̂′} = nodes(parent(Rx+2)) ∩ Z ′. The
correctness of these assumptions is now verified.

Thereby, if the condition at Line 10 is met and parent(Rx+2) = ρ then {v̂} =
nodes(parent(Rx+2)) follows from the previous observation that {vρ} = nodes(ρ) before
iteration x+ 1 is entered. If instead parent(Rx+2) 6= ρ, then parent(Rx+2) ∈ {R2, . . . , Rm}
and {v̂} = parent(Rx+2) follows from the inductive assumption.

It follows in particular from (ii) in Lemma 6.3, since parent(Rx+2) does not satisfy the
condition at Line 6 according to (iii) in Lemma 6.2, given that the condition at Line 10 is
met and that therefore D̈ = parent(Rx+2). Note that path parent(Rx+2) is iterated before
path Rx+2 within the loop at Line 5 since length(parent(Rx+2)) < length(Rx+2) and paths
R1, . . . , Rm are ordered by length according to Line 3. The inductive assumption therefore
indeed applies to path parent(Rx+2).

If instead the condition at Line 10 is not met, then the existence of nodes v̂ and v̂′ such
that {v̂} = nodes(parent(Rx+2))∩Z and {v̂′} = nodes(parent(Rx+2))∩Z ′ is implied by the
inductive assumption. In particular this is implied by (i) in Lemma 6.3, since parent(Rx+2)
satisfies the condition at Line 6 according to (ii) in Lemma 6.2, given that the condition at
Line 10 is not met and that therefore D̈ 6= parent(Rx+2). Note that for the same reasons as
above, the inductive assumption indeed applies to path parent(Rx+2).

Next, the algorithm creates distinct nodes v and v′ at Line 7 and, in case that
D̈ = parent(Rx+2), the algorithm adds edges (v̂, v) and (v̂, v′) at Line 12, where {v̂} =
nodes(parent(Rx+2)). If instead D̈ 6= parent(Rx+2), then the algorithm adds edges (v̂, v) and
(v̂′, v′) at Line 15, where {v̂} = nodes(parent(Rx+2))∩Z and {v̂′} = nodes(parent(Rx+2))∩
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Z ′. In both cases, a walk over path Rx+2 results, since both nodes v̂ and v̂′ are in
nodes(parent(Rx+2)) and lab(v) = lab(v′) = last(Rx+2) according to Line 9. Note that
Rx+2 = parent(Rx+2). last(Rx+2). Consequently, {v, v′} ∈ nodes(Rx+2).

In order to verify that {v} = nodes(Rx+2) ∩ Z and that {v′} = nodes(Rx+2) ∩ Z ′,
note that v ∈ Z and that v′ ∈ Z ′ according to Line 8. From combining this with the
previous result that {v, v′} ∈ nodes(Rx+2) it follows that v ∈ nodes(Rx+2) ∩ Z and that
v′ ∈ nodes(Rx+2) ∩Z ′. Therefore, if {v} 6= nodes(Rx+2) ∩Z, then there exists node v̄ such
that v̄ 6= v and v̄ ∈ nodes(Rx+2) ∩ Z. Note that v̄ 6= vρ since vρ is not added to Z by the
algorithm. Therefore, if v̄ exists, then v̄ has been created for some path R̄ within a previous
iteration of the loop at Line 5. Then however R̄ = Rx+2 from the inductive assumption
together with v̄ ∈ nodes(Rx+2), which clearly contradicts the assumption that R1, . . . , Rm
is a set of paths and therefore does not contain duplicates. This argumentation also applies
to node v′. Thus {v} = nodes(Rx+2) ∩Z and also {v′} = nodes(Rx+2) ∩Z ′.

Further, in order to verify that anc-or-self(v) ∩ Z ′ = ∅, note that v ∈ Z according to
Line 8, and that therefore anc-or-self(parent(v)) ∩Z ′ 6= ∅ if anc-or-self(v) ∩Z ′ 6= ∅.

Now, if parent(v) = vρ then anc-or-self(parent(v)) = {vρ} and therefore Z ′∩
anc-or-self(parent(v)) = ∅ since algorithm GCEXKI does not add the root node vρ to Z ′.
If instead parent(v) 6= vρ, then parent(v) has been created within a previous iteration of
the loop at Line 5 and therefore the inductive assumption applies to parent(v). Thereby, if
parent(Rx+2) does not satisfy the condition at Line 6 then anc-or-self(parent(v))∩(Z∪Z ′) =
∅ according to (ii) in Lemma 6.3. If instead parent(Rx+2) satisfies the condition at Line 6
then anc-or-self(parent(v)) ∩ Z ′ = ∅ according to (i) in Lemma 6.3, since parent(v) ∈ Z
according to Line 14. Thus, anc-or-self(parent(v))∩Z ′ = ∅. This argumentation also applies
to node v′ and thus also anc-or-self(parent(v′)) ∩ Z = ∅. Hence, the inductive assumption
holds true for iteration x+ 1 in case that Rx+2 satisfies the condition at Line 6.

Assume now instead that Rx+2 does not satisfy the condition at Line 6. Then it is
assumed at Line 25 that there exists node v̂ such that {v̂} = nodes(parent(Rx+2)). The
correctness of this assumptions is now verified. In case that parent(Rx+2) = ρ, {v̂} =
nodes(parent(Rx+2)) follows from the previous observation that {vρ} = nodes(vρ) before
iteration x+1 is entered. If instead parent(Rx+2) 6= ρ, then parent(Rx+2) ∈ {R2, . . . , Rx+1}
and {v̂} = parent(Rx+2) follows from the inductive assumption. It follows in particular
from (ii) in Lemma 6.3, since Rx+2 does not satisfy the condition at Line 6 per assumption
and therefore also parent(Rx+2) does not satisfy this condition according to (iv) in Lemma
6.2. Note that path parent(Rx+2) is iterated before path Rx+2 within the loop at Line 5
since length(parent(Rx+2)) < length(Rx+2) and paths R1, . . . , Rm are ordered by length
according to Line 3, i.e. the inductive assumption indeed applies to path parent(Rx+2).

Next, the algorithm creates the single node v at Line 23 and adds the edge (v̂, v) at Line
26, where {v̂} = nodes(parent(Rx+2)). The resulting path instance is defined over path
Rx+2, since v̂ ∈ nodes(parent(Rx+2)), and lab(v) = last(Rx+2) according to Line 24. Note
that Rx+2 = parent(Rx+2). last(Rx+2) and so v ∈ nodes(Rx+2).

In order to verify that {v} = nodes(Rx+2) note that if to the contrary {v} 6= nodes(Rx+2)
then there exists node v̄ such that v̄ 6= v and v̄ ∈ nodes(Rx+2). Thereby, nodes(Rx+2) 6=
ρ, given that Rx+2 ∈ {R2, . . . , Rm} and that paths R1, . . . , Rm are downward-closed and
ordered by length. Hence, v̄ 6= vρ follows from the previous observation that vρ ∈ nodes(ρ).
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Consequently, if v̄ exists then v̄ has been created for some path R̄ within a previous iteration
of the loop at Line 5. Then however R̄ = Rx+2 from the inductive assumption, which clearly
contradicts the assumption that R1, . . . , Rm is a set of paths and therefore does not contain
duplicates. Thus, {v} = nodes(Rx+2).

In order to verify that anc-or-self(v) ∩ (Z ∩ Z ′) = ∅, note that v has not been
added to Z or Z ′ by the algorithm. Consequently, if anc-or-self(v) ∩ (Z ∩ Z ′) 6= ∅ then
anc-or-self(parent(v))∩(Z∩Z ′) 6= ∅. Again, if parent(v) = vρ, then anc-or-self(parent(v)) =
{vρ} and therefore anc-or-self(parent(v))∩ (Z ∪Z ′) = ∅ since algorithm GCEXKI does nei-
ther add the root node vρ to Z nor to Z ′. If instead parent(v) 6= vρ, then parent(v) has been
created within a previous iteration of the loop at Line 5. Then however the inductive as-
sumption implies, in particular (ii) in Lemma 6.3, that anc-or-self(parent(v))∩ (Z ∪Z ′) = ∅
since parent(Rx+2) does not satisfy the condition at Line 6, which has been shown previ-
ously. Consequently, anc-or-self(v) ∩ (Z ∩ Z ′) = ∅. Hence, the inductive assumption also
holds true for iteration x + 1 in case that Rx+2 does not satisfy the condition at Line 6,
which establishes Lemma 6.3. �

Lemma 6.4 Let P be a downward-closed set of paths, and let D̈ ∈ P be a single path and
D ⊆ P be a set of paths such that for all D ∈ D, last(D) ∈ LA ∪ {S} and last(D) /∈ LA if
parent(D) = D̈. Then, GCEXKI(P ,D, D̈) returns an XML tree Tσ such that

(i) Tσ conforms to Definition 3.11
(ii) Tσ is complete with respect to P

Proof (Lemma 6.4) Note that Lemma 6.4 assumes that algorithm GCEXKI terminates.
This is however easily verified since the input set of paths P is finite and hence the loop at
Line 5 in Algorithm 6.2 is iterated only for a finite number of times.

(i) Note that algorithm GCEXKI iteratively creates tree Tσ by means of adding nodes and
edges within the loop at Line 5, starting from the initial tree at Line 2. Now, let Tσ1 denote
the tree after Line 2, and let for all k ∈ {2, . . . ,m} tree Tσk

denote the tree after iteration
k − 1 of the loop at Line 5. Then, Tσ1

, . . . ,Tσm
denotes the sequence of trees generated

within the run of algorithm GCEXKI. It is shown subsequently by induction over trees
Tσ1 , . . . ,Tσm that the final tree Tσ = Tσm conforms to Definition 3.11. It is shown in
particular, that for all k ∈ {1, . . . ,m}, tree Tσk

satisfies requirements (1) - (4) in Definition
3.11, which means that

(1) (V ,E) is a tree in terms of Definition 3.3 and hence
(i) V is a finite set of nodes, from Definition 3.1

(ii) ∀(v, v̄) ∈ E, v 6= v̄, from Definition 3.1.i
(iii) ∀v ∈ V , if V 6= {v} then ∃v̄ ∈ V such that (v, v̄) ∈ E or (v̄, v) ∈ E, from

Definition 3.1.ii
(iv) if there exist nodes v1. · · · .vn ∈ V such that for all i ∈ {1, . . . , n}, (vi−1, vi) ∈ E,

then v1 6= vn if n > 1, from Definition 3.3
(2) ∀v ∈ V , lab(v) ∈ L.
(3) ∀v ∈ V , if lab(v) ∈ LA ∪ {S} then val(v) ∈ U and val(v) is undefined otherwise.
(4) ∀(v, v̄) ∈ E

(i) lab(v) ∈ LE ,



6.2. IMPLICATION OF XKEYS 151

(ii) if v̄ ∈ LA then 6 ∃(v, v̄′) ∈ E such that v̄ 6= v̄′ and lab(v̄) = lab(v̄′)

Tree Tσ1
is the base case for the induction. Given that Tσ1

is a trivial XML tree according
to Line 2, Tσ1

satisfies (1) - (4) in Definition 3.11. In order to establish the inductive step
we assume that XML tree Tσk

, where 1 ≤ k < m, conforms to Definition 3.11 and show
that also tree Tσk+1

conforms to Definition 3.11. Because Tσk+1
is created in iteration k of

the loop at Line 5 given that 1 ≤ k < m, we show in particular that Tσk+1
satisfies (1) - (4)

in Definition 3.11 at the end of iteration k of the loop at Line 5.

(1.i) From the inductive assumption, V is finite in Tσk
. Hence, V is also finite in Tσk+1

if
only a finite number of nodes is added to V in iteration k of the loop at Line 5. This is
clearly the case given that at most two new nodes are added to V in iteration k of the loop
at Line 5 (cf. Lines 7 and 23).

(1.ii) From the inductive assumption, ∀(v, v̄) ∈ E, v 6= v̄ in Tσk
. From the procedure

of algorithm GCEXKI, edges that exist in XML tree Tσk
are neither altered nor deleted.

Hence, (1.ii) in Lemma 6.4 holds true for Tσk+1
if v 6= v̄ whenever an edge (v, v̄) is added

to E in iteration k of the loop at Line 5. From the procedure of algorithm GCEXKI, if an
edge (v, v̄) is added to E in iteration k, then v is a node that exists in XML tree Tσk

and v̄
is a node created in iteration k (cf. Lines 12, 15 and 26). Given that v is created in iteration
k, node v does not exist in XML tree Tσk

. Hence v 6= v̄.

(1.iii) From the inductive assumption, ∀v ∈ V in XML tree Tσk
, if V 6= {v} then there exists

node v̄ ∈ V such that (v, v̄) ∈ E or (v̄, v) ∈ E. From the procedure of algorithm GCEXKI,
nodes and edges that exist in XML tree Tσk

are neither altered nor deleted. Hence, (1.iii)
in Lemma 6.4 holds true for Tσk+1

if for every node v which is created in iteration k, there
exists node v̄ ∈ V such that (v, v̄) ∈ E or (v̄, v) ∈ E. From the procedure of algorithm
GCEXKI, whenever a node v is created in iteration k, edge (v̄, v) is added to E, where v̄ is
a node in Tσk

(cf. Lines 12, 15 and 26), which establishes the result.

(1.iv) From the inductive assumption, there are no cycles in Tσk
. Also, from the procedure

of algorithm GCEXKI edges that exist in XML tree Tσk
are neither altered nor deleted, and

also no two nodes created in iteration k of the loop at Line 5 are connected to each other.
From this we deduce that if Tσk+1

contains a cycle, then a node v is created in iteration
k and there exists a walk v̄1. · · · .v̄n in Tσk

such that either v.v̄1. · · · .v̄n or v̄1. · · · .v̄n.v is a
cycle. Now, if v.v̄1. · · · .v̄n is a cycle then v = v̄n which clearly contradicts the assumption
that v̄n is a node in Tσk

since v is a new node created in iteration k of the loop at Line 5. If
instead v.v̄1. · · · .v̄n is a cycle, edge (v, v̄1) has been added to E in iteration k. This however
clearly contradicts the procedure of algorithm GCEXKI, since an edge that connects a new
node v to an existing node does not start from v but only lead to v (cf. Lines 12, 15 and
26). Hence, also Tσk+1

does not contain cycles.

(2) Whenever a node v is created within the loop at Line 5 (cf. Lines 7 and 23) then the
final label of a path Rk+1 ∈ {R2, . . . , Rm} is assigned to v (cf. Lines 9 and 24), i.e. lab(v) =
last(Rk+1). From this together with the observation that last(Rk+1) ∈ L according to
Definition 3.12, lab(v) ∈ L. Hence, Tσk+1

satisfies (2) given that Tσk
satisfies (2).
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(3) From the inductive assumption, for every node v ∈ V in Tσk
, val(v) ∈ U iff v is an

attribute or text node. From combining this with the observation that the assignment of
values to nodes, which exist in tree Tσk

, is not modified within the loop at Line 5, we
deduce that Tσk+1

satisfies (3) in Definition 3.11 if for every node v which is newly created
in iteration k of the loop at Line 5, val(v) ∈ U iff v is an attribute or text node.

Assume first that v is an element node which has been created at Line 7. Then,
last(Rk+1) ∈ E follows from the fact that lab(v) ∈ E and lab(v) = last(Rk+1) accord-
ing to Line 9. Therefore neither the condition at Line 17 nor the condition at Line 19 is
met. We note that Rk+1 does not satisfy the condition at Line 17 because for all D ∈ D,
last(D) ∈ LA ∪ {S} per assumption and therefore Rk+1 /∈ D if last(Rk+1) ∈ E. Hence,
val(v) is undefined if v is an element node which has been created at Line 7. Next, if v is
an attribute or text node which has been created at Line 7, then val(v) ∈ U since either
the condition at Line 17 or the condition at Line 19 is met. If instead v is a node created
at Line 23, then val(v) ∈ U iff v is an attribute or text node according to Line 27.

(4.i) From the inductive assumption, for all (v̄, v) ∈ E in XML tree Tσk
, lab(v̄) ∈ LE . From

the procedure of algorithm GCEXKI, edges that exist in Tσk
are not altered. Hence, Tσk+1

satisfies (4.i) in Lemma 6.4 if whenever an edge (v̄, v) is added to E in iteration k of the loop
at Line 5, lab(v̄) ∈ LE . To verify this, note that edge (v̄, v) is added to E either at Line 12,
15 or 26. From Lines 11, 14 and 25, v̄ ∈ nodes(parent(Rk+1)). Thus, if lab(v̄) /∈ LE then
last(parent(Rk+1)) /∈ LE . Then, however, Rk+1 contains an attribute label or the text label
on a position other than the last, which clearly contradicts Definition 3.12. Hence, Tσk+1

satisfies (4.i) in Lemma 6.4.

(4.ii) We show that there do not exist attribute nodes ṽ and ṽ′ in Tσk+1
such that lab(ṽ) =

lab(ṽ′) ∈ LA and parent(ṽ) = parent(ṽ′). From the inductive assumption, such a pair of
attributes nodes does not exist in Tσk

. Combining this with the observation that edges
which exist in Tσk

are not altered, we deduce that if attribute nodes ṽ and ṽ′ exist in Tσk+1

then either ṽ is created in iteration k of the loop at Line 5 and ṽ′ exists in Tσk
, or both

nodes ṽ and ṽ′ are created in iteration k.

Consider first the case where node ṽ is created in iteration k and node ṽ′ exists in Tσk
,

and let k′ denote the iteration of the loop at Line 5 within which node ṽ′ has been created.
We note that ṽ′ has been created within the loop at Line 5 because ṽ′ 6= vρ given that ṽ′ is
an attribute node. Now, ṽ ∈ nodes(Rk+1) and ṽ′ ∈ nodes(Rk′+1) according to Lemma 6.3.
Hence, Rk+1 = Rk′+1 since lab(ṽ) = lab(ṽ′) and parent(ṽ) = parent(ṽ′) per assumption.
Given that Rk+1 = Rk′+1, if k 6= k′ then this contradicts the assumption that R2, . . . , Rm is
a set of paths. However, if k = k′ then this contradicts the assumption that ṽ′ exists in Tσk

,
and so Tσk+1

satisfies (4.ii) with respect to every pair of attribute nodes ṽ and ṽ′ where ṽ is
a node created in iteration k of the loop at Line 5 and ṽ′ is a node which exists in Tσk

.

Consider now the case that both nodes ṽ and ṽ′ are created in iteration k of the loop at
Line 5. Then, given that ṽ 6= ṽ′, nodes ṽ and ṽ′ have been created at Line 7, and consequently
path Rk+1 satisfies the condition at Line 6. Further, since parent(ṽ) = parent(ṽ′) per
assumption, Rk+1 satisfies the condition at Line 10. We note that if Rk+1 does not satisfy
the condition at Line 10 then parent(ṽ) 6= parent(ṽ′) according to Lines 14 and 15. Now,
given that Rk+1 satisfies the condition at Line 6, there exists path D ∈ D such that D̈ ⊂



6.2. IMPLICATION OF XKEYS 153

(Rk+1 ∩D). Combining this with the previous observation that Rk+1 satisfies the condition
at Line 10, i.e. that D̈ = parent(Rk+1), we deduce that parent(Rk+1) ⊂ (Rk+1 ∩ D),
and therefore D = Rk+1 since Rk+1 ends in an attribute label given that ṽ and ṽ′ are
attribute nodes. Consequently, Rk+1 ∈ D, since D ∈ D per assumption. This however
clearly contradicts the requirement on the input of algorithm GCEXKI that for all D ∈D,
last(D) /∈ LA if parent(D) = D̈, since {ṽ, ṽ′} ⊆ nodes(Rk+1) from Lemma 6.3 and therefore
last(Rk+1) ∈ LA given that ṽ and ṽ′ are attribute nodes. Hence, Tσk+1

also satisfies (4.ii)
with respect to every pair of attribute nodes ṽ and ṽ′ which are both created in iteration k
of the loop at Line 5.

(ii) It is shown first that Tσ conforms to P , i.e. that for every node v in Tσ, if P is the
path such that v ∈ nodes(P ) then P ∈ P . Note for this purpose, that ρ ∈ P , since P is
downward-closed per assumption, and that therefore Tσ conforms to P initially at Line 2.
It therefore remains to be shown that whenever a node v is created in an iteration k of the
loop at Line 5, then P ∈ P . This is however easily verified, since v ∈ nodes(Rk+1) according
to Lemma 6.3, and Rk+1 ∈ P , since Rk+1 ∈ {R2, . . . , Rm} and {R2, . . . , Rm} ⊂ P .

Since Tσ conforms to P , Tσ is complete w.r.t. P according to Definition 5.2 if whenever
P and P̄ are paths in P such that P ⊂ P̄ and there exists node v ∈ nodes(P ) then there
exists node v̄ such that v̄ ∈ nodes(P̄ ) and v ∈ anc-or-self(v̄), which is what we show next.

Assume first that either P = ρ or that P does not satisfy the condition at Line 6 in
Algorithm 6.2. Note that if P = ρ then nodes(P ) contains exactly one node, which is the
root node vρ, since Tσ conforms to Definition 3.11 as shown previously. If instead P does
not satisfy the condition at Line 6 in Algorithm 6.2 then nodes(P ) contains exactly one
node according to (ii) in Lemma 6.3. Hence, if P = ρ or P does not satisfy the condition at
Line 6 in Algorithm 6.2, then there exists exactly one node v in Tσ such that v ∈ nodes(P ),
i.e. {v} = nodes(P ). Further, given that P ⊂ P̄ it follows that P̄ 6= ρ and therefore either
(i) or (ii) in Lemma 6.3 applies to P̄ . Consequently, nodes(P̄ ) 6= ∅. Now, let v̄ be a node in
Tσ such that v̄ ∈ nodes(P̄ ). Then, v ∈ anc-or-self(v̄) follows directly from the observation
above that {v} = nodes(P ) and the assumptions that v̄ ∈ nodes(P̄ ) and that P ⊂ P̄ .

It therefore remains to be shown that node v̄ exists also in case that P satisfies the
condition at Line 6 in Algorithm 6.2. Given that P satisfies this condition and that v ∈
nodes(P ), (i) in Lemma 6.3 implies that there exists node v′ such that {v} = nodes(P )∩Z
and {v′} = nodes(P ) ∩ Z ′ or vice versa. Note that v and v′ are the only nodes in Tσ that
are reachable over path P .

Assume first that {v} = nodes(P ) ∩ Z. Note that P ⊂ P̄ per assumption, and that
therefore (v) in Lemma 6.2 implies that P̄ satisfies the condition at Line 6 too. Consequently,
(i) in Lemma 6.3 implies that there exist nodes v̄ and v̄′ such that {v̄} = nodes(P̄ )∩Z and
{v̄′} = nodes(P̄ ) ∩ Z ′. Now, given that {v̄} = nodes(P̄ ), and that {v, v′} = nodes(P ),
and that P ⊂ P̄ , then either v ∈ anc-or-self(v̄) or v′ ∈ anc-or-self(v̄). However, if v′ ∈
anc-or-self(v̄) then this contradicts (i) in Lemma 6.3, in particular that anc-or-self(v̄)∩Z ′ = ∅
since v̄ ∈ Z per assumption. Consequently, v ∈ anc-or-self(v̄).

This argumentation also applies to the case where {v} = nodes(P ) ∩ Z ′ and {v′} =
nodes(P ) ∩Z, which establishes that Tσ is complete w.r.t. P . �
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Lemma 6.5 Let Tσ be the tree returned by a run of algorithm GCEXKI(P ,D, D̈). Then
for every path P ∈ P , tree Tσ contains exactly

(i) two nodes v, v′ such that {v} = nodes(P ) ∩ Z and {v′} = nodes(P ) ∩ Z ′ and
anc-or-self(v) ∩ Z ′ = anc-or-self(v′) ∩ Z = ∅, where Z,Z ′ are the sets of paths at
Line 1, if path P satisfies the condition at Line 6;

(ii) one node v such that {v} = nodes(P ) and anc-or-self(v)∩ (Z ∪Z ′) = ∅, if path P does
not satisfy the condition at Line 6.

Proof (Lemma 6.5) Note that P = R1, . . . , Rm according to Line 3 in Algorithm 6.2. Also,
since paths R1, . . . , Rm are downward-closed and in increasing length order per assumption,
R1 = ρ. Hence, for every path P ∈ P , either P = ρ or P ∈ {R2, . . . , Rm}.
(i) Given that P satisfies the condition at Line 6, P 6= ρ according to (vi) in Lemma 6.2 and
therefore P ∈ {R2, . . . , Rm} from the observation above. Hence, (i) in Lemma 6.3 applies
to P , which establishes (i) in Lemma 6.5.

(ii) From the observation above, either P = ρ or P ∈ {R2, . . . , Rm}. Suppose first that
P ∈ {R2, . . . , Rm}. Then (ii) in Lemma 6.3 applies to P , which establishes (ii) in Lemma
6.5. If instead P = ρ, then P /∈ {R2, . . . , Rm} and therefore no node v̄ is created within the
loop at Line 5 in Algorithm 6.2 such that v̄ ∈ nodes(P ) according to Lemma 6.3. Hence the
only node in tree Tσ that is reachable over path ρ is node vρ, which is created at Line 2 in
Algorithm 6.2 and consequently {vρ} = nodes(P ). Also, anc-or-self(vρ) = {vρ}, since Tσ
conforms to Definition 3.11 according to Lemma 6.4, and therefore anc-or-self(vρ) ∩ (Z ∪
Z ′) = ∅ since algorithm GCEXKI does not add vρ to Z or Z ′. �

Lemma 6.6 Let Tσ be the tree returned by a run of algorithm GCEXKI(P ,D, D̈). Also,
let P, P̄ be paths in P and let v, v̄ be nodes in Tσ such that v ∈ nodes(P ) and v̄ ∈ nodes(P̄ ).
Then, closest(v, v̄) is true if

(i) P does not satisfy the condition at Line 6 in Algorithm 6.2, or
(ii) P and P̄ satisfy the condition at Line 6 in Algorithm 6.2, and either {v, v̄} ⊆ Z or
{v, v̄} ⊆ Z ′, where Z,Z ′ are the sets of paths at Line 1 in Algorithm 6.2.

Proof (Lemma 6.6) Since v ∈ nodes(P ) and v̄ ∈ nodes(P̄ ) per assumption, it follows
that there exist nodes {v′′, v̄′′} ⊆ nodes(P ∩ P̄ ) such that v′′ ∈ anc-or-self(v) and
v̄′′ ∈ anc-or-self(v̄). Consequently, closest(v, v̄) is true if v′′ = v̄′′.

(i) Given that P does not satisfy the condition at Line 6, also P ∩ P̄ does not satisfy this
condition according to (iv) in Lemma 6.2 since P ∩ P̄ ⊆ P . Consequently, (ii) in Lemma 6.5
applies to path P ∩ P̄ and hence Tσ contains exactly one node that is reachable over path
P ∩ P̄ . Hence, v′′ = v̄′′ follows from the observation above that {v′′, v̄′′} ⊆ nodes(P ∩ P̄ ),
and so closest(v, v̄) = true.

(ii) Consider first the case that {v, v̄} ⊆ Z, and suppose that P ∩ P̄ does not satisfy the
condition at Line 6. Then nodes(P∩P̄ ) contains exactly one node according to (ii) in Lemma
6.5 and so v′′ = v̄′′, given that {v′′, v̄′′} ⊆ nodes(P ∩ P̄ ), and hence closest(v, v̄) = true.

If instead P∩P̄ satisfies the condition at Line 6, then, from (i) in Lemma 6.5, nodes(P∩P̄ )
contains exactly two nodes, call them ṽ and ṽ′, such that {ṽ} = nodes(P ∩ P̄ ) ∩ Z and
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{ṽ′} = nodes(P ∩ P̄ ) ∩ Z ′. Consequently, if v′′ 6= v̄′′ then either v′′ = ṽ′ or v̄′′ = ṽ′,
since {v′′, v̄′′} ⊆ nodes(P ∩ P̄ ) and nodes(P ∩ P̄ ) = {ṽ, ṽ′} from the observations above.
However, if v′′ = ṽ′ then v′′ ∈ Z ′ which clearly contradicts (i) in Lemma 6.3, i.e. that
anc-or-self(v) ∩ Z ′ = ∅. Note that (i) in Lemma 6.3 applies to v, since v must have been
created within the loop at Line 5 given that v ∈ Z. Likewise, if v̄′′ = ṽ′ then v̄′′ ∈ Z ′ which
contradicts that anc-or-self(v̄) ∩Z ′ = ∅. Hence, v′′ = v̄′′ and so closest(v, v̄) is true.

The argumentation applies analogously for the case where {v, v̄} ⊆ Z ′. Hence (ii) in
Lemma 6.6 is established. �

We are now ready to establish Theorem 6.4.

Proof (Theorem 6.4) It is shown that given a downward-closed set of paths P and a set of
XKeys Σ ∪ {σ} which conform to P , if DXKI(Σ, σ) is false then there exists tree Tσ that
is complete w.r.t. P such that Tσ � Σ but Tσ 2 σ. Note that Tσ is a counter example for
the implication of σ by Σ. Also, we assume in the following that σ is of the general form
σ = (S, (F1, . . . , Fn)). Therefore

paths(σ) = (S.F1, . . . , S.Fn).

We now first show how the input for algorithm GCEXKI is determined.

Determining the input for the run of algorithm GCEXKI: The downward-closed set
of paths P the XKeys Σ∪ {σ} are conforming to, is used to determine the structure of tree
Tσ and is therefore the first piece of input for the run of GCEXKI. In order to determine the
choice of the set of paths D and the single path D̈, recall first that DXKI(Σ, σ) is false per
assumption and that therefore X ⊂ paths(σ) according to Line 13 in Algorithm 6.1. Hence,
one can choose permutation χ : {1, . . . , n} → {1, . . . , n} and integer x, where 0 ≤ x < n,
such that for all i ∈ {1, . . . , n}

S.Fχ(i) ∈
{
X i ≤ x
paths(σ)−X i > x

Note that x < n since DXKI(Σ, σ) = false per assumption, and therefore at least one path
from paths(σ) is missing in X. Therefore, {S.Fχ(x+1), . . . , S.Fχ(n)} is definitely non-empty.
In contrast, {S.Fχ(1), . . . , S.Fχ(x)} is the empty set in case that x = 0, i.e. if not even one

path was added to X within the run DXKI(Σ, σ). Further, let for all i ∈ {1, . . . , x}, R̈χ(i)

be a prefix of S.Fχ(i) such that

R̈χ(i) = shortest prefix of S.Fχ(i) | S.Fχ(i) ∩ S.Fχ(j) ⊆ R̈χ(i)∀j ∈ {x+ 1, . . . , n}.

The choices of D̈ and D are dependent on the paths {R̈χ(1), . . . , R̈χ(x)} and on the subsets
{S.Fχ(1), . . . , S.Fχ(x)} and {S.Fχ(x+1), . . . , S.Fχ(n)} of paths(σ). In particular:

D̈ =

{
ρ {S.Fχ(1), . . . , S.Fχ(x)} = ∅
R̈χ(k) | R̈χ(k) 6⊂ R̈χ(i)∀i ∈ {1, . . . , x} {S.Fχ(1), . . . , S.Fχ(x)} 6= ∅

D = {S.Fχ(i) ∈ {S.Fχ(x+1), . . . , S.Fχ(n)} | D̈ ⊂ S.Fχ(i)}
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The choice of D̈ is not deterministic in case that {S.Fχ(1), . . . , S.Fχ(x)} 6= ∅ since in general

more than one path R̈χ(k) ∈ {R̈χ(1), . . . , R̈χ(x)} may satisfy the condition that R̈χ(k) 6⊂
R̈χ(i) for all i ∈ {1, . . . , x}. Note however that if {S.Fχ(1), . . . , S.Fχ(x)} 6= ∅ then at least

one R̈χ(k) must satisfy this condition, since there are no circles within the strict prefix

relationships in a set of paths, and therefore at least one R̈χ(k) must not be a strict prefix

of any path in {R̈χ(1), . . . , R̈χ(x)}. Hence, the choice of D̈ is determined also in case that
{S.Fχ(1), . . . , S.Fχ(x)} 6= ∅.

Next, algorithm GCEXKI requires that for all D ∈ D, last(D) ∈ LA ∪ {S}, and that
last(D) /∈ LA if parent(D) = D̈ (cf. top of Algorithm 6.2). It is verified subsequently that
D satisfies these requirements. In particular:

(i) for all D ∈ D, last(D) ∈ LA ∪ {S}: Note that the fields of σ end in attribute or
text labels, given that σ conforms to Definition 3.20. That is last(P ) ∈ LA ∪ {S} for all
P ∈ paths(σ). Also, D ⊆ paths(σ) according to the definition of D and consequently
last(D) ∈ LA ∪ {S} for all D ∈D.

(ii) for all D ∈ D, last(D) /∈ LA if parent(D) = D̈: Assume to the contrary that for
some D ∈D, last(D) ∈ LA and parent(D) = D̈. Then, as shown next, this contradicts the
assumption that no more change to X is possible within the run of DXKI(Σ, σ).

Note that D ∈ paths(σ)−X since D ⊆ {S.Fχ(x+1), . . . , S.Fχ(n)} according to the defini-
tion of D, and {S.Fχ(x+1), . . . , S.Fχ(n)} = paths(σ) −X per assumption. From combining
this with the assumption that last(D) ∈ LA it follows that D satisfies the condition at
Line 3 in Algorithm 6.1, and thus one more change to X is possible if there exists path
X̄ ∈ X ∪ {ρ} such that parent(D) ⊆ X̄. In order to verify that path X̄ ∈ X ∪ {ρ} exists,
suppose first that {S.Fχ(1), . . . , S.Fχ(x)} = ∅, and let X̄ = ρ. Then parent(D) ⊆ X̄ follows

because parent(D) = D̈ per assumption and D̈ = ρ, given that {S.Fχ(1), . . . , S.Fχ(x)} = ∅,
and thus parent(D) = ρ = X̄. Note that parent(D) ⊆ X̄ if parent(D) = X̄. Suppose now
that {S.Fχ(1), . . . , S.Fχ(x)} 6= ∅. Then D̈ ∈ {R̈χ(x+1), . . . , R̈χ(n)} per definition. Now, let

R̈χ(k) be the path chosen for D̈, and let X̄ = S.Fχ(k). Then parent(D) ⊆ X̄ follows because

parent(D) = D̈ per assumption and therefore parent(D) = R̈χ(k), given that D̈ = R̈χ(k),

and thus parent(D) ⊆ S.Fχ(k) = X̄ since R̈χ(k) ⊆ S.Fχ(k) from the definition of R̈χ(k).

The counter example tree Tσ violates σ: It is shown now that the tree Tσ which is
returned by GCEXKI(P ,D, D̈) violates the XKey σ.

Note first that D is a non-empty subset of {S.Fχ(x+1), . . . , S.Fχ(n)}. This is because if

D̈ = ρ then D̈ ⊆ S.Fχ(i) for all i ∈ {x+1, . . . , n} and thereforeD = {S.Fχ(x+1), . . . , S.Fχ(n)},
which is non-empty as shown previously. If instead D̈ = R̈χ(k) then, since R̈χ(k) is defined

to be the shortest prefix of S.Fχ(k) such that S.Fχ(k) ∩ S.Fχ(j) ⊆ R̈χ(k) for all j ∈ {x +
1, . . . , n}, it follows that there exists S.Fχ(i) ∈ {S.Fχ(x+1), . . . , S.Fχ(n)} such that S.Fχ(k) ∩
S.Fχ(i) = R̈χ(k). From this together with the observation that S.Fχ(k) and S.Fχ(i) are legal
paths that end in attribute or text labels since paths(σ) conforms to Definition 3.20 and
{S.Fχ(k), S.Fχ(i)} ⊆ paths(σ) per definition, it follows that R̈χ(k) ⊂ S.Fχ(i). Consequently,

S.Fχ(i) ∈D from the definition of D. Hence, D is non-empty also in case that D̈ = R̈χ(k).
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Next, given that D is a non-empty subset of paths(σ), one can choose permutation
δ : {1, . . . , n} → {1, . . . , n} and integer d, where 1 ≤ d ≤ n, such that ∀i ∈ {1, . . . , n}

S.Fδ(i) ∈
{
D i ≤ d
paths(σ)−D i > d

It is shown next that there exist nodes {vδ(1), . . . , vδ(d)} ⊆ Z and {v′δ(1), . . . , v
′
δ(d)} ⊆ Z ′ in

tree Tσ, where Z and Z ′ denote the sets of paths at Line 1 in Algorithm 6.2, such that

− ∀i ∈ {1, . . . , d}, {vδ(i), v′δ(i)} ⊆ nodes(S.Fδ(i)), and

− ∀i, j ∈ {1, . . . , d}, closest(vδ(i), vδ(j)) = closest(v′δ(i), v
′
δ(j)) = true, and

− ∀i ∈ {1, . . . , d}, val(vδ(i)) = val(v′δ(i)), and

− ∀i ∈ {1, . . . , d}, vδ(i) 6= v′δ(i).

In order to verify that nodes vδ(1), . . . , vδ(d) and v′δ(1), . . . , v
′
δ(d) exist, it is shown first that

for all i ∈ {1, . . . , d}, S.Fδ(i) satisfies the condition at Line 6 in Algorithm 6.2, i.e. it is

shown that there exists path D ∈D such that D̈ ⊂ S.Fδ(i) ∩D. Note that S.Fδ(i) ∈D per

definition and thus, by taking D = S.Fδ(i), D̈ ⊂ S.Fδ(i) ∩D if D̈ ⊂ S.Fδ(i), which however
follows immediately from the definition of D.

Given that for all i ∈ {1, . . . , d}, S.Fδ(i) satisfies the condition at Line 6 in Algorithm
6.2, from (i) in Lemma 6.5, there are distinct nodes vδ(i) and v′δ(i) in Tσ such that {vδ(i)} =

nodes(S.Fδ(i)) ∩ Z and {v′δ(i)} = nodes(S.Fδ(i)) ∩ Z ′. Also, val(vδ(i)) = val(v′δ(i)) since

S.Fδ(i) ∈ D and therefore vδ(i) and v′δ(i) have been assigned the same value at Line 18 in
Algorithm 6.2.

Finally, closest(vδ(i), vδ(j)) = closest(v′δ(i), v
′
δ(j)) = true for all i, j ∈ {1, . . . , d} follows

from (ii) in Lemma 6.6, given that {vδ(i), vδ(j)} ⊆ Z and {v′δ(i), v′δ(j)} ⊆ Z ′, and that S.Fδ(i)
and S.Fδ(j) satisfy the condition at Line 6 because of our previous result that all paths in
S.Fδ(1), . . . , S.Fδ(d) satisfy this condition.

Now, observe that {S.Fδ(1), . . . , S.Fδ(d)} = paths(σ) if D = paths(σ), and that therefore
nodes vδ(1), . . . , vδ(d) and v′δ(1), . . . , v

′
δ(d) violate σ in Tσ according to Lemma 5.6 in this case.

It therefore remains to be shown that Tσ 2 σ in case that D ⊂ paths(σ). For this
purpose, it is shown first that if D ⊂ paths(σ) and therefore {S.Fδ(d+1), . . . , S.Fδ(n)} is not
the empty set, then there exist nodes v̄δ(d+1), . . . , v̄δ(n) in Tσ such that

− ∀i ∈ {d+ 1, . . . , n}, v̄δ(i) ∈ nodes(S.Fδ(i)), and
− ∀i, j ∈ {d+ 1, . . . , n}, closest(v̄δ(i), v̄δ(j)) = true.

The crucial prerequisite in order to verify the existence of nodes v̄δ(d+1), . . . , v̄δ(n) is that for
all i ∈ {d+ 1, . . . , n}, path S.Fδ(i) does not satisfy the condition at Line 6 in Algorithm 6.2,
which is established next.

Assume for this purpose to the contrary that for some i ∈ {d + 1, . . . , n}, path S.Fδ(i)
satisfies the condition at Line 6. Then, since D = {S.Fδ(1), . . . , S.Fδ(d)} per assumption,

there exists path S.Fδ(j) ∈ {S.Fδ(1), . . . , S.Fδ(d)} such that D̈ ⊂ S.Fδ(i) ∩ S.Fδ(j).
It follows from the definition of S.Fδ(i) and S.Fδ(j) that {S.Fδ(i), S.Fδ(j)} ⊆ paths(σ).

From this together with the definitions of the sets of paths {S.Fχ(1), . . . , S.Fχ(x)} and
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{S.Fχ(x+1), . . . , S.Fχ(n)} it follows then that {S.Fδ(i), S.Fδ(j)} ⊆ {S.Fχ(1), . . . , S.Fχ(x),
S.Fχ(x+1), . . . , S.Fχ(n)}. Therefore, let i′, j′ ∈ {1, . . . , n} be the indexes such that S.Fδ(i) =

S.Fχ(i′) and S.Fδ(j) = S.Fχ(j′). Then, D̈ ⊂ S.Fχ(i′) ∩ S.Fχ(j′) if path S.Fδ(i) satisfies the
condition at Line 6 in Algorithm 6.2.

Note that j′ ∈ {x + 1, . . . , n} since S.Fδ(j) ∈ D per assumption and D ⊆
{S.Fχ(x+1), . . . , S.Fχ(n)} per definition. Note further that S.Fχ(i′) /∈ D since S.Fχ(i′) =
S.Fδ(i) per assumption, and S.Fδ(i) /∈ D according to the definition of paths
S.Fδ(d+1), . . . , S.Fδ(n). Now, if also i′ ∈ {x+ 1, . . . , n} then this contradicts the assumption

that S.Fχ(i′) /∈ D because S.Fχ(i′) ∈ D if D̈ ⊂ S.Fχ(i′) according to the definition of D,

and D̈ ⊂ S.Fχ(i′) is implied by the assumption that D̈ ⊂ S.Fχ(i′) ∩ S.Fχ(j′). The case that
i′ ∈ {x+ 1, . . . , n} is therefore excluded.

Assume now that i′ ∈ {1, . . . , x} instead and let R̈χ(k) be the path in {R̈χ(1), . . . , R̈χ(x)}
chosen for D̈. Note that if i′ ∈ {1, . . . , x}, then {S.Fχ(1), . . . , S.Fχ(x)} is not the empty set

and therefore D̈ ∈ {R̈χ(1), . . . , R̈χ(x)} per definition. Then R̈χ(k) ⊂ S.Fχ(i′)∩S.Fχ(j′) if path

S.Fδ(i) satisfies the condition at Line 6 in Algorithm 6.2. Consequently, R̈χ(k) ⊂ S.Fχ(i′).

Also, R̈χ(i′) ⊆ S.Fχ(i′) according to the definition of path R̈χ(i′), and hence either R̈χ(k) ⊂
R̈χ(i′) or R̈χ(i′) ⊆ R̈χ(k). If R̈χ(k) ⊂ R̈χ(i′) then this clearly contradicts the definition of D̈

since D̈ = R̈χ(k) per assumption. The case that R̈χ(k) ⊂ R̈χ(i′) is therefore excluded. If

instead R̈χ(i′) ⊆ R̈χ(k) then R̈χ(i′) ⊂ S.Fχ(i′) ∩ S.Fχ(j′) since R̈χ(k) ⊂ S.Fχ(i′) ∩ S.Fχ(j′) per

assumption. Then however S.Fχ(i′) ∩ S.Fχ(j′) 6⊆ R̈χ(i′), which contradicts the definition of

path R̈χ(i′). Therefore the case that R̈χ(i′) ⊆ R̈χ(k) is also excluded, which finally establishes
that path S.Fδ(i) does not satisfy the condition at Line 6 in Algorithm 6.2.

Next, it follows then from (ii) in Lemma 6.3 that for all i ∈ {d+1, . . . , n}, exactly one node
v̄δi has been created within the run of GCEXKI(P ,D, D̈) such that {v̄δi} ∈ nodes(S.Fδ(i)).
Further, according to (i) in Lemma 6.6, closest(v̄δi, v̄δj) is true for all i, j ∈ {d+ 1, . . . , n}.

Finally, observe that with respect to the sets of nodes vδ(1), . . . , vδ(d), v̄δ(d+1), . . . , v̄δ(n)

and v′δ(1), . . . , v
′
δ(d), v̄δ(d+1), . . . , v̄δ(n), (i) in Lemma 6.6 implies that for all (i, j) ∈ {1, . . . , d}×

{d+1, . . . , n}, closest(vδ(i), v̄δ(j)) = closest(v′δ(i), v̄δ(j)) = true, since ∀i ∈ {d+1, . . . , n}, path
S.Fδ(i) does not satisfy the condition at Line 6 in Algorithm 6.2. Hence, the sets of nodes
vδ(1), . . . , vδ(d), v̄δ(d+1), . . . , v̄δ(n) and v′δ(1), . . . , v

′
δ(d), v̄δ(d+1), . . . , v̄δ(n) violate σ in Tσ also in

case that D ⊂ paths(σ), which establishes the result.

The counter example tree Tσ satisfies Σ: Tσ � Σ is demonstrated by showing the
contradiction that if Tσ 2 Σ then at least one more change to the set of paths X (cf. Lines 1
and 12 in Algorithm 6.1) is possible within the run DXKI(Σ, σ). For this purpose let σ̄ ∈ Σ
be an XKey such that Tσ 2 σ̄ and let σ̄ be of the general form

σ̄ = (S̄, (F̄1, . . . , F̄m)).

Then, since Tσ 2 σ̄ per assumption, there exist nodes v̄1, . . . , v̄m and v̄′1, . . . , v̄
′
m in tree Tσ

according to Lemma 5.6 such that

− ∀i ∈ {1, . . . ,m}, {v̄i, v̄′i} ⊆ nodes(S̄.F̄i), and
− ∀i ∈ {1, . . . ,m}, val(v̄i) = val(v̄′i), and
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− ∀i, j ∈ {1, . . . ,m}, closest(v̄i, v̄j) = true and closest(v̄′i, v̄
′
j) = true, and

− v̄i 6= v̄′i for at least one i ∈ {1, . . . ,m}.
Given that v̄i 6= v̄′i for at least one i ∈ {1, . . . ,m}, one can choose permutation π :
{1, . . . ,m} → {1, . . . ,m} and integer w, where 1 ≤ w ≤ m, such that for all i ∈ {1, . . . ,m}

v̄π(i)

{
6= v̄′π(i) i ≤ w
= v̄′π(i) i > w

Then, (i) in Lemma 6.3 implies for all i ∈ {1, . . . , w} that S̄.F̄π(i) satisfies the condition at
Line 6 in Algorithm 6.2, since v̄π(i) and v̄′π(i) are distinct nodes in Tσ such that {v̄π(i), v̄

′
π(i)} ⊆

nodes(S̄.F̄π(i)). Further, since val(v̄π(i)) = val(v̄′π(i)) for all i ∈ {1, . . . , w}, it follows that the
string-values of v̄π(i) and v̄π(i) have been assigned at Line 18 in Algorithm 6.2 within the run

GCEXKI(P ,D, D̈), and therefore S̄.F̄π(i) satisfies the condition at Line 17. Consequently,
S̄.F̄π(i) ∈D, for all i ∈ {1, . . . , w}.

Note that the definition of D implies that D ⊆ paths(σ) − X. From this together
with the observation above that for all i ∈ {1, . . . , w}, S̄.F̄π(i) ∈ D it follows then that
{S̄.F̄π(1), . . . , S̄.F̄π(w)} ⊆ paths(σ)−X.

Now, if w = m then {S̄.F̄π(1), . . . , S̄.F̄π(w)} = paths(σ̄) and consequently σ̄ satisfies the
condition at Line 6 in Algorithm 6.1 which establishes the desired contradiction that at least
one more change to X is possible within the run DXKI(Σ, σ).

It is therefore shown next that this contradiction also applies in case that w < m.
Note that {S̄.F̄π(1), . . . , S̄.F̄π(w)} ⊆ paths(σ̄) per definition. Also, {S̄.F̄π(1), . . . , S̄.F̄π(w)} ⊆
paths(σ)−X as shown above, and therefore {S̄.F̄π(1), . . . , S̄.F̄π(w)} ⊆ paths(σ̄)∩paths(σ)−
X. Consequently, σ̄ satisfies the condition at Line 9 in Algorithm 6.1 if there exists path
X̄ ∈ X ∪ {ρ} such that S̄.F̄π(i) ∩ S̄.F̄π(j) ⊆ X̄ for all (i, j) ∈ {1, . . . , w} × {w + 1, . . . ,m}.
Note that if path X̄ exists then σ̄ satisfies the condition at Line 9 in Algorithm 6.1, and
hence establishes the desired contradiction that at least one more change to X is possible.

The crucial prerequisite in order to verify that path X̄ exists, is that S̄.F̄π(i)∩S̄.F̄π(j) ⊆ D̈
for all (i, j) ∈ {1, . . . , w}×{w+1, . . . ,m}, which is shown next. Recall for this purpose that
S̄.F̄π(i) ∈D as shown above. Therefore the definition of D implies that D̈ ⊆ S̄.F̄π(i) for all
i ∈ {1, . . . , w}. Also, S̄.F̄π(i) ∩ S̄.F̄π(j) ⊆ S̄.F̄π(i) for all j ∈ {w + 1, . . . ,m} and therefore

either S̄.F̄π(i) ∩ S̄.F̄π(j) ⊆ D̈ or D̈ ⊂ S̄.F̄π(i) ∩ S̄.F̄π(j). It therefore remains to exclude the

case that D̈ ⊂ S̄.F̄π(i) ∩ S̄.F̄π(j).

Note for this purpose that node v̄π(j) has exactly one ancestor node at path S̄.F̄π(i) ∩
S̄.F̄π(j) since v̄π(j) ∈ nodes(S̄.F̄π(j)) per assumption, and let v̂ be this node. Then
{v̂} = nodes(S̄.F̄π(i) ∩ S̄.F̄π(j)) ∩ anc-or-self(v̄π(j)). From this together with Defini-
tion 3.22, closest(v̄π(i), v̄π(j)) = closest(v̄′π(i), v̄π(j)) = true iff v̂ ∈ anc-or-self(v̄π(i)) and

v̂ ∈ anc-or-self(v̄′π(i)). Conversely, if v̂ /∈ anc-or-self(v̄π(i)) or v̂ /∈ anc-or-self(v̄′π(i))

then closest(v̄π(i), v̄π(j)) = false or closest(v̄′π(i), v̄π(j)) = false, respectively. Hence, if

v̂ /∈ anc-or-self(v̄π(i)) or v̂ /∈ anc-or-self(v̄′π(i)) then this contradicts the assumption that

closest(v̄π(i), v̄π(j)) = closest(v̄′π(i), v̄π(j)) = true and therefore excludes the case that

D̈ ⊂ S̄.F̄π(i) ∩ S̄.F̄π(j), and so S̄.F̄π(i) ∩ S̄.F̄π(j) ⊆ D̈ ∀(i, j) ∈ {1, . . . , w} × {w + 1, . . . ,m}.
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In order to verify that either v̂ /∈ anc-or-self(v̄π(i)) or v̂ /∈ anc-or-self(v̄′π(i)) in case that

D̈ ⊂ S̄.F̄π(i) ∩ S̄.F̄π(j), note first that v̄π(i) ∈ Z and v̄′π(i) ∈ Z ′, where Z,Z ′ are the sets of

paths at Line 1 in Algorithm 6.2, according to (i) in Lemma 6.3, since S̄.F̄π(i) satisfies the
condition at Line 6 in Algorithm 6.2 as shown previously.

Further, path (S̄.F̄π(i) ∩ S̄.F̄π(j)) satisfies the condition at Line 6 in Algorithm 6.2,

since D̈ ⊂ (S̄.F̄π(i) ∩ S̄.F̄π(j)) per assumption, and clearly S̄.F̄π(i) ∩ (S̄.F̄π(i) ∩ S̄.F̄π(j)) =

(S̄.F̄π(i) ∩ S̄.F̄π(j)), and therefore path D ∈D exists such that D̈ ⊂ D ∩ (S̄.F̄π(i) ∩ S̄.F̄π(j)),
where D = S̄.F̄π(i). Note that S̄.F̄π(i) ∈D per assumption.

Given that path (S̄.F̄π(i) ∩ S̄.F̄π(j)) satisfies the condition at Line 6 in Algorithm 6.2,
(i) in Lemma 6.3 implies that either v̂ ∈ Z or v̂ ∈ Z ′. Now, if v̂ ∈ Z then this contra-
dicts (i) in Lemma 6.3, in particular that anc-or-self(v̄′π(i)) ∩ Z = ∅, since v̄′π(i) ∈ Z ′ and

v̂ ∈ anc-or-self(v̄′π(i)) per assumption. If instead v̂ ∈ Z ′ then anc-or-self(v̄π(i)) ∩ Z ′ 6= ∅,
since v̄π(i) ∈ Z as shown above and v̂ ∈ anc-or-self(v̄π(i)) per assumption, and there-
fore (i) in Lemma 6.3 is again contradicted. Therefore, either v̂ /∈ anc-or-self(v̄π(i)) or
v̂ /∈ anc-or-self(v̄′π(i)), as desired.

Given that S̄.F̄π(i) ∩ S̄.F̄π(j) ⊆ D̈ for all (i, j) ∈ {1, . . . , w} × {w + 1, . . . ,m} it is easily
verified that path X̄ ∈ X ∪ {ρ} exists such that S̄.F̄π(i) ∩ S̄.F̄π(j) ⊆ X̄ for all (i, j) ∈
{1, . . . , w} × {w + 1, . . . ,m}. For this purpose, assume first that X = ∅. Then, D̈ = ρ
per definition, and this together with the result that S̄.F̄π(i) ∩ S̄.F̄π(j) ⊆ D̈ for all (i, j) ∈
{1, . . . , w} × {w + 1, . . . ,m} implies that path X̄ exists, where X̄ = D̈ = ρ.

If instead X 6= ∅, then D̈ = R̈χ(k) per definition, where R̈χ(k) is a path in the set of
prefix paths {Rχ(1), . . . , Rχ(x)} of paths {S.Fχ(1), . . . , S.Fχ(x)} = X. Then, since S̄.F̄π(i) ∩
S̄.F̄π(j) ⊆ D̈ for all (i, j) ∈ {1, . . . , w} × {w + 1, . . . ,m} it follows that S̄.F̄π(i) ∩ S̄.F̄π(j) ⊆
R̈χ(k), and consequently also S̄.F̄π(i)∩S̄.F̄π(j) ⊆ S.Fχ(k) since R̈χ(k) ⊆ S.Fχ(k) per definition.
Therefore, path X̄ also exists in case thatX 6= ∅, where X̄ = S.Fχ(k). Note that S.Fχ(k) ∈X
per definition. Hence, Tσ � Σ. �

We now finally present our result on the completeness of inference rules R1 - R7.

Theorem 6.5 (Completeness of Inference Rules for XKeys) Given a set of XKeys
Σ and a single XKey σ, if Σ � σ then Σ ` σ.

Proof (Theorem 6.5) If Σ � σ then DXKI(Σ, σ) = true from Theorem 6.4, and if
DXKI(Σ, σ) = true then either σ ∈ Σ or Σ ` σ from Lemma 6.1. Now, if σ ∈ Σ then
Σ ` σ trivially holds true, and thus Σ � σ ⇒ Σ ` σ. �
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7.1 The Class of Core XINDs

Our motivation for defining the class of core XINDs is based on the belief that an XIND
satisfaction should not imply, as a hidden side effect, that each node in a set of nodes in an
XML tree T has the same value. We now justify this. Suppose that for the RHS selector
of an XIND σ = (S, [F1, . . . , Fn]) ⊆ (S′, [F ′1, . . . , F

′
n]), S′ = ρ, and for some i ∈ {1, . . . , n},

the RHS field F ′i is an attribute label. Then since there is only one root node, and in turn
at most one attribute node in nodes(S′.F ′i ,T), the semantics of σ means, that every node
in nodes(S.Fi,T) ∪ nodes(S′.F ′i ,T) must have the same value. We believe that this not
the intent of an XIND, and that such a constraint should be specified instead explicitly
in a DTD or XSD. Since the study of the interaction between structural constraints and
integrity constraints is known to be a complex one [67], and outside the scope of this thesis,
we exclude such an XIND and this leads to the following definition.

Definition 7.1 (Core XIND) An XIND (S, [F1, . . . , Fn]) ⊆ (S′, [F ′1, . . . , F
′
n]) is defined

to be a core XIND, if in case that S′ = ρ, then there does not exist a RHS field F ′i such
that length(F ′i ) = 1 and last(F ′i ) ∈ LA.

7.2 The Chase for Core XINDs

The primary tool in our reasoning on XINDs is a chase algorithm given in Algorithm 7.1,
which we will simply call the chase in the remainder of this chapter. The chase is a recursive
algorithm that takes as input a set of paths P , an XML tree T that is complete w.r.t P ,
and a set of XINDs Σ that conforms to P . The chase adds new nodes to T such that T � Σ.
From a bird-eyes view, the chase halts if the input XML tree Ts for a (recursive) step s
satisfies Σ, and otherwise the chase:

(i) chooses an XIND σs = (S, [F1, . . . , Fn]) ⊆ (S′, [F ′1, . . . , F
′
n]) from Σ such that Ts 2 σs

because of a list of LHS field nodes [v1, . . . , vn]
(ii) creates new nodes in Ts, such that the resulting XML tree Ts+1 contains a list of RHS

field nodes v′1, . . . , v
′
n that remove the violation of σs.

We now illustrate a step in the chase by an example.
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Figure 7.1: Step in the XIND chase.



7.2. THE CHASE FOR CORE XINDS 163

Algorithm 7.1 CHASE - The Chase for XINDs.

in: a downward-closed set of paths P
an XML tree T = (V ,E, lab, val) that is complete w.r.t. P
a set of core XINDs Σ that conform to P

out: an XML tree T̄ that subsumes T, is complete w.r.t. P and satisfies Σ

1: if T � Σ then
2: return T
3: else
4: let {R1, . . . , Rm} = P such that ∀ i, j ∈ {1, . . . ,m}, length(Ri) ≤ length(Rj) if i ≤ j
5: let σ = (S, [F1, . . . , Fn]) ⊆ (S′, [F ′1, . . . , F

′
n]) be an XIND in Σ such that T 2 σ

6: let [v1, . . . , vn] be a list of nodes that violates σ in T
7: let X = {root(T)}
8: for i := 1 to m do . remove violation
9: if there exists path F ′x ∈ [F ′1, . . . , F

′
n] such that Ri ∩ S′.F ′x 6= ρ then

10: {v̂} ← nodes(parent(Ri),T) ∩X
11: v ← newnode(V ); X ←X ∪ {v}
12: lab(v)← last(Ri)
13: E ← E ∪ (v̂, v)
14: if there exists path F ′y ∈ [F ′1, . . . , F

′
n] such that Ri = S′.F ′y then

15: val(v)← val(vy); . vy ∈ [v1, . . . , vn]
16: else if last(Ri) ∈ LA ∪ {S} then
17: val(v)← ”0”
18: end if
19: end if
20: end for
21: return CHASE(P ,T,Σ)
22: end if

Example 7.1 (chase step) Consider the downward-closed set of paths P = {A, A.B, A.B.D,
A.C, A.C.D, A.C.E} and the core XIND σ = (A.B, [D]) ⊆ (A.C, [D]). Then, XML tree Tσ depicted
in Figure 7.1a violates σ because of both [v2] and [v4]. Given that [v2] is chosen at Line 6,
the chase creates nodes v8 and v9 in XML tree Tσ+1 (cf. Figure 7.1b), which remove the
violation, and then adds v10 as a child of v8 in order that Tσ+1 is complete w.r.t. P .

We now introduce the notion of XML tree subsumption, which we require in order to estab-
lish the completeness of our inference rules for core XINDs in Section 7.4.1.

Definition 7.2 (Subsumption of XML Trees) An XML tree T = (V ,E, lab, val) is de-
fined to be subsumed within XML tree T̄ = (V̄ , Ē, l̄ab, v̄al), denoted by T ' T̄, if there
exists the subsumption mapping α : V → V̄ such that:

(i) α(root(T)) = root(T̄), and
(ii) if

(
v, ṽ
)
∈ E, then

(
α(v), α(ṽ)

)
∈ Ē, and

(iii) for every node v ∈ V , lab(v) = l̄ab
(
α(v)

)
, and

(iv) for every attribute or text node v ∈ V , val(v) = v̄al
(
α(v)

)
.
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We then have the following result on the chase.

Lemma 7.1 Let T be an XML tree that is complete with respect to a downward-closed
set of paths P , and let Σ be a set of XINDs which conform to P . Then, CHASE(P ,T,Σ)
terminates and returns an XML tree T̄ such that:

(i) T̄ subsumes T;
(ii) T̄ is complete w.r.t. P ;
(iii) T̄ satisfies Σ.

We now establish a couple of preliminary results that we require in order to demonstrate
Lemma 7.1.

Lemma 7.2 Let T = (V ,E, lab, val) and T̄ = (V̄ , Ē, l̄ab, v̄al) be XML trees such that
T ' T̄, and let α : V → V̄ be the subsumption mapping. Then, for every pair of nodes v
and ṽ in V :

(i) if v = parent(ṽ) then α(v) = parent(α(ṽ));
(ii) if v ∈ anc-or-self(ṽ) then α(v) ∈ anc-or-self(α(ṽ));
(iii) if v1. · · · .vn is a walk in T where v = vn, then α(v1). · · · .α(vn) is a walk in T̄;
(iv) if P is the path such that v ∈ nodes(P,T) then α(v) ∈ nodes(P, T̄);
(v) if closest(v, ṽ) = true then closest(α(v), α(ṽ)) = true.

Proof (Lemma 7.2) (i) Given that v = parent(ṽ), (v, ṽ) is an edge in E. Consequently,
(α(v), α(ṽ)) is an edge in Ē from (ii) in Definition 7.2 and thus α(v) = parent(α(ṽ)).

(ii) Given that v ∈ anc-or-self(ṽ), either v = ṽ or v ∈ ancestor(ṽ). If v = ṽ then
α(v) = α(ṽ) according to Definition 7.2 and thus α(v) ∈ anc-or-self(α(ṽ)). If instead
v ∈ ancestor(v), then α(v) ∈ ancestor(α(ṽ)) follows from (i) in Lemma 7.2 since function
ancestor returns the transitive closure of parents of a node per definition. Therefore, α(v) ∈
anc-or-self(α(ṽ)) also in case that v ∈ ancestor(ṽ).

(iii) From (i) in Lemma 7.2, α(vi−1) = parent(α(vi)) for all i ∈ {1, . . . , n} where i > 1.
From this together with (i) in Definition 7.2, α(v1). · · · .α(vn) is a walk in T̄.

(iv) Let p = v1. · · · .vn be the walk in T such that v = last(p). Then α(v1). · · · .α(vn) is
a walk in T̄ according to (iii) in Lemma 7.2. Further, given that v ∈ nodes(P,T) and that
v = last(p), path P = l1. · · · .ln where for all i ∈ {1, . . . , n}, li = lab(vi). Also, α(v) = α(vn)
given that v = last(p) = vn, and thus α(v) = α(vn) ∈ nodes(P, T̄) since ∀i ∈ {1, . . . , n},
lab(α(vi)) = lab(vi) from (iii) in Definition 7.2, and lab(vi) = li as shown previously.

(v) Given that closest(v, ṽ) = true, there exists node v̂ in T according to Definition
3.22 such that v̂ ∈ anc-or-self(v), and v̂ ∈ anc-or-self(ṽ) and v̂ ∈ nodes(P ∩ P̃ ,T), where
P and P̃ are the paths such that v ∈ nodes(P,T) and ṽ ∈ nodes(P̃ ,T). We now show
that closest(α(v), α(ṽ)) = true by showing that node α(v̂) satisfies (i) - (iii) in Defini-
tion 3.22 w.r.t. nodes α(v) and α(ṽ). Thereby, (i) and (ii) in Definition 3.22, i.e. that
α(v̂) ∈ anc-or-self(α(v)) and α(v̂) ∈ anc-or-self(α(ṽ)), follow from (ii) in Lemma 7.2 and
the assumption that v̂ ∈ anc-or-self(v) and v̂ ∈ anc-or-self(ṽ), respectively. Further, (iii) in
Definition 3.22, i.e. that α(v̂) ∈ nodes(P ∩ P̃ , T̄), follows from (iv) in Lemma 7.2 and the
assumption that v̂ ∈ nodes(P ∩ P̃ ,T). �

We now introduce some terminology which we will use in the remainder of this chapter.
The chase is recursive, and hence we use Ts to denote the input XML tree for a (recursive)
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step s in the algorithm. Also, in case that Ts 2 Σ in step s, we use σs to denote the XIND
chosen at Line 5, and Xs to denote the set of nodes at Line 7.

Lemma 7.3 Let T be an XML tree that is complete with respect to a downward-closed
set of paths P = {R1, . . . , Rm}, and let Σ be a set of core XINDs which conform to P .
Then, for every iteration i ∈ {1, . . . ,m} of the loop at Line 8 in Algorithm 7.1 in a step s of
CHASE(P ,T,Σ)

(i) if Ri satisfies the condition at Line 9, then length(Ri) ≥ 2;
(ii) if Ri satisfies the condition at Line 9 and length(Ri) > 2, then parent(Ri) satisfies the

condition at Line 9;
(iii) if the condition at Line 9 is met for the first time within step s, then length(Ri) = 2;

Proof (Lemma 7.3) (i) Assume to the contrary, that length(Ri) = 1. Then Ri = ρ and con-
sequently for all F ′x ∈ [F ′1, . . . , F

′
n], Ri∩S′.F ′x = ρ. This however contradicts the assumption

that Ri satisfies the condition at Line 9 and thus length(Ri) ≥ 2.

(ii) Since path Ri satisfies the condition at Line 9 per assumption, there exists path F ′x ∈
[F ′1, . . . , F

′
n], such that Ri∩S′.F ′x 6= ρ. Now, if parent(Ri) 6= ρ, then also parent(Ri)∩S′.F ′x 6=

ρ, since parent(Ri) ⊂ Ri per definition. Thereby, since length(Ri) > 2 per assumption, it
follows that length(parent(Ri)) > 1 and consequently parent(Ri) 6= ρ. Thus, parent(Ri)
satisfies the condition at Line 9.

(iii) Since Ri satisfies the condition at Line 9 per assumption, it follows that length(Ri) ≥
2 according to (i) in Lemma 7.3, and it therefore remains to show that 2 ≤ length(Ri). For
this purpose, assume to the contrary that length(Ri) > 2. Then, path parent(Ri) exists
and also parent(Ri) ∈ {R1, . . . , Rm}, since paths {R1, . . . , Rm} are downward-closed per
assumption. Also, path parent(Ri) satisfies the condition at Line 9 according to (ii) in
Lemma 7.3. This however contradicts the assumption that the condition at Line 9 is satisfied
within step s for the first time in iteration i, since paths {R1, . . . , Rm} are ordered by length
according to Line 4, and therefore Ri succeeds path parent(Ri) within the ordered set of
paths {R1, . . . , Rm}. �

Lemma 7.4 Let T be an XML tree that is complete with respect to a downward-closed set
of paths P = {R1, . . . , Rm}, and let Σ be a set of core XINDs which conform to P . If a
node v is created in a step s of CHASE(P ,T,Σ),

(i) {v} = nodes(Ri,Ts)∩Xs, where i denotes the iteration of the loop at Line 8 in which
node v was created;

(ii) {root(Ts)} = anc-or-self(v) ∩ anc-or-self(ṽ), if ṽ is a node in Ts such that ṽ /∈Xs;
(iii) closest(v, ṽ) = true, if ṽ is a node in Ts such that ṽ ∈Xs.

Proof (Lemma 7.4) We demonstrate Lemma 7.4 by induction over the iterations of the loop
at Line 8. We note that v is created in an iteration i of the loop at Line 8 iff path Ri satisfies
the condition at Line 9. Also, we use vi to denote that node v was created in iteration i.

Base Case: We assume that the condition at Line 9 is met for the first time within iteration
x of the loop at Line 8 in step s, and we use this iteration as base case.
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(i) From (iii) in Lemma 7.3, length(Rx) = 2 and therefore parent(Rx) = ρ. Hence, v̂ =
root(Ts) at Line 10. We note that root(Ts) ∈ Xs according to Line 7. Given that v̂ =
root(Ts), edge (root(Ts), vx) is added to E at Line 13 and therefore parent(vx) = root(Ts).
The resulting walk root(Ts).vx is a walk over path Rx, since Rx is of the form ρ. last(Rx),
given that length(Rx) = 2, and lab(vx) = last(Rx) according to Line 12. Consequently,
vx ∈ nodes(Rx,Ts). Also, {vx} = nodes(Rx,Ts) ∩Xs, since vx is the first node added to
Xs in step s, given that the condition at Line 9 is met for the first time in iteration x.

(ii) We show that if ṽ is a node in Ts and ṽ /∈ Xs, then anc-or-self(vx) ∩ anc-or-self(ṽ) =
{root(Ts)}. Given that parent(vx) = root(Ts) it follows that anc-or-self(vx) =
{root(Ts), vx}. Therefore, if anc-or-self(ṽ)∩anc-or-self(vx) 6= {root(Ts)}, then either vx = ṽ
or vx ∈ ancestor(ṽ). However, ṽ 6= vx follows from the assumption that ṽ /∈ Xs and the
observation that vx ∈ Xs according to Line 11. Also, vx /∈ ancestor(ṽ) since vx is newly
created per assumption and is therefore a leaf node in Ts within iteration x.

(iii) If ṽ is a node in Ts and ṽ ∈ Xs, then either ṽ = vx or ṽ = root(Ts). In both cases
closest(vx, ṽ) follows directly from Definition 3.22.

Inductive Step: We now assume that Lemma 7.4 holds true until iteration y, where y ≥ x,
and establish the inductive step by showing that Lemma 7.4 also holds true for the iteration
z, where z > y, within which a node is created next.

(i) We show that there exists node v̂ at Line 10 such that {v̂} = nodes(parent(Rz),Ts)∩Xs.
We note that either length(Rz) = 2 or length(Rz) > 2 according to (i) in Lemma 7.3. If
length(Rz) = 2 then parent(Rz) = ρ, and therefore {v̂} = nodes(parent(Rz),Ts) ∩ Xs

follows, since v̂ = root(Ts) given that parent(Rz) = ρ. If instead length(Rz) > 2, then the
inductive assumption applies, since parent(Rz) satisfies the condition at Line 9 according to
(ii) in Lemma 7.3, and parent(Rz) precedes Rz within the ordered set of paths R1, . . . , Rm.
Thus, {v̂} = nodes(parent(Rz),Ts) ∩Xs follows from (i) in Lemma 7.4 if length(Rz) > 2.

Given that {v̂} = nodes(parent(Rz),Ts) ∩ Xs it follows that parent(vz) = v̂, since
edge (v̂, vz) is added to E at Line 13. Consequently, vz ∈ nodes(Rz,Ts) since lab(vz) =
last(Rz) according to Line 12. Further, vz ∈ Xs according to Line 11, and therefore vz ∈
nodes(Rz,Ts)∩Xz. Also, {vz} = nodes(Rz,Ts)∩Xz, because if there exists to the contrary
a node ṽ ∈ Xs such that ṽ ∈ nodes(Rz,Ts) and ṽ 6= vz, then either ṽ = root(Ts) or ṽ was
created in a previous iteration of the loop at Line 8 for some path R̃ ∈ [R1, . . . , Rm]. We
exclude the case that ṽ = root(Ts) since then Rz = ρ, which contradicts (i) in Lemma 7.3.
We also exclude the case that ṽ was previously created, since then Rz = R̃ which contradicts
the assumption that paths R1, . . . , Rm do not contain duplicates.

(ii) We show that if ṽ is a node in Ts and ṽ /∈ Xs, then anc-or-self(vz) ∩ anc-or-self(ṽ) =
{root(Ts)}. We note that root(Ts) ∈ anc-or-self(vz), since vz ∈ nodes(Rz,Ts) as
shown above, and also that root(Ts) ∈ anc-or-self(ṽ), since initially Ts is a tree and
ṽ exists in Ts before the first iteration of the loop at Line 8 given that ṽ /∈ Xs.
Therefore, if to the contrary anc-or-self(vz) ∩ anc-or-self(ṽ) 6= {root(Ts)}, then either
anc-or-self(parent(vz)) ∩ anc-or-self(ṽ) 6= {root(Ts)} or vz ∈ anc-or-self(ṽ). However,
vz /∈ anc-or-self(ṽ) since vz 6= ṽ given that vz ∈ Xs but ṽ /∈ Xs, and also vz /∈
ancestor(ṽ) given that vz is newly created and therefore a leaf node in Ts within it-
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eration z. It therefore remains to show that anc-or-self(parent(vz)) ∩ anc-or-self(ṽ) =
{root(Ts)}. Thereby, parent(vz) = v̂ as shown previously, and therefore either parent(vz) =
root(Ts) or parent(vz) was newly created in a previous iteration of the loop at Line 8.
Now, if parent(vz) = root(Ts) then anc-or-self(parent(vz)) = root(Ts) and consequently
anc-or-self(parent(vz)) ∩ anc-or-self(ṽ) = {root(Ts)}. If instead parent(vz) 6= root(Ts),
then anc-or-self(parent(vz)) ∩ anc-or-self(ṽ) = {root(Ts)} from the inductive assumption.

(iii) We show that if ṽ is a node in Ts and ṽ ∈ Xs, then closest(vz, ṽ) = true. If ṽ = vz,
then closest(vz, ṽ) = true from Definition 3.22. We therefore assume that vz 6= ṽ, and
show first that closest(vz, ṽ) = true, if parent(vz) /∈ ancestor(ṽ). Then, from Definition 3.22,
closest(vz, ṽ) = true iff closest(parent(vz), ṽ) = true. Since parent(vz) ∈Xs per assumption,
it follows from the inductive assumption that closest(parent(vz), ṽ) = true, and hence also
closest(vz, ṽ) = true.

If instead parent(vz) ∈ ancestor(ṽ), then {parent(vz)} = anc-or-self(ṽ) ∩ anc-or-self(vz),
since vz is newly created per assumption and vz is therefore a leaf node in tree Ts
within iteration z of the loop at Line 8. We note that ṽ 6= vz per assumption. Given
that {parent(vz)} = anc-or-self(ṽ) ∩ anc-or-self(vz), it follows that closest(vz, ṽ) = true if
Rz ∩ R̃ = parent(Rz), where R̃ is the path such that ṽ ∈ nodes(R̃,Ts). We observe that
parent(Rz) ⊆ Rz∩ R̃, given that parent(vz) ∈ anc-or-self(vz)∩anc-or-self(ṽ). Consequently,
Rz ∩ R̃ = Rz if parent(Rz) 6= Rz ∩ R̃. Then, however, the assumption that {parent(vz)} =
anc-or-self(ṽ) ∩ anc-or-self(vz) implies that there exists node v̄ ∈ anc-or-self(ṽ), such that
v̄ ∈ nodes(Rz,Ts) and v̄ 6= vz. Further, given that v̄ ∈ anc-or-self(ṽ) and that ṽ ∈ Xs, it
follows from the inductive assumption, in particular (ii) in Lemma 7.4, that v̄ = root(Ts),
if v̄ /∈ Xs. However, given that v̄ ∈ nodes(Rz,Ts), v̄ 6= root(Ts), since length(Rz) ≥ 2
according to (i) in Lemma 7.3. Now, given that v̄ ∈ Xs and that v̄ 6= root(Ts), node v̄
was created in a previous iteration of the loop at Line 8. This however clearly contradicts
the inductive assumption, in particular (i) in Lemma 7.4, given that both v̄ and vz are
nodes in nodes(Rz,Ts) and that v̄ 6= vz. Consequently, Rz ∩ R̃ = parent(Rz) and thus
closest(vz, ṽ) = true. �

We now present a preliminary result on the properties of the XML tree Ts+1 returned
from a step s in the chase. This result is central to the subsequent proof of Lemma 7.1.

Lemma 7.5 Let T be an XML tree that is complete with respect to a downward-closed set
of paths P , and let Σ be a set of core XINDs which conform to P . If Ts 2 Σ in a step s of
CHASE(P ,T,Σ), then an XML tree Ts+1 is returned such that

(i) Ts+1 conforms to Definition 3.11;
(ii) Ts+1 subsumes Ts;

(iii) Ts+1 is complete w.r.t. P .

Proof (Lemma 7.5) We note that a single step in the chase terminates since the input set of
paths P is finite and hence the loop at Line 8 in Algorithm 7.1 is iterated only for a finite
number of times.

(i) The chase iteratively creates XML tree Ts+1 by means of adding nodes and edges within
the loop at Line 8 to XML tree Ts. Now, let for all i ∈ {1, . . . ,m}, where m is the number
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of paths in P , Tsi be XML tree Ts after iteration i of the loop at Line 8. Then, from the
procedure of the chase, Tsm = Ts+1. We therefore establish (i) in Lemma 7.5 by induction
over the sequence of XML trees Ts1 , . . . ,Tsm created in step s. We show in particular, that
for all k ∈ {1, . . . ,m}, XML tree Tsk satisfies requirements (1) - (4) in Definition 3.11, which
means that

(1) (V ,E) is a tree in terms of Definition 3.3 and hence
(i) V is a finite set of nodes, from Definition 3.1
(ii) ∀(v, v̄) ∈ E, v 6= v̄, from Definition 3.1.i

(iii) ∀v ∈ V , if V 6= {v} then ∃v̄ ∈ V such that (v, v̄) ∈ E or (v̄, v) ∈ E, from
Definition 3.1.ii

(iv) if there exist nodes v1. · · · .vn ∈ V such that for all i ∈ {1, . . . , n}, (vi−1, vi) ∈ E,
then v1 6= vn if n > 1, from Definition 3.3

(2) ∀v ∈ V , lab(v) ∈ L.
(3) ∀v ∈ V , if lab(v) ∈ LA ∪ {S} then val(v) ∈ U and val(v) is undefined otherwise.
(4) ∀(v, v̄) ∈ E

(i) lab(v) ∈ LE ,
(ii) if v̄ ∈ LA then 6 ∃(v, v̄′) ∈ E such that v̄ 6= v̄′ and lab(v̄) = lab(v̄′)

Base Case: XML tree Ts1 is the base case for the induction. Because the set of paths
R1, . . . , Rm at Line 4 is downward-closed and ordered by length, R1 = ρ. Hence, for all
i ∈ {1, . . . , n}, R1 ∩ S′.F ′x = ρ. Consequently, the condition at Line 9 is not satisfied and
therefore Ts1 = Ts. Because the input XML tree Ts satisfies (1) - (4) in Definition 3.11,
the base case is established.

Inductive Step: In order to establish the inductive step we assume that XML tree Tsk =
(V ,E, lab, val), where 1 ≤ k < m, conforms to Definition 3.11 and we show that also XML
tree Tsk+1

conforms to Definition 3.11. If the condition at Line 9 is not satisfied, then
Tsk+1

= Tsk , which establishes the inductive step since Tsk satisfies (1) - (4) in Definition
3.11 per assumption. We therefore show next that Tsk+1

also satisfies (1) - (4) in Definition
3.11 if the condition at Line 9 is satisfied.

(1.i) From the inductive assumption, V is finite in Tsk . Hence, V is also finite in Tsk+1
if

only a finite number of nodes is added to V in iteration k+ 1 of the loop at Line 8. This is
clearly the case since exactly one new node is added to V in iteration k + 1 (cf. Line 10).

(1.ii) From the inductive assumption, ∀(v, v̄) ∈ E, v 6= v̄ in Tsk . From the procedure of
the chase, edges that exist in XML tree Tsk are neither altered nor deleted. Hence, (1.ii) in
Lemma 6.4 holds true for Tsk+1

if v 6= v̄ whenever an edge (v, v̄) is added to E in iteration
k + 1. From the procedure of the chase, the only edge added to E in iteration k + 1 is the
edge (v̂, v) at Line 13. This edge connects a node v̂ which exists in XML tree Tsk to the
node v created at Line 11 in iteration k+ 1. Given that v is created in iteration k+ 1, node
v does not exist in XML tree Tsk . Hence v̂ 6= v.

(1.iii) From the inductive assumption, ∀v ∈ V in XML tree Tsk , if V 6= {v} then there
exists node v̄ ∈ V such that (v, v̄) ∈ E or (v̄, v) ∈ E. From the procedure of the chase,
nodes and edges that exist in XML tree Tsk are neither altered nor deleted. Hence, (1.iii) in
Lemma 6.4 holds true for Tsk+1

if for the new node v created at Line 11 in iteration k + 1,
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there exists node v̄ ∈ V such that (v, v̄) ∈ E or (v̄, v) ∈ E. This is obviously the case,
according to Line 13.

(1.iv) From the inductive assumption, there are no cycles in Tσk
. Also, from the procedure

of the chase edges that exist in XML tree Tsk are neither altered nor deleted. Hence,
if Tsk+1

contains a cycle, then this cycle must be caused by the new node v created at
Line 11. Because a single node does not form a cycle according to Definition 3.2, if Tsk+1

contains a cycle, then there must be a walk v̄1. · · · .v̄n in Tsk such that either v.v̄1. · · · .v̄n or
v̄1. · · · .v̄n.v is a cycle. Now, if v.v̄1. · · · .v̄n is a cycle then v = v̄n which clearly contradicts
the assumption that v̄n is a node in Tsk since v is a new node created in iteration k + 1.
If instead v.v̄1. · · · .v̄n is a cycle, edge (v, v̄1) has been added to E in iteration k + 1. This
however clearly contradicts the procedure of the chase, since the edge that connects the new
node v to the existing node v̂ does not start from v but only lead to v (cf. Line 13). Hence,
also Tsk+1

does not contain cycles.

(2) From the procedure of the chase, the assignment of labels to nodes in XML tree Tsk
is not altered. Hence, XML tree Tsk+1

satisfies (2) in Definition 3.11 if lab(v) ∈ L. Since
lab(v) = last(Rk+1) according to Line 12, lab(v) ∈ L from Definition 3.12.

(3) From the inductive assumption, for every node v ∈ V in Tsk , val(v) ∈ U iff v is an
attribute or text node. From combining this with the observation that the assignment of
values to nodes, which exist in XML tree Tsk , is not modified within the loop at Line 8, we
deduce that Tsk+1

satisfies (3) in Definition 3.11 if with respect to the new node v created
at Line 11, val(v) ∈ U iff lab(v) ∈ LA ∪ {S}. If lab(v) ∈ LE , last(Rk+1) ∈ LE according to
(i) in Lemma 7.4. Consequently, neither the condition at Line 14 nor the condition at Line
16 is satisfied, given that σ conforms to Definition 3.21 and does therefore not contain fields
that end in element labels. Thus, val(v) is undefined if lab(v) 6∈ LA ∪ {S} is an element
node. If instead lab(v) ∈ LA ∪ {S} then val(v) ∈ U since even if the condition at Line 14 is
not satisfied, then at least the condition at Line 16 is satisfied.

(4.i) From the inductive assumption, for all (v̄, v) ∈ E in XML tree Tsk , lab(v̄) ∈ LE .
From the procedure of the chase, edges that exist in Tsk are not altered. Hence, Tsk+1

satisfies (4.i) in Lemma 6.4 if v̂ is an element node at Line 13 in iteration k + 1. Since
lab(v̂) = last(parent(Rk+1)) according to Line 10, v̂ is an element node given that Rk+1

conforms to Definition 3.12.

(4.ii) We show that there do not exist attribute nodes ṽ and ṽ′ in Tsk+1
such that lab(ṽ) =

lab(ṽ′) ∈ LA and parent(ṽ) = parent(ṽ′). We show in particular that if the node v created
at Line 11 is an attribute node, then there does not exist attribute node ṽ in Tsk such that
lab(v) = lab(ṽ) and parent(v) = parent(ṽ).

If ṽ exists, then v and ṽ are reachable over the same path given that parent(v) =
parent(ṽ). Combining this with (i) in Lemma 7.4 we deduce that if ṽ exists then ṽ is a node
in Ts. Consequently, from (ii) in Lemma 7.4, anc-or-self(ṽ)∩anc-or-self(vi) = {root(Tsk+1

)}.
From this and, again, (i) in Lemma 7.4 it then follows that Rk+1 = ρ. last(Rk+1), where
last(Rk+1) ∈ LA given that v is an attribute node. Further, since v is created in iteration
k + 1, Rk+1 satisfies the condition at Line 9. Thus, σs contains an RHS field F ′x such
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that S′.F ′x = Rk+1. This, however, clearly contradicts the assumption that σs conforms to
Definition 7.1. Hence, ṽ does not exist in Ts, which establishes the result.

(ii) From the procedure of the chase, nodes and edges in Ts are not removed nor altered.
Also, the values and labels of nodes in XML tree Ts are not modified. Hence, Ts ' Ts+1.

(iii) Given that Ts conforms to P also Ts+1 conforms to P since if a node vi is added to
Ts in an iteration i of the loop at Line 8 then vi ∈ nodes(Ri,Ts) according to (i) in Lemma
7.4, and Ri ∈ P per assumption.

Since Ts+1 conforms to P and Ts is complete w.r.t. P per assumption, also Ts+1 is
complete w.r.t. P if for every new node vi created in an iteration i of the loop at Line 8,
there exists node ṽ in tree Ts+1 such that ṽ ∈ nodes(R̃,Ts) and v ∈ ancestor(ṽ) whenever
R̃ ∈ P such that Ri ⊂ R̃.

Since vi is created in iteration i, path Ri satisfies the condition at Line 9. From this and
the assumptions that Ri ⊂ R̃ and R̃ ∈ P we deduce that also R̃ satisfies the condition at Line
9. Consequently, from (i) in Lemma 7.4, there exists node ṽ ∈ nodes(R̃,Ts)∩Xs. It therefore
remains to show that v ∈ ancestor(ṽ). Since ṽ ∈ nodes(R̃,Ts) and Ri ⊂ R̃ per assumption,
it follows that there exists node v̂ ∈ nodes(Ri,Ts) such that v̂ ∈ ancestor(ṽ). Now, if v̂ ∈Xs

then both v and v̂ are nodes in nodes(Ri,Ts)∩Xs and v = v̂ from (i) in Lemma 7.4. Hence,
v ∈ ancestor(ṽ) if v̂ ∈ Xs. If instead v̂ /∈ Xs then anc-or-self(v̂) ∩ anc-or-self(ṽ) = {vρ}
from (ii) in Lemma 7.4. Consequently, v̂ = vρ since v̂ ∈ ancestor(ṽ) per assumption and
thus Ri = ρ given that v̂ ∈ nodes(Ri,Ts). This however contradicts (i) in Lemma 7.3 since
Ri satisfies the condition at Line 9 per assumption. Consequently, v̂ /∈ Xs, which finally
establishes (iii) in Lemma 7.4. �

We are now ready to establish Lemma 7.1.

Proof (Lemma 7.1) In order to show that CHASE(P ,Σ,T) terminates, we show first that
there exists a finite set of values Ū ⊂ U , such that if u is a value in an XML tree Ts in a
step s of CHASE(P ,Σ,T), then u ∈ Ū . We note that u is said to be a value in Ts, if there
exists an attribute or text node v in Ts such that val(v) = u. Let Ū be the set given by

Ū = {u ∈ U | there exists node v in T such that val(v) = u} ∪ {0}.
We note that Ū is finite since the number of attribute and text nodes in T is finite given
that T conforms to Definition 3.11. We now show by induction over the sequence of XML
trees T1, . . . ,Tk generated by the chase, where T1 = T, that u ∈ Ū if u is a value in Ts,
1 ≤ s < k. We use T1 as the base case for the induction. Clearly, u ∈ Ū if u is a value
in T1 given that T1 = T. Assume now that u ∈ Ū if u is a value in Ts ∈ {T1, . . . ,Tk}.
We establish the inductive step by showing that u ∈ Ū also if u is a value in Ts+1. Since
Ts ' Ts+1, from (ii) in Lemma 7.5, either u is a value in Ts, and thus u ∈ Ū from the
inductive assumption, or u is the value of a node v created in step s. In the latter case u = 0
if u is assigned to v at Line 17, and u is the value of a node in Ts, if u is assigned to v at
Line 15. In both cases u ∈ Ū . Hence u ∈ Ū , if u is a value in Ts+1.

We show next that the XML tree Ts in a step s of CHASE(P ,Σ,T) satisfies any XIND
σ = (S, [F1, . . . , Fn]) ⊆ (S′, [F ′1, . . . , F

′
n]) if for every list of values u1, . . . , un ∈ Ū1×· · ·×Ūn,

where ∀i ∈ {1, . . . , n}, Ūi = Ū , there exists a list of nodes v′1, . . . , v
′
n such that
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(a) ∀i ∈ {1, . . . , n}, v′i ∈ nodes(S′.F ′i ,Ts)
(b) ∀i, j ∈ {1, . . . , n}, closest(v′i, v

′
j) = true

(c) ∀i ∈ {1, . . . , n}, val(v′i) = ui.

From Lemma 5.7, Ts � σ if whenever there exist nodes v1, . . . , vn which satisfy (i) and (ii)
in Lemma 5.7 with respect to σ, then there also exist nodes v′1, . . . , v

′
n which satisfy (i’)

and (ii’) in Lemma 5.7 with respect to σ, and ∀i ∈ {1, . . . , n}, val(vi) = val(v′i). Now, if
there exist nodes v1, . . . , vn which satisfy (i) and (ii) in Lemma 5.7 with respect to σ, then
val(v1), . . . , val(vn) ∈ Ū1 × · · · × Ūn since ∀i ∈ {1, . . . , n}, val(vi) is a value in Ts according
to the result established at the beginning of this proof and so val(vi) ∈ Ū . Hence, if it is the
case that for every list of values in Ū1 × · · · × Ūn there exists a list of nodes which satisfies
(a) - (c) with respect to σ, then for the list of values val(v1), . . . , val(vn), there exist nodes
v′1, . . . , v

′
n which satisfy (i’) and (ii’) in Lemma 5.7 with respect to σ because (a) and (b)

are identical to (i’) and (ii’) in Lemma 5.7, respectively. Also, from (c), ∀i ∈ {1, . . . , n},
val(v′i) = val(vi) and therefore Ts � σ.

Next, we say that Ts misses a list of nodes in order to satisfy σ, if for a list of values
u1, . . . , un ∈ Ū1 × · · · × Ūn, there do not exist nodes v′1, . . . , v

′
n in tree Ts which satisfy (a)

- (c) with respect to σ. Also, from the procedure of the chase, a step s+ 1 is performed iff
Ts 2 Σ, and so step s + 1 is performed iff tree Ts misses at least one sequence of nodes in
order to satisfy Σ. Hence, if the initial tree T1 misses only a finite number of sequences of
nodes in order to satisfy Σ and the number of missing sequences of nodes strictly decreases
from a step s to step s + 1, then only a finite number of steps is performed, and thus
CHASE(P ,T,Σ) terminates.

Because Ū is a finite set of values per definition, T1 misses only a finite number of

sequences of nodes in order to satisfy Σ. To be more precise, T1 misses at most
∑x
i=1 |Ū |

|σi|

sequences of nodes, where

− x is the number of XINDs in Σ
− |Ū | is the number of values in Ū
− |σi| is the number of LHS/RHS fields in σi

Hence, if the number of missing lists of nodes strictly decreases from a step s to step s+ 1

then CHASE(P ,T,Σ) terminates after at most
∑x
i=1 |Ū |

|σi| steps.

We now show that the number of missing lists of nodes indeed strictly decreases from
a step s to step s + 1. Let ωs and ωs+1 be the number of missing sequences of nodes
in order to satisfy Σ in trees Ts and Ts+1, respectively. Also, let α be the subsumption
mapping establishing that Ts ⊆ Ts+1. Then, whenever there exists a list of nodes v′1, . . . , v

′
|σ|

in tree Ts, that satisfies (a) - (c) with respect to an XIND σ ∈ Σ and a list of values
u1, . . . , u|σ| ∈ Ū1 × · · · × Ū|σ|, then the list of nodes α(v′1), . . . , α(v′|σ|) in Ts+1 satisfies (a)

and (b) according to (iv) and (v) in Lemma 7.2, and α(v′1), . . . , α(v′|σ|) also satisfies (c)

according to (iv) in Definition 7.2. Hence ωs+1 ≤ ωs.
It therefore remains to show that ωs+1 < ωs. Given that step s+ 1 is performed, Ts 2 Σ

and therefore there exists a list of nodes v1, . . . , vn at Line 6 in Algorithm 7.1 which violate
σs = (S, [F1, . . . , Fn]) ⊆ (S′, [F ′1, . . . , F

′
n]) in Ts. So Ts misses a list of nodes v′1, . . . , v

′
n
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which satisfies (a) - (c) with respect to σs and the list of values val(v1), . . . , val(vn). Clearly,
if Ts+1 contains nodes v′1, . . . , v

′
n then ωs+1 < ωs.

We show next that Ts+1 indeed contains nodes v′1, . . . , v
′
n which satisfy (a) - (c)

with respect to σs and the list of values val(v1), . . . , val(vn). Because Σ conforms to P ,
{S′.F ′1, . . . , S′.F ′n} ⊆ [R1, . . . , Rm] and because [R1, . . . , Rm] does not contain duplicates,
there exists the unique mapping φ : {1, . . . , n} → {1, . . . ,m} such that for all i ∈ {1, . . . ,m},
S′.F ′i = Rφ(i). Also, for all i ∈ {1, . . . , n}, S′.F ′i 6= ρ according to Definition 3.21 and there-
fore Rφ(i) = S′.F ′i satisfies the condition at Line 9 within iteration φ(i) of the loop at Line
8 in Algorithm 7.1. Now, let for all i ∈ {1, . . . , n}, v′i be the node created in iteration φ(i)
of the loop at Line 8. Then, from (i) in Lemma 7.4, v′i ∈ nodes(Rφ(i),Ts) when step s is
finished, and thus for all i ∈ {1, . . . , n}, v′i ∈ nodes(S′.F ′i ,Ts+1) given that S′.F ′i = Rφ(i).
Hence, nodes v′1, . . . , v

′
n satisfy (a). Next, given that nodes v′1, . . . , v

′
n have been created in

step s, for all i, j ∈ {1, . . . , n}, closest(v′i, v
′
j) = true according to (iii) in Lemma 7.4, and

therefore nodes v′1, . . . , v
′
n also satisfy (b). Finally, since fields [F ′1, . . . , F

′
n] do not contain

duplicates, and for all i ∈ {1, . . . , n}, path Rφ(i) meets the condition at Line 14 given that
Rφ(i) = S′.F ′i , it follows that for all i ∈ {1, . . . , n}, val(vi) is assigned to v′i at Line 15 within
iteration φ(i) of the loop at Line 8. Hence, nodes v′1, . . . , v

′
n also satisfy (c).

Given that CHASE(P ,T,Σ) terminates, it is now straightforward to establish that the
final XML tree T̄ satisfies (i) - (iii) in Lemma 7.1. In particular, T̄ � Σ from the procedure
of the chase and so T̄ satisfies (iii) in Lemma 7.5. Also, from the preliminary results in (ii)
and (iii) in Lemma 7.5, T̄ satisfies (i) and (ii) in Lemma 7.1. �

7.3 Consistency of Core XINDs

We now use the chase algorithm to solve the consistency problem related to core XINDs.
Intuitively, a set of XINDs is consistent if there exists at least one XML tree that satisfies
the XINDs. We now make this idea more precise within the context of complete XML trees.

Definition 7.3 (Consistency of XINDs) A set of XINDs Σ is consistent if for every
downward-closed set of paths P that Σ conforms to, there exists an XML tree T that is
complete w.r.t. P and also satisfies Σ.

As for the consistency of XKeys discussed in Section 6.1, the consistency of a set of
XINDs is independent of a specific set of paths P since Definition 7.3 requires the existence
of a complete XML tree for every set of paths that Σ conforms to. We have the following
result on the consistency of core XINDs in complete XML trees.

Theorem 7.1 (Consistency of Core XINDs) Every set of core XINDs is consistent.

Proof (Theorem 7.1) The correctness of Theorem 7.1 follows from the fact that there always
exists an XML tree T̃ that is complete w.r.t. a given set of paths P , and the result in Lemma
7.1 that the XML tree T̄ returned by CHASE(P , T̃,Σ), is complete w.r.t. P and satisfies
the given set of core XINDs Σ. �
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7.4 Implication of Core XINDs

We now turn to the implication of core XINDs, and first make the notion of the implication
of a single XIND by a set of XINDs more precise within the context of complete XML trees.

Definition 7.4 (Implication of XINDs) A set of XINDs Σ implies a single XIND σ,
denoted by Σ � σ, if for every downward-closed set of paths P that Σ ∪ {σ} conform to,
and every XML tree T that is complete w.r.t. P , if T � Σ then T � σ.

We note that also our definition of XIND implication is independent of a specific set
of paths that Σ and σ conform to. Based on Definition 7.4, we now formulate the specific
implication problem related to core XINDs as the question of whether Σ � σ is decidable.
We answer this question in the following subsections.

In particular, we first present a set of inference rules for the implication of core XINDs in
complete XML trees in Subsection 7.4.1. In this subsection, we also establish the soundness
and completeness of the inference rules using the chase. Based on our inference rules, we
then develop a decision procedure for the implication of core XINDs Subsection 7.4.2.

7.4.1 Inference Rules for the Implication of Core XINDs

Table 7.1 gives a set of inference rules for the implication of XINDs, where symbol ` denotes
that the XINDs in the conclusion are derived from the XINDs in the premise. We note that
the downward-closed set of paths P , the XINDs in a rule conform to, is not explicitly stated.

Rules R1 - R3 correspond to the well known inference rules for relational inclusion
dependencies [4], which is to be expected given Theorem 4.2 and the fact that XML trees
generated from a complete relational database by algorithm DB2XML introduced in Section
4.2 are a subclass of complete XML trees. The remaining rules have no parallels in the
inference rules for relational inclusion dependencies, and we now discuss them.

Rule R4 allows one to shift a path from the end of the RHS selector in an XIND
down to the start of the RHS fields. For example, by applying R4 to the XIND
(Company.Invoices.Invoice, [cno]) ⊆ (Company.Customers.Customer, [cno]), we derive
the XIND (Company.Invoices.Invoice, [cno]) ⊆ (Company.Customers, [Customer.cno])),
whereby the last label in the RHS selector Company.Customers.Customer has been shifted
down to the start of the RHS fields. Rule R5 is the reverse of R4, whereby a path from the
start of the RHS fields is shifted up to the end of the RHS selector.

Rule R6 is a rule that, roughly speaking, allows one to union the LHS fields
and the RHS fields of two XINDs, provided that the RHS fields intersect only at
the root path. For example, assuming that ρ = Company and given the XINDs
(Company.Invoices.Invoice, [cno]) ⊆ (Company, [Customers.Customer.cno]) and
(Company.Invoices.Invoice, [Line.code, Line.no]) ⊆ (Company, [Phones.Phone.code,
Phones.Phone.no]), then by applying rule R6 we derive (Company.Invoices.Invoice, [cno,
Line.code, Line.no]) ⊆ (Company, [Customers.Customer.cno, Phones.Phone.code,
Phones.Phone.no]) since Company.Customers.Customer.cno ∩ Company.Phones.Phone.code
= Company.Customers.Customer.no ∩ Company.Phones.Phone.no = ρ. However, the



174 CHAPTER 7. REASONING ABOUT XINDS

R1 Reflexivity
{} ` (S, [F1, . . . , Fn]) ⊆ (S, [F1, . . . , Fn])

R2 Permutated Projection
(S, [F1, . . . , Fn]) ⊆ (S′, [F ′1, . . . , F

′
n]) `

(S, [Fπ(1), . . . , Fπ(m)]) ⊆ (S′, [F ′π(1), . . . , F
′
π(m)]) if {π(1), . . . , π(m)} ⊆ {1, . . . , n}

R3 Transitivity
(S, [F1, . . . , Fn]) ⊆ (S̄, [F̄1, . . . , F̄n]) ∧ (S̄, [F̄1, . . . , F̄n]) ⊆ (S′, [F ′1, . . . , F

′
n]) `

(S, [F1, . . . , Fn]) ⊆ (S′, [F ′1, . . . , F
′
n])

R4 Downshift
(S, [F1, . . . , Fn]) ⊆ (S′.R, [F ′1, . . . , F

′
n]) ` (S, [F1, . . . , Fn]) ⊆ (S′, [R.F ′1, . . . , R.F

′
n])

R5 Upshift
(S, [F1, . . . , Fn]) ⊆ (S′, [R.F ′1, . . . , R.F

′
n]) ` (S, [F1, . . . Fn]) ⊆ (S′.R, [F ′1, . . . , F

′
n])

R6 Union
(S, [F1, . . . , Fm]) ⊆ (ρ, [F ′1, . . . , F

′
m]) ∧ (S, [Fm+1, . . . , Fn]) ⊆ (ρ, [F ′m+1, . . . , F

′
n]) `

(S, [F1, . . . , Fn]) ⊆ (ρ, [F ′1, . . . , F
′
n]) if ∀i, j ∈ {1, . . . ,m} × {m+1, . . . , n}, ρ.F ′i ∩ ρ.F ′j = ρ

Table 7.1: Inference rules for the implication of core XINDs in complete XML trees.

XINDs (Company.Invoices.Invoice, [cno]) ⊆ (Company, [Customers.Customer.cno]) and
(Company.Invoices.Invoice, [address]) ⊆ (Company, [Customers.Customer.address])
rule R6 dos not derive the XIND (Company.Invoices.Invoice, [cno, address]) ⊆
(Company, [Customers.Customer.cno, Customers.Customer.address]) since obviously
Company.Customers.Customer.cno ∩ Company.Customers.Customer.address 6= ρ.

As for the derivation of a single XKey from a set of XKeys discussed in Section 6.2.1,
we now denote by Σ ` σ if there is a derivation sequence of a single XIND σ from a set of
XINDs Σ using inference rules R1 - R6 in Table 7.1. We have the following result on the
soundness of our inference rules.

Theorem 7.2 (Soundness of Inference Rules for Core XINDs) Given a set of core
XINDs Σ and a single core XIND σ, if Σ ` σ then Σ � σ.

Proof (Theorem 7.2) Rule R1: We show that given a downward-closed set of paths P and a
conforming set of XINDs Σ∪ {σ} where σ = (S, [F1, . . . , Fn]) ⊆ (S, [F1, . . . , Fn]), there does
not exist an XML tree T which is complete w.r.t. P such that T � Σ but T 2 σ. We show
in particular the strictly stronger result that there does not exist an XML tree T which is
complete w.r.t. P and violates σ. For this purpose assume to the contrary that T 2 σ. Then
there exist nodes v1, . . . , vn according to Lemma 5.7 such that

(a) ∀i ∈ {1, . . . , n}, vi ∈ nodes(S.Fi,T)
(b) ∀i, j ∈ {1, . . . , n}, closest(vi, vj) = true

and there do not exist nodes v′1, . . . , v
′
n such that
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(a’) ∀i ∈ {1, . . . , n}, v′i ∈ nodes(S.Fi,T)
(b’) ∀i, j ∈ {1, . . . , n}, closest(v′i, v

′
j) = true

(c’) ∀i ∈ {1, . . . , n}, val(v′i) = val(vi).

If we let for all i ∈ {1, . . . , n}, v′i = vi, then nodes v′1, . . . , v
′
n satisfy (a’) and (b’) because

of (a) and (b), respectively, and (c’) trivially holds true given that for all i ∈ {1, . . . , n},
v′i = vi. Hence, the presence of nodes v1, . . . , vn contradicts the absence of nodes v′1, . . . , v

′
n

and therefore T � σ.

Rule R2: We show that given a downward-closed set of paths P and a conforming set of
XINDs Σ ∪ {σ} where

- (S, [F1, . . . , Fn]) ⊆ (S′, [F ′1, . . . , F
′
n]) ∈ Σ

- σ = (S, [Fπ(1), . . . , Fπ(m)]) ⊆ (S′, [F ′π(1), . . . , F
′
π(m)])

- ∀i ∈ {1, . . . ,m}, π(i) ∈ {1, . . . , n},
there does not exist an XML tree T which is complete w.r.t. P such that T � Σ but T 2 σ.
We show in particular that if T 2 σ then T 2 (S, [F1, . . . , Fn]) ⊆ (S′, [F ′1, . . . , F

′
n]). For the

ease of presentation but without loss of generality we assume now that for all i ∈ {1, . . . ,m},
π(i) = i. Then σ = (S, [F1, . . . , Fm]) ⊆ (S′, [F ′1, . . . , F

′
m]).

Now, if m = n then σ = (S, [F1, . . . , Fn]) ⊆ (S′, [F ′1, . . . , F
′
n]) and therefore T 2

(S, [F1, . . . , Fn]) ⊆ (S′, [F ′1, . . . , F
′
n]) if T 2 σ. If instead m < n and given that T 2 σ,

there exist nodes v1, . . . , vm according to Lemma 5.7 such that

(a) ∀i ∈ {1, . . . ,m}, vi ∈ nodes(S.Fi,T)
(b) ∀i, j ∈ {1, . . . ,m}, closest(vi, vj) = true

and there do not exist nodes v′1, . . . , v
′
m such that

(a’) ∀i ∈ {1, . . . ,m}, v′i ∈ nodes(S′.F ′i ,T)
(b’) ∀i, j ∈ {1, . . . ,m}, closest(v′i, v

′
j) = true

(c’) ∀i ∈ {1, . . . ,m}, val(v′i) = val(vi).

Then, from Lemma 5.2, there exist nodes vm+1, . . . , vn such that

(d) ∀i ∈ {m+ 1, . . . , n}, vi ∈ nodes(S.Fi,T)
(e) ∀i, j ∈ {1, . . . , n}, closest(vi, vj) = true.

Now, if there do not exist nodes v̄′1, . . . , v̄
′
n such that

(a”) ∀i ∈ {1, . . . , n}, v̄′i ∈ nodes(S′.F ′i ,T)
(b”) ∀i, j ∈ {1, . . . , n}, closest(v̄′i, v̄

′
j) = true

(c”) ∀i ∈ {1, . . . , n}, val(v̄′i) = val(vi)

then T 2 (S, [F1, . . . , Fn]) ⊆ (S′, [F ′1, . . . , F
′
n]) because of nodes v1, . . . , vn according to

Lemma 5.7. It is easily verified that nodes v̄′1, . . . , v̄
′
n contradict the absence of nodes

v′1, . . . , v
′
m since (a’) - (c’) holds true because of (a”) - (c”), respectively. Hence, T 2

(S, [F1, . . . , Fn]) ⊆ (S′, [F ′1, . . . , F
′
n]) if T 2 σ.

Rule R3: We show that given a downward-closed set of paths P and a conforming set of
XINDs Σ ∪ {σ} where
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- (S, [F1, . . . , Fn]) ⊆ (S̄, [F̄1, . . . , F̄n]) ∈ Σ
- (S̄, [F̄1, . . . , F̄n]) ⊆ (S′, [F ′1, . . . , F

′
n]) ∈ Σ

- σ = (S, [F1, . . . , Fn]) ⊆ (S′, [F ′1, . . . , F
′
n]),

there does not exist an XML tree T which is complete w.r.t. P such that T � Σ but
T 2 σ. We show in particular that if T 2 σ then T 2 {(S, [F1, . . . , Fn]) ⊆ (S̄, [F̄1, . . . , F̄n])}
∪ {(S̄, [F̄1, . . . , F̄n]) ⊆ (S′, [F ′1, . . . , F

′
n])}. Given that T 2 σ there exist nodes v1, . . . , vn

according to Lemma 5.7 such that

(a) ∀i ∈ {1, . . . , n}, vi ∈ nodes(S.Fi,T)
(b) ∀i, j ∈ {1, . . . , n}, closest(vi, vj) = true

and there do not exist nodes v′1, . . . , v
′
n such that

(a’) ∀i ∈ {1, . . . , n}, v′i ∈ nodes(S′.F ′i ,T)
(b’) ∀i, j ∈ {1, . . . , n}, closest(v′i, v

′
j) = true

(c’) ∀i ∈ {1, . . . , n}, val(v′i) = val(vi).

Now, from Lemma 5.7, T 2 (S, [F1, . . . , Fn]) ⊆ (S̄, [F̄1, . . . , F̄n]) because of nodes v1, . . . , vn
if there do not exist nodes v̄1, . . . , v̄n such that

(e) ∀i ∈ {1, . . . , n}, v̄i ∈ nodes(S̄.S̄i,T)
(f) ∀i, j ∈ {1, . . . , n}, closest(v̄i, v̄j) = true
(g) ∀i ∈ {1, . . . , n}, val(v̄i) = val(vi).

If instead nodes v̄1, . . . , v̄n exist, then T � (S̄, [F̄1, . . . , F̄n]) ⊆ (S′, [F ′1, . . . , F
′
n]) according to

Lemma 5.7 iff there exist nodes v′1, . . . , v
′
n which satisfy (a’) - (c’). Hence, T 2 σ ⇒ T 2

{(S, [F1, . . . , Fn]) ⊆ (S̄, [F̄1, . . . , F̄n])} ∪ {(S̄, [F̄1, . . . , F̄n]) ⊆ (S′, [F ′1, . . . , F
′
n])}.

Rule R4: We show that given a downward-closed set of paths P and a conforming set of
XINDs Σ ∪ {σ} where

- (S, [F1, . . . , Fn]) ⊆ (S′.R, [F ′1, . . . , F
′
n]) ∈ Σ

- σ = (S, [F1, . . . , Fn]) ⊆ (S′, [R.F ′1, . . . , R.F
′
n]),

there does not exist an XML tree T which is complete w.r.t. P such that T � Σ but T 2 σ.
We show in particular that T 2 σ ⇒ T 2 (S, [F1, . . . , Fn]) ⊆ (S′.R, [F ′1, . . . , F

′
n]). Given that

T 2 σ, there exist nodes v1, . . . , vn according to Lemma 5.7 such that

(a) ∀i ∈ {1, . . . , n}, vi ∈ nodes(S.Fi,T)
(b) ∀i, j ∈ {1, . . . , n}, closest(vi, vj) = true,

and there do not exist nodes v′1, . . . , v
′
n such that

(a’) ∀i ∈ {1, . . . , n}, v′i ∈ nodes(S′.R.F ′i ,T)
(b’) ∀i, j ∈ {1, . . . , n}, closest(v′i, v

′
j) = true

(c’) ∀i ∈ {1, . . . , n}, val(v′i) = val(vi).

From Lemma 5.7, T 2 (S, [F1, . . . , Fn] ⊆ (S′.R, [F ′1, . . . , F
′
n]) because of nodes v1, . . . , vn if

there do not exist nodes v̄1, . . . , v̄n such that

(a”) ∀i ∈ {1, . . . , n}, v̄i ∈ nodes(S′.R.F ′i ,T)
(b”) ∀i, j ∈ {1, . . . , n}, closest(v̄i, v̄j) = true
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(c”) ∀i ∈ {1, . . . , n}, val(v̄i) = val(vi).

Now, if nodes v̄1, . . . , v̄n exist then nodes v̄1, . . . , v̄n satisfy (a’) - (c’) given (a”) - (c”), which
however clearly contradicts the assumption that nodes v′1, . . . , v

′
n do not exist. Hence, T 2 σ

⇒ T 2 (S, [F1, . . . , Fn] ⊆ (S′.R, [F ′1, . . . , F
′
n]).

Rule R5: We show that given a downward-closed set of paths P and a conforming set of
XINDs Σ ∪ {σ} where

- (S, [F1, . . . , Fn]) ⊆ (S′, [R.F ′1, . . . , R.F
′
n]) ∈ Σ

- σ = (S, [F1, . . . , Fn]) ⊆ (S′.R, [F ′1, . . . , F
′
n]),

there does not exist an XML tree T which is complete w.r.t. P such that T � Σ but T 2 σ.
We show in particular that T 2 σ ⇒ T 2 (S, [F1, . . . , Fn]) ⊆ (S′, [R.F ′1, . . . , R.F

′
n]). Given

that T 2 σ, there exist nodes v1, . . . , vn according to Lemma 5.7 such that

(a) ∀i ∈ {1, . . . , n}, vi ∈ nodes(S.Fi,T)
(b) ∀i, j ∈ {1, . . . , n}, closest(vi, vj) = true

and there do not exist nodes v′1, . . . , v
′
n such that

(a’) ∀i ∈ {1, . . . , n}, v′i ∈ nodes(S′.R.F ′i ,T)
(b’) ∀i, j ∈ {1, . . . , n}, closest(v′i, v

′
j) = true

(c’) ∀i ∈ {1, . . . , n}, val(v′i) = val(vi).

From Lemma 5.7, T 2 (S, [F1, . . . , Fn] ⊆ (S′, [R.F ′1, . . . , R.F
′
n]) because of nodes v1, . . . , vn

if there do not exist nodes v̄1, . . . , v̄n such that

(a”) ∀i ∈ {1, . . . , n}, v̄i ∈ nodes(S′.R.F ′i ,T)
(b”) ∀i, j ∈ {1, . . . , n}, closest(v̄i, v̄j) = true
(c”) ∀i ∈ {1, . . . , n}, val(v̄i) = val(vi).

Now, if nodes v̄1, . . . , v̄n exist then nodes v̄1, . . . , v̄n satisfy (a’) - (c’) given (a”) - (c”), which
however clearly contradicts the assumption that nodes v′1, . . . , v

′
n do not exist. Hence, T 2 σ

⇒ T 2 (S, [F1, . . . , Fn]) ⊆ (S′, [R.F ′1, . . . , R.F
′
n]).

Rule R6: We show that given a downward-closed set of paths P and a conforming set of
XINDs Σ ∪ {σ} such that

- (S, [F1, . . . , Fm]) ⊆ (ρ, [F ′1, . . . , F
′
m]) ∈ Σ

- (S, [Fm+1, . . . , Fn]) ⊆ (ρ, [F ′m+1, . . . , F
′
n])) ∈ Σ

- ∀i, j ∈ {1, . . . ,m} × {m+1, . . . , n}, ρ.F ′i ∩ ρ.F ′j = ρ
- σ = (S, [F1, . . . , Fn]) ⊆ (ρ, [F ′1, . . . , F

′
n]),

there does not exist an XML tree T which is complete w.r.t. P such that T � Σ but T 2 σ.
We show in particular that if T 2 σ then either T 2 (S, [F1, . . . , Fm]) ⊆ (ρ, [F ′1, . . . , F

′
m])

or T 2 (S, [Fm+1, . . . , Fn]) ⊆ (ρ, [F ′m+1, . . . , F
′
n])s. Given that T 2 σ, there exist nodes

v1, . . . , . . . , vn according to Lemma 5.7 such that

(a) ∀i ∈ {1, . . . , n}, vi ∈ nodes(S.Fi,T)
(b) ∀i, j ∈ {1, . . . , n}, closest(vi, vj) = true,
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and there do not exist nodes v′1, . . . , v
′
n such that

(a’) ∀i ∈ {1, . . . , n}, v′i ∈ nodes(S′.F ′i ,T)
(b’) ∀i, j ∈ {1, . . . , n}, closest(v′i, v

′
j) = true

(c’) ∀i ∈ {1, . . . , n}, val(v′i) = val(vi).

Now, from Lemma 5.7, T 2 (S, [F1, . . . , Fm]) ⊆ (S′, [F ′1, . . . , F
′
m]) because of nodes v1, . . . , vm

if there do not exist nodes v̄′1, . . . , v̄
′
m such that

(a”) ∀i ∈ {1, . . . ,m}, v̄′i ∈ nodes(S′.F ′i ,T)
(b”) ∀i, j ∈ {1, . . . ,m}, closest(v̄′i, v̄

′
j) = true

(c”) ∀i ∈ {1, . . . ,m}, val(v̄′i) = val(vi).

Also, from Lemma 5.7, T 2 (S, [Fm+1, . . . , Fn]) ⊆ (S′, [F ′m+1, . . . , F
′
n]) because of nodes

vm+1, . . . , vn if there do not exist nodes v̄′m+1, . . . , v̄
′
n such that

(a”’) ∀i ∈ {m+ 1, . . . , n}, v̄′i ∈ nodes(S′.F ′i ,T)
(b”’) ∀i, j ∈ {m+ 1, . . . , n}, closest(v̄′i, v̄

′
j) = true

(c”’) ∀i ∈ {m+ 1, . . . , n}, val(v̄′i) = val(vi).

Now, given that T � Σ, nodes v̄′1, . . . , v̄
′
n exist which satisfy (a’) and (c’) given (a”) and

(a”’) as well as (c”) and (c”’). Further, given (b”) and (b”’), nodes v̄′1, . . . , v̄
′
n also satisfy

(b’) if ∀i, j ∈ {1, . . . ,m} × {m+1, . . . , n}, closest(v̄′i, v̄
′
j) = true, which then however clearly

contradicts the assumption that nodes v′1, . . . , v
′
n do not exist. Thus, if ∀i, j ∈ {1, . . . ,m} ×

{m+ 1, . . . , n}, closest(v̄′i, v̄
′
j) = true, which is what we show next, then T 2 σ ⇒ T 2

{(S, [F1, . . . , Fm]) ⊆ (S′, [F ′1, . . . , F
′
m])} ∪ {(S, [Fm+1, . . . , Fn]) ⊆ (S′, [F ′m+1, . . . , F

′
n])}.

In particular, ∀i, j ∈ {1, . . . ,m} × {m+1, . . . , n}, root(T) satisfies (i) - (iii) in Definition
3.22 with respect to nodes v̄′i and v̄′j because

(i) root(T) ∈ anc-or-self(v̄′i) given that T conforms to Definition 3.11
(ii) root(T) ∈ anc-or-self(v̄′j) given that T conforms to Definition 3.11
(iii) root(T) ∈ nodes(S′.F ′i ∩ S′.F ′j ,T) since S′.F ′i ∩ S′.F ′j = ρ by assumption.

Hence, ∀i, j ∈ {1, . . . ,m} × {m+1, . . . , n}, closest(v̄′i, v̄
′
j) = true. �

We now present our result on the completeness of our inference rules.

Theorem 7.3 (Completeness of Inference Rules for Core XINDs) Given a set of
core XINDs Σ and a single core XIND σ, if Σ � σ then Σ ` σ.

A roadmap for the proof of Theorem 7.3 is as follows. We use algorithm GIXFC given
in Algorithm 7.2 to construct a special initial XML tree Tσ, which essentially has LHS field
nodes with distinct values w.r.t. the XIND σ and is empty elsewhere. We then show by
induction that the only XINDs satisfied by any intermediate XML tree during the chase are
those derivable from Σ using rules R1 - R6. That is, if T̄σ � σ, where T̄σ is the final tree
returned by CHASE(P ,Tσ,Σ), then Σ ` σ and thus Σ � σ ⇒ Σ ` σ, since T̄σ � σ if Σ � σ
from Lemma 7.1.

We now present an immediate result on the properties of the initial XML tree Tσ con-
structed by algorithm GIXFC.
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Algorithm 7.2 GIXFC - Generate Initial XML Tree For XIND Chase.

in: a downward-closed set of paths P = [R1, . . . , Rm] ordered by length
an XIND σ = (S, [F1, . . . , Fn]) ⊆ (S′, [F ′1, . . . , F

′
n]) conforming to P

out: an XML tree T = (V ,E, lab, val) which is complete w.r.t. P

1: let T be a trivial XML tree where lab(root(T)) = ρ(P)
2: for i := 2 to m do
3: {v̂} ← nodes(parent(Ri),T)
4: v ← newnode(V )
5: lab(v)← last(Ri)
6: E ← E ∪ {(v̂, v)}
7: if there exists path Fj ∈ [F1, . . . , Fn] such that Ri = S.Fj then
8: val(v)← j
9: else if last(Ri) ∈ LA ∪ {S} then

10: val(v)← ”0”
11: end if
12: end for
13: return T;

Lemma 7.6 Let P be a downward-closed set of paths and let σ = (S, [F1, . . . , Fn] ⊆
(S′, [F ′1, . . . , F

′
n]) be a core XIND. Also, let T = GIXFC(P , σ). Then, T is complete with

respect to P and contains a list of nodes v1, . . . , vn such that
(i) ∀i ∈ {1, . . . , n}, vi ∈ nodes(S.Fi,T)
(ii) ∀i, j ∈ {1, . . . , n}, closest(vi, vj) = true
(iii) ∀i ∈ {1, . . . , n}, val(vi) = i.

In order to demonstrate completeness of our inference rules, we first establish the follow-
ing important preliminary result.

Lemma 7.7 Let P be a downward-closed set of paths, and let Σ be a set of core XINDs
and σ be a single core XIND. Also, let T = (V ,E, lab, val) and T̄ = (V̄ , Ē, l̄ab, v̄al) be the
XML trees such that T = GIXFC(P , σ) and T̄ = CHASE(P ,T,Σ). If T̄ � σ, then Σ ` σ.

Proof (Lemma 7.7) We show that Σ ` σ by establishing the claim that whenever there exist
nodes v̄1, . . . , v̄n in XML tree T̄ such that

- ∀i, j ∈ {1, . . . , n}, closest(v̄i, v̄j) = true, and
- ∀i ∈ {1, . . . , n}, val(v̄i) = i,

then Σ ` σ̄ of the form

σ̄ = (S, [F1, . . . , Fn]) ⊆ (S̄, [F̄1, . . . , F̄n]), where

- ∀i ∈ {1, . . . , n}, S̄.F̄i is the path such that v̄i ∈ nodes(S̄.F̄i, T̄), and
- S̄ = S̄.F̄1 ∩ · · · ∩ S̄.F̄n.

We show first that the claim is sufficient, i.e. that if the claim holds true, then Σ ` σ if
T̄ � σ. From Lemma 7.6, the initial XML tree T contains nodes v1, . . . , vn, such that
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(a) ∀i ∈ {1, . . . , n}, vi ∈ nodes(S.Fi,T)
(b) ∀i, j ∈ {1, . . . , n}, closest(vi, vj) = true
(c) ∀i ∈ {1, . . . , n}, val(vi) = i.

From Lemma 7.1, T ' T̄ and so there exists subsumption mapping α : V → V̄ . Further,
from (iv) and (v) in Lemma 7.2 and (iv) in Definition 7.2, nodes α(v)1, . . . , α(v)n satisfy (a)
- (c) in the final XML tree T̄. Hence, assuming that T̄ � σ, from Lemma 5.7, there exist
nodes v′1, . . . , v

′
n in T̄, such that

(a’) ∀i ∈ {1, . . . , n}, v′i ∈ nodes(S′.F ′i , T̄)
(b’) ∀i, j ∈ {1, . . . , n}, closest(v′i, v

′
j) = true

(c’) ∀i ∈ {1, . . . , n}, val(v′i) = val(vi) = i.

Now, given (b’) and (c’) and assuming that the claim holds true, Σ derives the XIND

(S, [F1, . . . , Fn]) ⊆ (S̃, [F̃1, . . . , F̃n]), where (7.1)

- ∀i ∈ {1, . . . , n}, S̃.F̃i is the path such that v′i ∈ nodes(S̃.F̃i, T̄), and
- S̃ = S̃.F̃1 ∩ · · · ∩ S̃.F̃n.

Because for all i ∈ {1, . . . , n}, v′i ∈ nodes(S′.F ′i , T̄) (cf. (a’)) and v′i ∈ nodes(S̃.F̃i, T̄) per
assumption, S′.F ′i = S̃.F̃i. Consequently, S′ ⊆ S̃ since S̃ = S̃.F̃1∩· · ·∩S̃.F̃n per assumption.
If S′ = S̃ then for all i ∈ {1, . . . , n}, F ′i = F̃i and thus σ equals (7.1). Hence, Σ ` σ if
S′ = S̃. If instead S′ ⊂ S̃ then let R be the path such that S′.R = S̃. Then, applying rule
R5 (Downshift) to (7.1) yields

(S, [F1, . . . , Fn]) ⊆ (S′, [R.F̃1, . . . , R.F̃n]) (7.2)

Since S′.R = F̃ and for all i ∈ {1, . . . , n}, S′.S′i = S̃.F̃i, S
′.F ′i = S′.R.F̃i. Consequently, for

all i ∈ {1, . . . , n}, R.F̃i = F ′i and therefore σ equals (7.2). Hence, Σ ` σ also if S′ ⊂ S̃.

We now demonstrate the claim by induction over the sequence of XML trees generated by
the chase. We assume now for this purpose, that CHASE(P ,T,Σ) terminates after f steps.
Then, the sequence of input trees for the steps in CHASE(P ,T,Σ) is given by T1, . . . ,Tf ,
where T1 = T and Tf = T̄.

Base Case: XML tree T1 is the base case in our induction. We show first that if the
claim applies to a set of nodes v̄1, . . . , v̄n in XML tree T1 then for all i ∈ {1, . . . , n}, v̄i ∈
nodes(S.Fi,T1). Given that the claim applies to nodes v̄1, . . . , v̄n, for all i ∈ {1, . . . , n},
val(v̄i) = i and thus val(v̄i) 6= 0. Further, since T1 = T = GIXFC(P , σ) per assumption,
for all i ∈ {1, . . . , n}, val(v̄i) has been set at Line 8 in Algorithm 7.2. Also, because the
list of RHS fields [F1, . . . , Fn] in σ does not contain duplicates per definition, and all i ∈
{1, . . . , n}, val(v̄i) = i per assumption, the procedure of algorithm GIXFC implies that for
all i ∈ {1, . . . , n}, Fi is the particular RHS field in [F1, . . . , Fn] which satisfies the condition
at Line 7 in Algorithm 7.2 and so v̄i ∈ nodes(S.Fi,T1).

Next, by applying rule R1 (Reflexivity) we derive

(S, [F1, . . . , Fn]) ⊆ (S, [F1, . . . , Fn]) (7.3)
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Because for all i ∈ {1, . . . , n}, v̄i ∈ nodes(S.Fi,T1) and v̄i ∈ nodes(S̄.F̄i,T1) per assumption,
S.Fi = S̄.F̄i. Combining this with the assumption that S̄ = S̄.F̄1∩· · ·∩ S̄.F̄n we deduce that
S̄ ⊆ S. Now, if S̄ = S then σ̄ equals (7.3) and so Σ ` σ̄. If instead S ⊂ S̄ then let R be the
path such that S.R = S̄. Then, because of the previous observation that ∀i ∈ {1, . . . , n},
S̄.F̄i = S.Fi, S.R.F̄i = S.Fi and therefore R.F̄i = Fi. Hence, by applying rule R4 (Upshift)
to XIND (7.3) Σ derives the XIND

(S, [F1, . . . , Fn]) ⊆ (S.R, [F̄1, . . . , F̄n]) (7.4)

Since S.R = S̄ per assumption, σ̄ equals (7.4) and therefore Σ ` σ̄ also in case that S ⊂ S̄,
which establishes the base case.

Inductive Step: We now assume that the claim holds true until step s in CHASE(P ,T,Σ),
and show that the claim also holds true for step s+ 1, which establishes the inductive step.
From the procedure of the chase, if v̄1, . . . , v̄n is a list of nodes in XML tree Ts+1 then for
all i ∈ {1, . . . , n}, either v̄i is a node in XML tree Ts or v̄i is created in step s and so does
not exist in XML tree Ts. We distinguish the following cases:

(A) ∀i ∈ {1, . . . , n}, v̄i is a node in Ts
(B) ∀i ∈ {1, . . . , n}, v̄i is created in step s
(C) there exists mapping µ : {1, . . . , n} → {1, . . . , n} and integer m, where 1 ≤ m < n, such

that for all i ∈ {1, . . . , n}
- if i ≤ m, node v̄µ(i) is created in step s
- if i > m, node v̄µ(i) is a node in Ts.

(A) Σ ` σ̄ from the inductive assumption given that nodes v̄1, . . . , v̄n exist in tree Ts.

(B) Let σs be the XIND at Line 5 in Algorithm 7.1 chosen in step s of CHASE(P ,T,Σ),
and let σs be of the form

σs = (S̃, [F̃1, . . . , F̃k]) ⊆ (S̃′, [F̃ ′1, . . . , F̃
′
k]).

Also, let φ : {1, . . . , n} → {1, . . . ,m}, where m is the number of paths in P , be the mapping
such that for all i ∈ {1, . . . , n}, v̄i is created in iteration φ(i) of the loop at Line 8 in step
s. Then, from the procedure of the chase, for all i ∈ {1, . . . , n}, val(v̄i) has been set at
Line 15 in iteration φ(i) of the loop at Line 8 since val(v̄i) = i per assumption and thus
val(v̄i) 6= 0. Consequently, for all i ∈ {1, . . . , n}, the condition at Line 14 is met in iteration
φ(i) of the loop at Line 8, and therefore R̄φ(i) ∈ [S̃′.F̃ ′1, . . . , S̃

′.F̃ ′k], where R̄φ(i) ∈ P is the
path in iteration φ(i) of the loop at Line 8.

Since {R̄φ(1), . . . , R̄φ(n)} ⊆ {S̃′.F̃ ′1, . . . , S̃′.F̃ ′k}, there exists mapping π : {1, . . . , n} →
{1, . . . , k} such that for all i ∈ {1, . . . , n}, R̄φ(i) = S̃′.F̃ ′π(i). By applying rule R2 (Permutated

Projection) to σs, Σ derives the XIND

(S̃, [F̃π(1), . . . , F̃π(n)]) ⊆ (S̃′, [F̃ ′π(1), . . . , F̃
′
π(n)]) (7.5)

Further, for all i ∈ {1, . . . , n}, R̄φ(i) = S̄.F̄i since v̄i ∈ nodes(R̄φ(i),Ts+1) according to
(i) in Lemma 7.4 and v̄i ∈ nodes(S̄.F̄i,Ts+1) per assumption. Combining this with the
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previous observation that ∀i ∈ {1, . . . , n}, R̄φ(i) = S̃′.F̃ ′π(i) we deduce that S̄.F̄i = S̃′.F̃ ′π(i).

Hence, S̄.F̄1 ∩ · · · ∩ S̄.F̄n = S̃′.F̃ ′π(1) ∩ · · · ∩ S̃′.F̃ ′π(n) and thus also S̃′ ⊆ S̄ since S̃′ ⊆
S̃′.F̃ ′π(1) ∩ · · · ∩ S̃′.F̃ ′π(1) trivially holds true and S̄ = S̄.F̄1 ∩ · · · ∩ S̄.F̄n per assumption.

Suppose now that S̃′ ⊂ S̄ and let R̃ be the path such that S̃′.R̃ = S̄. Then, for all
i ∈ {1, . . . , n}, S̃′.R̃.F̄i = S̃′.F̃ ′π(i) since S̄.F̄i = S̃′.F̃ ′π(i). Consequently, R̃.F̄i = F̃ ′π(i) and

hence, by applying rule R4 (Upshift) to (7.5), Σ derives the XIND

(S̃, [F̃π(1), . . . , F̃π(n)]) ⊆ (S̃′.R̃, [F̄1, . . . , F̄n]) (7.6)

Further, since S̃′.R̃ = S̄ per assumption, XIND (7.8) is of the form

(S̃, [F̃π(1), . . . , F̃π(n)]) ⊆ (S̄, [F̄1, . . . , F̄n]) (7.7)

We now show that Σ derives XIND (7.7) also in case that S̃′ 6⊂ S̄. If S̃′ 6⊂ S̄ then S̃′ = S̄
because of our previous observation that S̃′ ⊆ S̄. Combining this with the result that for
all i ∈ {1, . . . , n}, S̄.F̄i = S̃′.F̃ ′π(i) we deduce that XIND (7.5) equals XIND (7.7) if S̃′ = S̄

and thus Σ derives the XIND (7.7) also in case that S̃′ 6⊂ S̄.
Now, let ṽ1, . . . , ṽk be the list of nodes at Line 6 in step s of the chase, i.e. let ṽ1, . . . , ṽk

be the list of nodes which violate σs in Ts. Then, from Lemma 5.7,

- ∀i ∈ {1, . . . , k}, ṽi ∈ nodes(S̃.F̃i,Ts)
- ∀i, j ∈ {1, . . . , k}, closest(ṽi, ṽj) = true.

We note that n < k and show next that the claim applies to nodes ṽπ(1), . . . , ṽπ(n). Since
∀i, j ∈ {1, . . . , k}, closest(ṽi, ṽj) = true, the claim applies to nodes ṽπ(1), . . . , ṽπ(n) if ∀i ∈
{1, . . . , n}, val(ṽπ(i)) = i. Recall that ∀i ∈ {1, . . . , n}, v̄i is created in step s per assumption

and that v̄i ∈ nodes(R̄φ(i),Ts) where R̄φ(i) = S̃′.F̃ ′π(i). From this and the assumption
that the chase removes the violation of σs caused by nodes ṽ1, . . . , ṽk we deduce that ∀i ∈
{1, . . . , n}, val(ṽπ(i)) = val(v̄i) at Line 19 in Algorithm 7.1 and therefore val(ṽπ(i)) = i since
val(v̄i) = i per assumption. Hence, the claim applies to nodes ṽπ(1), . . . , ṽπ(n) and thus, from
the inductive assumption, Σ derives the XIND

(S, [F1, . . . , Fn]) ⊆ (Ŝ, [F̂π(1), . . . , F̂π(n)]), where (7.8)

- ∀i ∈ {1, . . . , n}, Ŝ.F̂π(i) is the path such that ṽπ(i) ∈ nodes(Ŝ.F̂π(i), T̄s), and

- Ŝ = Ŝ.F̂π(1) ∩ · · · ∩ Ŝ.F̂π(n).

From the definition of π and the assumption that ∀i ∈ {1, . . . , k}, ṽi ∈ nodes(S̃.F̃i, T̄s) we
deduce that ∀i ∈ {1, . . . , k}, ṽπ(i) ∈ nodes(S̃.F̃π(i), T̄s). Combining this with the fact that

n < k and the assumption that ∀i ∈ {1, . . . , n}, ṽπ(i) ∈ nodes(Ŝ.F̂π(i), T̄s) we deduce that

∀i ∈ {1, . . . , n}, Ŝ.F̂π(i) = S̃.F̃π(i). Consequently, Ŝ.F̂π(1) ∩ · · · ∩ Ŝ.F̂π(n) = S̃.F̃π(1) ∩ · · · ∩
S̃.F̃π(n). From this and the assumption that Ŝ = Ŝ.F̂π(1) ∩ · · · ∩ Ŝ.F̂π(n) it follows that

Ŝ = S̃.F̃π(1) ∩ · · · ∩ S̃.F̃π(n) and therefore S̃ ⊆ Ŝ.

Now, if S̃ = Ŝ then rule R3 (Transitivity) applies to the XINDs (7.8) and (7.7) since for
all i ∈ {1, . . . , n}, Ŝ.F̂π(i) = S̃.F̃π(i). We observe that the resulting XIND equals σ̄. Hence,
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Σ ` σ̄ if S̃ = Ŝ. It therefore remains to show that Σ ` σ̄ also in case that S̃ ⊂ Ŝ. Given
that S̃ ⊂ Ŝ, there exists path R̂ such that S̃.R̂ = Ŝ and by applying rule R5 (Downshift) Σ
derives the XIND

(S, [F1, . . . , Fn]) ⊆ (S̃, [R̂.F̂π(1), . . . , R̂.F̂π(n)]) (7.9)

Since S̃.R̂ = Ŝ and ∀i ∈ {1, . . . , n}, Ŝ.F̂π(i) = S̃.F̃π(i), it follows that ∀i ∈ {1, . . . , n},
S̃.R̂.F̂π(i) = S̃.F̃π(i) and therefore R̂.F̂π(i) = F̃π(i). Hence, rule R3 (Transitivity) applies to

XINDs (7.9) and (7.7) which yields σ̄. Thus Σ ` σ̄ also in case that S̃ ⊂ Ŝ.

(C) We assume for the ease of presentation but without loss of generality that µ is the
identity function and so that for all i ∈ {1, . . . , n}, µ(i) = i. Then, nodes v̄1, . . . , v̄m are
created in step s of the chase and nodes v̄m+1, . . . , v̄n already exist in tree Ts.

In order to establish (C) we show first that ∀i, j ∈ {1, . . . ,m} × {m + 1, . . . , n}, S̄.F̄i ∩
S̄.F̄j = ρ. Since per assumption ∀i ∈ {1, . . . ,m}, node v̄i is created in step s and ∀j ∈
{m+1, . . . , n}, node v̄j is a node in Ts, ∀i, j ∈ {1, . . . ,m}× {m+ 1, . . . , n}, {root(Ts+1)} =
anc-or-self(v̄i) ∩ anc-or-self(v̄j) from (ii) in Lemma 7.4. Further, since the claim applies to
nodes v̄1, . . . , v̄n per assumption, ∀i, j ∈ {1, . . . , n}, closest(v̄i, v̄j) = true. Hence, ∀i, j ∈
{1, . . . ,m} × {m+ 1, . . . , n}, there exists node v̄ij such that

- v̄ij ∈ anc-or-self(v̄i)

- v̄ij ∈ anc-or-self(v̄j)

- v̄ij ∈ nodes(S̄.F̄i ∩ S̄.F̄j ,Ts+1).

Combining this with the previous observation that ∀i, j ∈ {1, . . . ,m} × {m + 1, . . . , n},
{root(Ts+1)} = anc-or-self(v̄i) ∩ anc-or-self(v̄j) we deduce that v̄ij = root(Ts+1). Conse-

quently, ∀i, j ∈ {1, . . . ,m} × {m + 1, . . . , n}, S̄.F̄i ∩ S̄.F̄j = ρ since v̄ij ∈ nodes(S̄.F̄i ∩
S̄.F̄j ,Ts+1) per assumption.

We show next that S̄ = ρ. Since ∀i, j ∈ {1, . . . ,m} × {m + 1, . . . , n}, S̄.F̄i ∩ S̄.F̄j = ρ,
also S̄.F̄1 ∩ · · · ∩ S̄.F̄n = ρ. Combining this with the fact that S̄ ⊆ S̄.F̄1 ∩ · · · ∩ S̄.F̄n = ρ we
deduce that S̄ = ρ.

Further, since the claim applies to nodes v̄1, . . . , v̄n per assumption and given that nodes
v̄1, . . . , v̄m are created in step s, from our result in (B), Σ derives the XIND

(S, [F1, . . . , Fm]) ⊆ (S̃, [F̃1, . . . , F̃m]), where (7.10)

- ∀i ∈ {1, . . . ,m}, S̃.F̃i is the path such that v̄i ∈ nodes(S̃.F̃i, T̄s+1), and
- S̃ = S̃.F̃1 ∩ · · · ∩ S̃.F̃m.

Also, since the claim applies to nodes v̄1, . . . , v̄n per assumption and given that nodes
v̄m+1, . . . , v̄n exist in XML tree Ts, from the inductive assumption, Σ derives the XIND

(S, [Fm+1, . . . , Fn]) ⊆ (Ŝ, [F̂m+1, . . . , F̂n]), where (7.11)

- ∀i ∈ {m+ 1, . . . , n}, Ŝ.F̂i is the path such that v̄i ∈ nodes(Ŝ.F̂i, T̄s+1), and
- Ŝ = Ŝ.F̂m+1 ∩ · · · ∩ Ŝ.F̂n.
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Now, if we let R̃ and R̂ be the paths such that S̃ = ρ.R̃ and Ŝ = ρ.R̂ then by applying rule
R4 (Upshift) to XINDs (7.10) and (7.11) Σ derives the XINDs

(S, [F1, . . . , Fm]) ⊆ (ρ, [R̃.F̃1, . . . , R̃.F̃m]) (7.12)

(S, [Fm+1, . . . , Fn]) ⊆ (ρ, [R̂.F̂m+1, . . . , R̂.F̂n]) (7.13)

We note that ∀i ∈ {1, . . . ,m}, S̃.F̃i = S̄.F̄i since per assumption v̄i ∈ nodes(S̃.F̃i, T̄s+1)
and also v̄i ∈ nodes(S̄.F̄i, T̄s+1). Likewise, ∀i ∈ {m + 1, . . . , n}, Ŝ.F̂i = S̄.F̄i, since per
assumption v̄i ∈ nodes(Ŝ.F̂i, T̄s+1) and again v̄i ∈ nodes(S̄.F̄i, T̄s+1). Combining this with
the previous observation that S̄ = ρ, we deduce that ∀i ∈ {1, . . . ,m}, R̃.F̃i = F̄i as well as
that for all i ∈ {m + 1, . . . , n}, R̂.F̂i = F̄i. Therefore, if rule R6 (Merge) applies to XINDs
(7.12) and (7.13) then the resulting XIND equals σ̄, and hence Σ ` σ̄.

We finish the proof by establishing that R6 applies to XINDs (7.12) and (7.13). In par-
ticular, rule R6 applies to XINDs (7.12) and (7.13) if ∀i, j ∈ {1, . . . ,m} × {m + 1, . . . , n},
ρ.R̃.F̃i ∩ ρ.R̂.F̂j = ρ. This follows immediately from our previous result that ∀i, j ∈
{1, . . . ,m} × {m + 1, . . . , n}, S̄.F̄i ∩ S̄.F̄j = ρ since S̄.F̄i = ρ.R̃.F̃i and S̄.F̄j = ρ.R̂.F̂j
per assumption. �

The proof of Theorem 7.3 is now straightforward.

Proof (Theorem 7.3) We show that given a set of XINDs Σ and a single XIND σ that
conform to a downward-closed set of paths P , if Σ � σ then Σ ` σ. For this purpose, let
Tσ and T̄σ be the XML trees such that Tσ = GIXFC(P , σ) and T̄σ = CHASE(P ,Tσ,Σ).
Then, T̄ � Σ from Lemma 7.1. Hence, if T̄ 2 σ, then this contradicts the assumption that
Σ � σ. If instead T̄ � σ then Σ ` σ from Lemma 7.7. �

7.4.2 A Decision Procedure for XIND Implication

We finally introduce algorithm DXII, which is a decision procedure for the implication of
core XINDs in complete XML trees. The procedure of the algorithm, which is given below,
is straightforward and bases on the results established in the previous discussion of the
implication of core XINDs.

Algorithm 7.3 DXII - Decide XIND Implication.

in: a set of core XINDs Σ
a single core XIND σ
a downward-closed set of paths P that Σ ∪ {σ} conforms to

out: true if Σ � σ and false if Σ 2 σ
1: Tσ ← GIXFC(P , σ)
2: T̄σ ← CHASE(P ,Tσ,Σ)
3: return (T̄σ � σ)

We note that algorithm DXII terminates since both algorithm GIXFC and algorithm
CHASE terminate according to our results in Lemma 7.6 and Lemma 7.1, respectively. We
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then have the following result on the soundness and completeness of algorithm DXII, which
also shows that the implication problem for core XINDs in complete XML trees is decidable.

Theorem 7.4 (Soundness and Completeness of Algorithm DXII) Given a set of
core XINDs Σ, a single core XIND σ and a downward-closed set of paths P that Σ ∪ {σ}
conforms to, then DXII(Σ, σ,P ) = true iff Σ � σ.

Proof (Theorem 7.4) We show first that DXII(Σ, σ,P ) = true⇒ Σ � σ. Then, T̄σ � σ from
Line 3 in Algorithm 7.3. Consequently, T̄σ � σ ⇒ Σ ` σ from Lemma 7.7 and finally Σ � σ
from Theorem 7.2. Next, DXII(Σ, σ,P ) = false⇒ Σ 2 σ, because then T̄σ 2 σ from Line 3
in Algorithm 7.3, and thus Σ 2 σ since T̄σ � Σ from Lemma 7.1. �
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Chapter 8

Conclusion

Keys and foreign keys for XML are required in order to ensure that XML data is an accurate
representation of reality and to preserve original data semantics when XML data is gener-
ated from relational data, which frequently precedes the exchange of XML data over the
internet. As for keys and foreign keys in any other data model, results on the consistency
and implication problems related to XML keys and foreign keys are required so as to lay
the foundation for database systems to utilize them.

Existing approaches to value-based XML integrity constraints, the class of XML in-
tegrity constraints where XML keys and foreign keys fall into as discussed in Chapter 2,
are of limited use for two reasons. First, given that XML integrity constraints are intended
to ensure that data is an accurate representation of reality, checking the satisfaction of an
XML integrity constraint in an XML document must not yield counter-intuitive results.
This is however not always achieved by existing approaches to value-based XML integrity
constraints. The actual problem stems from the hierarchical and semi-structured nature
of XML data which allows entity nodes1 to have multiple property nodes2 for the same
entity property, and which also allows entity nodes to have no property node for some en-
tity property at all. In general, checking the satisfaction of a value-based XML integrity
constraint in an XML document means to compare entity nodes on the basis of values of
specified combinations of property nodes. So, if multiple property nodes occur in checking
the satisfaction of a value-based XML integrity constraint, it is necessary to disregard se-
mantically incorrect combinations of property nodes in comparing entity nodes. Otherwise
the constraint is violated even though it should be satisfied. If instead absent property nodes
occur in checking the satisfaction of a value-based XML integrity constraint, it is necessary
to also take into account incomplete combinations of property nodes in comparing entity
nodes since otherwise the constraint is satisfied even though it should be violated.

Second, it is frequently required in data exchange scenarios to restructure the information
in the original relations prior to the mapping of the relations to XML. Existing approaches
to value-based XML integrity constraints often fail in preserving the semantics of original
relational integrity constraints when the restructuring of information prior to the mapping
leads to changes in the structure of individual tuples.

The enhanced ‘closest node’ approach to XML keys and foreign keys, which was presented
in this thesis, adequately handles multiple and also absent property nodes. Moreover, en-
hanced ‘closest node’ XML keys and foreign keys preserve the semantics of relational keys
and foreign keys when a set of relations is mapped to an XML document by first restructur-

1An entity node is the representation of a real world entity in XML data.
2A property node is the representation of an entity property in XML data.
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ing the information in the relations by applying an arbitrary sequence of nesting operations
and then mapping the nested relations directly to an XML document.

Table 8.1 compares the enhanced ‘closest node’ approach to previous approaches to value-
based XML integrity constraints3 with respect to the requirements of (i) adequately handling
multiple property nodes, (ii) adequately handling absent property nodes, and (iii) preserving
relational data semantics when information is restructured during the transformation process
by applying arbitrary sequences of nesting operations to the relations prior to the mapping
of the relations to XML. The symbols in Table 8.1 have the following meaning: Symbols
+/− denote that an approach meets/does not meet the requirement. Symbol ∼ denotes that
an approach meets the requirement only with special assistance of the application developer.
Symbol × indicates that the expressivity of XML integrity constraints in an approach is too
restricted to meet the requirement.

Requirement Handle Handle Preserve
Multiple Absent Relational
Property Property Semantics

Approach Nodes Nodes

ID and IDREF × × ×
Subtree-based approach + − +
Enhanced closest-node approach + + +

Selector/Field Approaches
With restrictions on fields × × ×
With restrictions on field nodes − − −
Unrestricted − − −

Tuple-based Approaches
Intersection path approach − − −
Tree-tuple approach + − +
Weak closest-node approach − − −
Strong closest-node approach + − +
Hedge-based approach + − +

Formula-based Approaches
XML template functional dependencies ∼ − ∼
XML embedded dependencies ∼ − ∼

Table 8.1: Comparison of approaches to value-based XML integrity constraints.

The majority of previous approaches to value-based XML integrity constraints do not
adequately handle multiple property nodes nor do they allow to preserve relational data

3A detailed evaluation of these approaches is to be found in Chapter 2.
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semantics. In fact, all of the previous approaches to value-based XML integrity constraints
fail in adequately handling absent property nodes.

We now review the major concepts applied in the design of enhanced ‘closest node’ XML
keys and foreign keys and the major theoretical results established in this thesis. We also
give an outlook on possible future work.

Definition of the Syntax: Irrespective of the particular data model used, a foreign key is
the combination of a key and an inclusion dependency. The key asserts that certain values
identify referenced data entities (entity nodes), and the inclusion dependency asserts a subset
relationship between distinguished values of referencing data entities and the identifying
values of referenced data entities. To facilitate keys and foreign keys for the XML data
model, we defined XML keys (XKeys) and XML inclusion dependencies (XINDs). The
syntax of XKeys and XINDs adopts the selector/field framework of XML keys and foreign
keys in XML Schema. The selector is used for selecting entity nodes in an XML document,
and the fields are used to relate combinations of property nodes to selected entity nodes,
which provides application developers with an intuitive manner to specify XKeys and XINDs.
In designing XKeys and XINDs we concentrated on the semantics of XKeys and XINDs so
as to adequately handle multiple or absent property nodes. We therefore restricted the
syntactic expressivity of XKeys and XINDs. In particular, XKeys and XINDs only allow for
simple paths as selectors and fields, whereas XML Schema keys and foreign keys allow for
a restricted form of XPath expressions. Also, the fields in an XKey or XIND are required
to end in attribute or text labels, whereas XML Schema keys and foreign keys allow fields
to also end in element labels, which enables the comparison of selected entity nodes on the
basis of entire subtrees in an XML document (tree). To revisit the semantics of XKeys and
XINDs when these syntactic restrictions are relaxed is left to future work.

Definition of the Semantics: In defining the semantics of XKeys and XINDs we adopted
the strong ‘closest node’ approach originally presented by Vincent et al. when defining an
XML functional dependency [20]. In the ‘closest node’ approach, a combination of property
nodes is used for the purpose of value-based comparison of entity nodes if the nodes pairwise
satisfy the closest property. Intuitively, a pair of nodes satisfy the closest property if they
cannot be arranged more closely in the XML document with respect to the paths that lead
to the nodes, and so XKeys and XINDs disregard combinations of property nodes which are
not closely arranged in the XML document. As a consequence, XKeys and XINDs compare
entity nodes only on the basis of semantically correct combinations of property nodes since
the arrangement of nodes in an XML document reflects the coherence in the information
represented by the nodes 4. Hence, adopting the strong ‘closest node’ approach allows XKeys
and XINDs to adequately handle multiple property nodes.

The enhancement to the strong ‘closest node’ approach proposed in this thesis regards
the manner in which absent property nodes are handled. In the strong ‘closest node’ ap-
proach, strong satisfaction semantics is applied to XML integrity constraints, which means
that the constraint is checked on a (virtual) completion of the XML document. To apply
strong satisfaction semantics leads to counter-intuitive results in checking the satisfaction of

4This rationale is frequently found in work in the area of XML. For example in the approaches to XML
keyword search in [43, 44].
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an XML integrity constraint in case that the absence of a property does not indicate that
some information is missing but merely reflects the fact that there is some heterogeneity in
represented real world entities. Also, even if the absence of a nodes indicates missing infor-
mation, applying strong satisfaction semantics is not appropriate since it is recommended in
the XML specification by the W3C to use the no information interpretation of missing in-
formation, i.e. if a node is absent this merely indicates that some information is not present,
for whatever reason. If the no information interpretation of missing information is applied,
it is clearly inappropriate to assume that there exists a completion of the XML document,
which is the basic assumption for applying strong satisfaction semantics to XML integrity
constraints. In contrast to the strong satisfaction semantics applied in the original ‘closest
node’ approach, XKeys and XINDs compare entity nodes purely on the basis of existing
combinations of property nodes. This novel technique ensures that checking the satisfaction
of an XKey or XIND in an XML document yields the expected result also in case of absent
property nodes.

Transformation Procedure: To address the fact that XML data is frequently generated
from relational data in data exchange scenarios, we presented a procedure for transforming
a set of flat relations to an XML document by first applying arbitrary sequences of nesting
operations to the individual flat relations and then mapping the nested relations directly
to XML documents which are finally added as principal subtrees to the resulting XML tree
(document). This procedure extends the transformation procedure presented by Vincent et
al. [25] from the transformation of single relations to the transformation of sets of relations,
and allows the application developer to govern the restructuring of information during the
transformation process by means of specifying the nesting operations to be applied to the
initial flat relations. We developed precise algorithms for transforming a set of relations
to an XML document according to the procedure just outlined, and we also developed
algorithms for deriving XKeys and XINDs in accordance to the original keys and inclusion
dependencies. We established the result that if a set of complete flat relations satisfy a set
of keys and inclusion dependencies, then the XML document obtained from these relations
satisfies the XKeys and XINDs derived from the relational constraints. In establishing this
result, we reused the result by Vincent et al. that a set of property nodes in the obtained
XML document pairwise satisfy the closest property iff the values of these property nodes
appear in the same tuple in the initial flat relation.

To investigate the effects on the property of XKeys and XINDs to preserve the semantics
of relational keys and inclusion dependencies when allowing for greater flexibility in the
restructuring of information during the transformation process is left to future work.

Theoretical Results: To lay the foundation for database systems to utilize XKeys and
XINDs, especially in order to accomplish essential database tasks like query optimization or
automatic schema design, we studied the consistency and implication problems related to
XKeys and XINDs in the class of complete XML documents originally proposed by Vincent
et al. [20]. Complete XML documents generalize the notion of complete relations and are
a natural subclass in ‘data-centric’ XML applications. We established the result that every
set of XKeys or XINDs is consistent, i.e. that there exists for every set of XKeys or XINDs
at least one non-empty and complete XML document which satisfies the XKeys or XINDs.
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We presented sets of inference rules for the implication of XKeys and XINDs in complete
XML documents, and established the soundness and completeness of these sets of inference
rules. We also developed decision procedures for the implication of a single XKey or XIND
by a set of XKeys or XINDs. That is, we have shown that it is effectively decidable whether
a single XKey or XIND is necessarily satisfied in every complete XML document which
satisfies a given set of XKeys or XINDs.

The study of XKeys and XINDs is worth to be continued in two ways. First, the combined
implication and consistency problems for XKeys and XINDs in complete XML documents
could be investigated. The result on the combined implication problem is however likely to
be negative given the well known undecidability result on combined implication problem for
functional dependencies and inclusion dependencies in the relational setting. Second, our
findings regarding the implication problems related to XKeys and XINDs, especially the sets
of inference rules, lend themselves naturally to be extended to the general class of arbitrary
XML documents.
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