
Submitted by
Christian Schießl

Submitted at
Institute for Business
Informatics - Data &
Knowledge Engineering

Supervisor
Assoz.-Prof. Mag. Dr.
Christoph Schütz

December 2024

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at

Design and Implementation of
a Data Warehouse System for
Online Analytical Processing
of Reviews on University
Evaluation Platforms

Master Thesis
to obtain the academic degree of

Master of Science

in the Master’s Program

Business Informatics

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Professor Dr. Christoph Schütz,
for his assistance and guidance throughout the course of this thesis. I also extend my thanks to
Professor Dr. Christoph Teller for his inspiration in helping me find the topic for this research.
Finally, I would like to thank my family and friends for their unwavering support and encouragement
during the entire thesis process.

i

Abstract

This thesis presents the design and implementation of a data warehouse system aimed at analyzing
student sentiment in online reviews from university evaluation platforms. By applying Aspect-Based
Sentiment Analysis (ABSA) using BERT, the system transforms unstructured textual data into
a structured format suitable for analysis through Online Analytical Processing (OLAP). The
system offers Higher Education Institutions (HEIs) a multidimensional view of student satisfaction,
focusing on aspects such as study programs, time periods, and specific attributes of the educational
experience.

A prototype system was developed to collect, preprocess, and analyze German-language online
reviews related to Austrian universities. It demonstrated how ABSA can provide actionable insights
into student feedback, which can assist HEI administrators in improving student retention and
recruitment efforts. The system’s ability to analyze large volumes of unstructured data opens up
new possibilities for data-driven decision-making in academia.

Several limitations were encountered during the project, such as the restricted coverage of aspect
categories and the difficulty in addressing complex linguistic features, i.e., irony and sarcasm.
Future work could focus on increasing the system’s reliability by expanding data sources, integrating
topic modeling techniques, i.e., Latent Dirichlet Allocation (LDA), and improving the handling of
contextual nuances. In addition, adapting the aspect categories to specific courses or programs
could further enhance the accuracy of the analysis.

This thesis provides a foundation for automating student feedback analysis at HEIs and sets the
stage for future research to refine and expand the system’s capabilities.

ii

Kurzfassung

Diese Arbeit behandelt das Konzept und die Implementierung eines Data-Warehouse-Systems,
das Bewertungen aus Bewertungsportalen im Hochschulbereich hinsichtlich der Zufriedenheit der
Studierenden mit spezifischen Aspekten der Hochschul-Services auswerten soll.

Mithilfe von BERT und Aspect-Based Sentiment Analysis (ABSA) werden unstrukturierte Texte
aus den Bewertungen so aufbereitet, dass sie im Rahmen des Online Analytical Processing (OLAP)
analysiert werden können. Das System bietet Hochschuleinrichtungen eine mehrdimensionale Sicht
auf die Zufriedenheit der Studierenden, die verschiedene Aspekte wie Studiengänge, Zeiträume
und spezifische Hochschul-Services umfasst.

Ein Prototyp des Systems wurde entwickelt, um deutschsprachige Online-Bewertungen von öster-
reichischen Hochschulen zu sammeln, zu verarbeiten und zu analysieren. Es wurde gezeigt, wie
ABSA wertvolle Einblicke in die Meinungen der Studierenden liefern kann, die der Hochschulverwal-
tung helfen können, die Bindung und Rekrutierung von Studierenden zu verbessern. Die Fähigkeit
des Systems, große Mengen unstrukturierter Daten zu sammeln und zu analysieren, eröffnet neue
Möglichkeiten für eine datengestützte Entscheidungsfindung im Hochschulbereich.

Während des Projekts traten mehrere Einschränkungen auf, wie die begrenzte Abdeckung von
Aspekt-Kategorien und die Schwierigkeit, komplexe sprachliche Merkmale wie Ironie und Sarkasmus
zu berücksichtigen. Zukünftige Arbeiten könnten sich darauf konzentrieren, die Zuverlässigkeit des
Systems durch die Erweiterung der Datenquellen, die Integration von Topic-Modeling-Techniken
wie Latent Dirichlet Allocation (LDA) und die Verbesserung des Umgangs mit kontextuellen
Nuancen zu erhöhen. Darüber hinaus könnte eine Anpassung der Aspekt-Kategorien an spezifische
Kurse oder Studiengänge die Genauigkeit der Analyse weiter steigern.

Diese Arbeit liefert eine Grundlage für die Automatisierung der Analyse von Studenten-Feedback
und schafft die Voraussetzungen für zukünftige Forschungen zur Verfeinerung und Erweiterung der
Fähigkeiten des Systems.

iii

Contents

1 Introduction 1

2 Background 4
2.1 Data Warehousing and OLAP . 4
2.2 Aspect-Based Sentiment Analysis . 6
2.3 Related Work . 11

3 System Design 18
3.1 Training Process . 18
3.2 Data Warehouse System Architecture . 20

4 Web Scraping of Student Feedback 22
4.1 Business Requirements . 22
4.2 Data Selection . 23
4.3 Web Scraping Process . 25

5 Development of a Model for Aspect-based Sentiment Analysis 33
5.1 PyABSA – a Framework for Reproducible ABSA 34
5.2 Aspect Category Selection . 35
5.3 Data Preprocessing . 41
5.4 Modeling . 55
5.5 Model Evaluation . 59
5.6 Building an Aspect Category Classifier . 64

6 Sentiment Cube 76
6.1 Conceptual Model . 76
6.2 Logical Implementation . 77
6.3 Data Integration . 79
6.4 Querying the Sentiment Cube . 83

7 Conclusion 86

Bibliography 88

iv

1

Introduction

Higher education institutions (HEIs) face the challenge of positioning themselves in an increasingly
competitive environment (Hemsley-Brown and Oplatka, 2006).

Retention and student recruitment are important aspects for HEIs (Han, 2014). University rankings
may provide a first indication for managers of how well a university is positioned in comparison
to others, especially in terms of academic and employer reputation. However, they have many
downsides and do not reflect student satisfaction (Johnes, 2018; Moustafa, 2024).

This is linked to the fact that, even though marketing processes are generally well-established in
HEIs, there are often disagreements about who actually represents the customer of HEIs (Guilbault,
2016). Research on marketing and customer satisfaction in higher education shows that there
has been a long-standing debate over whether students should be considered customers (Alford,
2002, Olshavsky and Spreng, 1995, Pitman, 2000). Even though it is clear that, as in other
industries, HEIs can have a variety of customers, including employers and other stakeholders,
failing to recognize students as customers could negatively impact the orientation of the services
offered and thus jeopardize student satisfaction (Guilbault, 2016). As a market-driven orientation
aims to satisfy customer needs (Kotler, 1977), it is important to address the customer question.

Student feedback can be found in a variety of sources. A course evaluation conducted by the
university each semester is just one example. Students’ opinions about their study experience
can also be found on various internet platforms, such as forums, blogs, Facebook, Twitter, and
rating platforms. The data is mostly available in a highly unstructured form. This means that
the required data is not always available in a structured format, unlike data from Excel files or
databases. One popular way to express an opinion about a product or service is through online
rating platforms. Nowadays, anyone using the internet can easily write a review, provide feedback,
or rate any product or service. For instance, with products offered on Amazon, customers can rate
the product they purchased. They can generally rate the product by selecting a number between
1 and 5, which constitutes the so-called star rating. In addition, they can write a review in the
form of an open text comment. In the comment, customers can share their experiences using the
product or service. Reja et al. (2003) argues that, in contrast to closed-ended questions, which
limit customers to a set of predefined answer options, open-ended questions allow them to express
their opinions freely without being influenced by predefined response alternatives. They encourage
customers to provide spontaneous responses, giving product and service providers the opportunity
to uncover hidden insights about customer satisfaction (Reja et al., 2003).

1

In higher education, there are numerous platforms where current and former students can write
reviews about their experiences in study programs. Whether a review consists of a single text
field or multiple fields with various open-ended questions, the result is ultimately unstructured
user-generated content (UGC). While these reviews are a useful source for those interested in
studying and deciding where to apply, they remain an underused resource for HEIs themselves.
This is because it is not feasible for universities to manually read all reviews; thus, computational
processing is needed.

Automatic processing and analysis of student feedback (i.e., online reviews) can be achieved by
introducing a data warehouse system, which, in contrast to operational database systems, is used
for analytical purposes in organizations (Kimball and Ross, 2011). However, reviews sourced
from university evaluation platforms (UEPs) represent semi-structured data, containing both
structured elements like star ratings and unstructured data like free-text comments. Therefore,
in order to analyze the student feedback, the unstructured part of the reviews—the comments
themselves—must be transformed into a structured format appropriate for storage and analysis in
a data warehouse.

Sentiment analysis, a Natural Language Processing (NLP) technique, is a popular method to
achieve this transformation. Aspect-based sentiment analysis (ABSA) allows for a more fine-grained
analysis (B. Liu, 2022). Once sentiments expressed over a certain aspect are extracted, they can
be integrated into a data warehouse, representing structured data in a multidimensional view.
This data structure enables Online Analytical Processing (OLAP), a mechanism used in data
warehouses for data analysis (Vaisman and Zimányi, 2014). This process allows HEIs to analyze
the latent sentiments found in online reviews across multiple dimensions—such as aspects, study
programs, and time. As a result, administrators at HEIs can gain insights into student satisfaction,
identifying strengths and weaknesses in their services compared to other HEIs. Ultimately, this
enables them to make data-driven decisions that enhance both retention and student recruitment.

One language model developed by Google that has gained recognition recently is BERT. BERT can
be applied in ABSA, as it was trained on large amounts of data and has achieved state-of-the-art
performance on various NLP tasks (Devlin et al., 2018).

Research and practical applications on how HEIs can design and implement a data warehouse
system applying ABSA to student reviews remain scarce (Melba Rosalind and Suguna, 2022). This
thesis aims to address this gap by examining how a data warehouse system can be designed and
implemented to analyze student sentiment in online reviews from university evaluation platforms.
This will enable both instructors and administrators at HEIs to systematically analyze students’
sentiments from online reviews on university evaluation platforms.

Following the design science approach, this thesis aims to develop a prototype of a data warehouse
system representing the artifact, starting from collecting online reviews from a data source
representing student feedback on studying in Austrian HEIs, until loading sentiment analysis results
into a data destination. The system is intended to be used again, whether for further development
or reconstructive research.

Different techniques and methods available for analyzing sentiments in textual data are examined.
In this context, aspect-level approaches are focused on, as they have a greater impact on valuable
insights. Furthermore, to address the context of Austrian HEIs, data in the form of German-

2

language online reviews are collected from a university evaluation platform on which students can
write about their study experiences at a certain HEI in Austria.

After collecting and preprocessing the reviews, a training dataset is created for the customized
fine-tuning of a BERT-based language model. This is done using PyABSA, a Python framework
for ABSA. The adapted model is then used to perform ABSA on the underlying student feedback.
The resulting predictions, including aspects and corresponding sentiments, are then loaded into a
data warehouse for final analysis purposes.

The data warehouse system architecture designed in this thesis is based on the reference architecture
from Vaisman and Zimányi (2014), presented in Chapter 2. As a matter of preference, the system’s
logical implementation follows the relational OLAP (ROLAP) approach, which means that the data
warehouse is implemented in a relational database (Vaisman and Zimányi, 2014). Consequently,
no physical cube was generated, as would be the case with the multidimensional OLAP (MOLAP)
approach, where data is physically stored in multidimensional structures (Kimball and Ross, 2011).
However, logically, the data warehouse is treated as a multidimensional cube in this thesis.

The designed architecture consists of four components: the data source, which represents the
university evaluation platform; a back-end tier for data collection and sentiment analysis; a data
warehouse tier representing the defined sentiment cube; and a front-end tier consisting of SQL
queries for analyzing the cube.

The back-end tier consists of two modules: data collection and sentiment analysis. The data
collection process, which is performed through web scraping, is detailed in Chapter 4. Chapter 5
focuses on sentiment analysis as a central function, including the fine-tuning of a custom ABSA
model and the development of a classifier for aspect categories. Chapter 6 then covers the data
warehouse tier, which includes the creation of a sentiment cube to enable stakeholders at higher
education institutions (HEIs) to analyze sentiments associated with specific aspects. Finally,
examples of SQL queries, which represent a rudimentary form of the front-end tier, are discussed
in Section 6.4.

The thesis proceeds with Chapter 2, which provides the theoretical background necessary for
further understanding. Theory about data warehousing and OLAP is covered in Section 2.1, while
aspect-based sentiment analysis is addressed in Section 2.2. Lastly, related works are discussed
in Section 2.3. Chapter 3 serves as an introduction to the main part of the thesis, providing an
overview of the training process for developing the ABSA model and also describing the architecture
of the designed data warehouse system. The final chapter concludes the thesis with a critical
discussion of the undertaken approach, illustrating its limitations and suggesting directions for
future research.

3

2

Background

This chapter provides a theoretical overview of the underlying concepts that are crucial to
understanding this research.

It starts by explaining the concepts of data warehousing and OLAP in Section 2.1. Next, the topic
of Aspect-Based Sentiment Analysis (ABSA) is covered in Section 2.2. Section 2.2.1 provides a
brief introduction to aspect-based sentiment analysis, and Section 2.2.2 clarifies how researchers
have addressed ABSA tasks by training large language models (LLMs), showcasing potential
challenges and strategies for overcoming them. Finally, Section 2.3 outlines related work. Section
2.3.1 covers related studies focusing on ABSA applications designed for the analysis of university
reviews, while Section 2.3.2 covers related works addressing data warehouses and OLAP systems
in terms of social business intelligence.

2.1 Data Warehousing and OLAP

Vaisman and Zimányi (2014) explain that operational and transactional databases were designed
to address day-to-day tasks, such as processing order income. However, they are insufficient
for data analysis and, consequently, decision-making processes. Therefore, to address analytical
requirements, data warehousing and Online Analytical Processing (OLAP) were introduced in the
1990s. They are considered database technologies and encompass architectures, tools, techniques,
and algorithms to integrate various data sources into a centralized location for later analysis.

Vaisman and Zimányi (2014) describe the term data warehouse as a location where data is stored,
while a data warehouse system additionally includes back-end tools for data collection and front-end
tools for presenting data. OLAP, on the other hand, merely represents the mechanism used to
access and analyze the data, whereas an OLAP system provides users with the ability to query and
aggregate the data stored in the data warehouse (Vaisman and Zimányi, 2014). OLAP itself stands
for Online Analytical Processing, which Chaudhuri and Dayal (1997) describes as "functional and
performance requirements" that are to be supported by a data warehouse (Chaudhuri and Dayal,
1997, p. 1).

Those requirements call for data structures that are different from those of traditional databases.
According to Kimball and Ross (2011), data in a data warehouse is organized in alignment
with the multidimensional model. The multidimensional model consists of one or more facts
representing the business interests for the decision-making process and dimensions representing

4

the parameters to analyze the facts (Kimball and Ross, 2011). This n-dimensional view on data is
often referred to as data cubes (Vaisman and Zimányi, 2014). Therefore, for the sake of simplicity,
the multidimensional data structure developed in this thesis may be referred to as a sentiment
cube.

The architecture of the data warehouse system to be designed in this thesis is based on the
reference architecture for data warehouse systems proposed by Vaisman and Zimányi (2014). It is
illustrated in Figure 2.1 and outlined briefly below.

Figure 2.1: Architecture of a Data Warehouse System. Own illustration, adapted from Vaisman and
Zimányi (2014).

This architecture consists of five key components: data sources, back-end tier, data warehouse tier,
OLAP tier, and front-end tier. The data can originate from both internal and external sources. In
many cases, they represent the operational database systems of an organization. The back-end
tier covers ETL processes in the data staging area, which stands for extraction, transformation,
and loading. The data is extracted from the sources into the data staging area, transformed to fit
the data warehouse model, and then loaded into the next tier: the data warehouse tier. This stage
is represented by an enterprise data warehouse (EDW) and/or several data marts specialized for
functional departments. In addition, metadata is typically documented to describe the underlying
data, such as the DW model. The next tier is the OLAP tier, which consists of an OLAP server for
data presentation purposes. Often, it is an extension of a database product used for constructing
and querying OLAP cubes, regardless of how the data is stored in the back-end. Finally, the
front-end tier is used for data analysis and visualization. It can consist of many client tools, such
as statistical or data mining tools, for analyzing the data (Vaisman and Zimányi, 2014).

5

Vaisman and Zimányi (2014) explain that in practice, some of the architecture components may
not be used. For instance, in some cases, a data warehouse may not exist and must be created by
integrating data marts. In another scenario, client tools operate on the data warehouse without an
OLAP server in between. In an extreme case, there is only a virtual data warehouse represented
by predefined views over operational databases (Vaisman and Zimányi, 2014).

2.2 Aspect-Based Sentiment Analysis

This section discusses the topic of sentiment analysis, which serves as the core functionality in this
thesis for transforming the underlying data into valuable insights. It begins with Section 2.2.1,
which introduces aspect-based sentiment analysis, and concludes with Section 2.2.2, illustrating
how LLMs might be applied to ABSA tasks.

2.2.1 Introduction to Aspect-Based Sentiment Analysis (ABSA)

To understand the sub-field of aspect-based sentiment analysis (ABSA), it is necessary to first
explain sentiment analysis (SA) in general. The terms sentiment analysis and opinion are often
used synonymously, as they are commonly exchanged in practice. In this research, however, only
the term sentiment analysis is used. According to B. Liu (2017), it is defined as the study and
computational analysis of human sentiments, which can cover opinions, attitudes, evaluations, and
moods of humans. It is a popular research area in natural language processing (NLP). Moreover,
it is applied in information retrieval, data mining, and web mining. Since human opinions are of
great interest to business and society, sentiment analysis and its applications have also gained
importance in management sciences and social sciences (B. Liu, 2017). Sentiment analysis is a
natural language processing task; therefore, it is important to clarify what NLP means. Liddy
(2001) defines NLP as "a theoretically motivated range of computational techniques for analyzing
and representing naturally occurring texts at one or more levels of linguistic analysis for the purpose
of achieving human-like language processing for a range of tasks or applications" (Liddy, 2001,
p. 3).

B. Liu (2022) explains that while document-level analysis results in determining a single overall
polarity for an entire text, sentence-level analysis aims to determine one polarity for a single
sentence. Depending on the use case, this may suffice. However, in practice, business stakeholders
often seek to gain more detailed knowledge on how customers perceive different aspects of certain
entities (Siegel and Alexa, 2020).

At this point, aspect-level analysis, or ABSA, becomes relevant. It is "a natural language processing
technique that seeks to recognize and extract the sentiment connected to various qualities or
aspects of a specific good, service, or entity" (Kandhro et al., 2024, p. 1). According to W.
Zhang et al. (2023), ABSA can also be seen as the extraction and determination of aspect-level
sentiment elements. These elements include aspect term, aspect category (entity), opinion term,
and sentiment polarity. For instance, in the sentence The course material provided was relevant
and interesting, the sentiment elements would be course material (aspect term), courses (aspect
category), relevant and interesting (opinion term), and positive (sentiment polarity) respectively.
While the aspect term course material and the opinion term relevant and interesting are explicitly

6

present in the text, the aspect category and sentiment polarity are part of predefined sets of aspect
categories and sentiments, and therefore implicit.

Moreover, W. Zhang et al. (2023) distinguishes between single ABSA tasks and compound ABSA
tasks. Single tasks aim to predict only one of the sentiment elements. The task Aspect Term
Extraction (ATE) focuses on extracting the appropriate aspect terms that are explicitly present
in the sentence. Aspect Sentiment Classification (ASC), on the other hand, is responsible for
determining the sentiment polarities expressed towards the previously extracted aspect terms.
Moreover, Aspect Category Detection (ACD) is the task of predicting one or more aspect categories
or entities within the sentence. Last but not least, W. Zhang et al. (2023) displays a fourth
single task, called Opinion Term Extraction (OTE). This task predicts terms in the sentence that
express either a positive or negative sentiment towards an aspect term. In contrast to single tasks,
compound tasks aim to predict multiple sentiment elements simultaneously.

It is important to note that within ABSA literature, many different definitions are used. For
instance, the terms opinion target, target, aspect, and entity are often used interchangeably and
refer to the target within the sentence over which the opinion is expressed. In this study, the
sentiment elements described in the previous paragraph are used, as they are the most common in
research.

Ligthart et al. (2021) uses different perspectives to differentiate sentiment analysis: a task
perspective, an approach perspective, and a level of analysis perspective. From the task perspective,
the authors divide sentiment analysis into subjectivity classification, sentiment classification, opinion
spam detection, implicit language detection, and aspect extraction. From the approach perspective,
SA is classified into machine learning, hybrid, and lexicon-based approaches. From the level of
analysis perspective, a distinction can be made between aspect-, sentence-, and document-level
analysis.

As described earlier, due to the higher relevance of deeper aspect-level analysis, the latter two
analysis levels are neglected in this thesis. The underlying tasks within the level of interest, the
aspect level, are those mentioned earlier, outlined in detail by W. Zhang et al. (2023), and are
addressed in this study as ATE (Aspect Term Extraction), ASC (Aspect Sentiment Classification),
and ACD (Aspect Category Detection). Another existing task, known as OTE (Opinion Term
Extraction), exists but is not considered further. This is because it is not a core task in ABSA and
detects merely the information in the reviews responsible for the sentiment polarity (terms such
as good or bad). Since sentiment polarity itself is sufficient for the use case of this thesis, the
opinion term extraction task is neglected.

Lexicon-based approaches are the traditional methods in sentiment analysis (Hemmatian and
Sohrabi, 2019). According to B. Liu (2022), the core of these approaches is the focus on opinion
terms, also referred to as sentiment words, opinion words, or polar words. The author explains
that these are the terms that reflect the sentiment expressed on a given aspect. While positive
sentiment terms can be good, fantastic, superb, great, wonderful, or nice, negative sentiment
terms include bad, terrible, disappointing, awful, or disgusting. Conjointly, they can be summarized
as a sentiment lexicon, which is a collection of opinion terms. Moreover, B. Liu (2022) divides
lexicon-based approaches into dictionary-based and corpus-based approaches. In the dictionary-
based approach, freely available dictionaries (e.g., WordNet) are used to generate the sentiment

7

lexicon. This approach is especially used for general domain use cases. However, sometimes one
word implies a different sentiment depending on the domain. Even within one domain, this can be
true for different products. For instance, when comparing a regular car to a sports car, the word
loud can have different sentiments depending on the context. Commonly, good sports cars are
associated with being loud, while regular cars are often expected to be quieter due to improved
insulating materials. The corpus-based approach addresses this issue. In this approach, the more
general sentiment lexicon is expanded with sentiment words from a domain-specific corpus (B. Liu,
2022).

In contrast to the traditional lexicon-based approaches, there are machine learning approaches.
L. Zhang et al. (2018) explains that statistical and probabilistic methods of machine learning were
primarily used for NLP applications, such as Naïve Bayes, hidden Markov models, and k-nearest
neighbors. However, the field of NLP has experienced a breakthrough thanks to deep learning
within the last decade. Sentiment analysis tasks have recently proven to be popular for applying
deep learning techniques. According to Otter et al., 2020, the transformer architecture has become
a paradigmatic element in many artificial neural networks for the application of NLP. Devlin et al.
(2018) introduces BERT, a model based on the transformer architecture and used in this thesis.
It stands for Bidirectional Encoder Representations from Transformers and represents a Large
Language Model (LLM) developed in 2018 by Google. As the name suggests, the model uses only
the encoder part of the transformer architecture.

2.2.2 Usage of LLMs for ABSA

This section illustrates how large language models (LLMs) can be applied to address aspect-based
sentiment analysis (ABSA) tasks and highlights key challenges, such as the risk of overfitting, that
need to be overcome.

Fine-Tuning of Pretrained Large Language Models

The BERT model from Google (Devlin et al., 2018) and the GPT model from OpenAI (Radford
et al., 2019) have gained significant attention for their effective performance in natural language
processing (NLP) tasks. Pretraining involves feeding the model large amounts of unlabeled data, as
outlined by Devlin et al. (2018). This data can span multiple domains and languages. Pretraining
is conducted in an unsupervised manner and aims to teach the machine learning (ML) model the
context of language. During this process, the model is trained on general-purpose tasks. Afterward,
the pretrained language model (PLLM) can be adapted for specific NLP tasks in targeted domains.
In contrast, Houlsby et al. (2019) explains that fine-tuning, a crucial transfer mechanism in NLP,
typically requires smaller datasets tailored to the task of interest. These specific tasks are often
referred to as downstream tasks in the NLP literature (Min et al., 2023). For example, in ABSA,
a pretrained BERT model can be fine-tuned for tasks like Aspect Term Extraction or Aspect
Sentiment Classification. Min et al. (2023) argues that adapting the model to a specific task often
requires adding task-specific architecture on top of the pretrained language model.

When considering fine-tuning, it is important to understand the various strategies involved. Sun
et al. (2019) proposes different fine-tuning approaches for BERT, as illustrated in Figure 3.1. The
figure shows alternative fine-tuning scenarios, with different colors representing various options.

8

After BERT is pretrained on a general-domain corpus, additional pretraining on unlabeled target-
domain data can improve performance. BERT can then be fine-tuned as described earlier, either
for a single task or multiple tasks simultaneously. Furthermore, Sun et al. (2019) found that
single-task fine-tuning can benefit from an initial multitask fine-tuning phase.

Figure 2.2: Different Strategies for Fine-Tuning BERT. Own illustration, adapted from Sun et al. (2019).

Sun et al. (2019) argues that further pretraining is not mandatory during fine-tuning, but it is a
viable option when additional data is available. This further pretraining can be categorized into
three types: within-task, in-domain, and cross-domain pretraining. Within-task pretraining involves
further training BERT specifically on the dataset of the target task, enhancing its adaptation to
that task. In-domain pretraining uses data from the same domain as the target task to extend the
model’s learning. For example, in sentiment analysis, there are multiple sentiment classification
tasks with similar data distributions, and the combination of data from these tasks can be used
to further train BERT. Finally, cross-domain pretraining incorporates data from both the target
domain and other domains, expanding the model’s generalization capabilities (Sun et al., 2019).

Cross-Domain and Cross-Lingual ABSA

W. Zhang et al. (2023) discusses a key challenge in developing ABSA applications: the lack of
machine learning (ML) models trained on the specific domain of interest. The authors note that
recent ABSA models with good performance typically share one common feature: the training and
testing data come from the same distribution. This means that the data used to train the model
closely matches the data used for testing and evaluation, with "matching" referring to the same
domain or language. W. Zhang et al. (2023) present two approaches to address this challenge:
training an ML model from scratch for the target domain or adapting/fine-tuning a pretrained ML
model with domain-specific data. The first method, while effective, requires a large amount of
domain-specific data, particularly annotated data at the aspect level, which is often scarce and
essential for ABSA training. This leads to the need for custom annotation resources and building
a tailored training dataset. The second method, which also requires domain-specific data, typically
needs fewer examples compared to training from scratch (W. Zhang et al., 2023). Quantifying the
exact amount of data needed for ML training is challenging, but according to Goodfellow et al.
(2016), tens of thousands to millions of examples may suffice for complex tasks.

To build ABSA systems without the extensive and time-consuming task of collecting data and
implementing ML models from the ground up, transferable ABSA presents a viable alternative. In
the context of this thesis, two types of transferable ABSA, as outlined by W. Zhang et al. (2023),
are particularly relevant: cross-lingual and cross-domain ABSA. For language-related challenges,
cross-lingual ABSA may be a suitable approach, especially due to the lack of resources and tools
for languages other than English. B. Liu (2022) highlights that much research has focused on

9

cross-language sentiment classification at the document or sentence level, but there is limited
literature at the aspect level. On the other hand, cross-domain ABSA focuses on adapting ML
models to unseen domains, such as the higher education domain addressed in this thesis.

W. Zhang et al. (2023) argue that an effective approach for implementing an ABSA system and
adapting it to new domains and languages is to use pretrained large language models (PLLMs)
and fine-tune them with custom training data, leveraging the recent advancements in PLLMs
(W. Zhang et al., 2023).

Overfitting, Data Augmentation, and Class Imbalance

A prominent issue in machine learning (ML) when training data is scarce is overfitting. Shorten
et al. (2021) identifies data augmentation as a solution to address this problem, justifying its use
in this thesis to extend the annotated training data and prevent overfitting.

Ying (2019) explains that overfitting occurs when a ML model performs well on the training
data but poorly on the test data, due to its inability to generalize to unseen data. In natural
language processing (NLP), overfitting can manifest as the model memorizing high-frequency
numeric patterns in token embeddings or retaining specific language forms that do not generalize
well. Ying (2019) outlines several causes of overfitting, including noise, limited training data, and
unnecessary classifier complexity. Noise refers to random data points that distort general patterns,
while unnecessary complexity occurs when a model includes more predictors than needed. For
example, Hawkins (2004) argue that if a regression task only requires two variables to predict
an outcome, using more predictors may lead to overfitting. In this thesis, the primary concern is
limited training data, as discussed earlier, while noise and unnecessary complexity are not significant
issues. Noise is less relevant since the target data consists primarily of subjective student opinions,
and the feature set (sentence, aspect, sentiment polarity) is clearly defined, minimizing the risk of
excessive model complexity.

Shorten et al. (2021) emphasizes that data augmentation is particularly useful when training data
is limited or annotation resources are scarce. It is commonly employed to prevent overfitting. They
further explain that other regularization methods, such as dropout and weight penalties, also aim
to reduce overfitting. Dropout introduces noise to intermediate layers of the model, while weight
penalties add costs to the loss function based on the magnitude of model weights, promoting simpler,
more generalizable models. However, the authors state that these techniques do not fully capture
semantic invariance. Data augmentation, on the other hand, creates synthetic data by applying
minor transformations to existing data, preserving the original meaning. Neural augmentation
methods, such as back-translation, generative data augmentation, and style augmentation, are
often used for this purpose (Shorten et al., 2021).

Back-translation, a popular neural network technique, translates a sequence of words into another
language and then back to the original language, as explained by Sennrich et al. (2015). In
this thesis, generative data augmentation was employed, using pretrained large language models
(LLMs) based on the transformer architecture, as discussed by Y. Yang et al. (2020). While
back-translation could have been used, it typically incurs service fees, making generative data
augmentation the more practical choice.

10

Besides overfitting, Japkowicz and Stephen (2002) outline class imbalance as another challenge in
machine learning. It refers to the "problem encountered by inductive learning systems on domains
for which one class is represented by a large number of examples while the other is represented by
only a few" (Japkowicz and Stephen, 2002, p. 429). This imbalance can severely impact model
performance, especially in supervised learning settings, where one label class occurs much more
frequently than others. This is common in real-world applications, where data is often skewed. For
example, in a binary classification task, class imbalance arises when there are many more positive
samples than negative ones.

In sentiment analysis, the common classes are positive, neutral, and negative. While misclassification
of the minority class is particularly problematic in high-stakes fields like medical diagnosis, in
sentiment analysis, the consequences are typically less severe. However, misclassifying negative
feedback in the context of higher education could be more problematic than misclassifying positive
feedback, as failing to address issues raised by students can have more harmful effects than
overlooking praise.

Krawczyk (2016) identifies three main strategies for dealing with class imbalance in ML: data-level
techniques, algorithm-level techniques, and hybrid approaches. Data-level techniques aim to
balance the class distribution by generating more samples of the minority class (oversampling)
or removing samples from the majority class (undersampling). Early methods involved random
sampling, which often led to irrelevant data being added or meaningful data being removed. More
recent techniques have been developed to better preserve the context of the text. Algorithm-level
methods adjust the learning algorithm itself to address the imbalance, while hybrid approaches
combine both data-level and algorithm-level techniques. An example of a hybrid approach is found
in Wang et al. (2012), where they combine sampling methods with cost-sensitive learning.

Tanaka and Aranha (2019) notes that data augmentation can also help alleviate class imbalance
by oversampling the minority class to create a more balanced label distribution. Therefore, data
augmentation can address both overfitting and class imbalance.

In this thesis, due to the limited amount of training data and the highly imbalanced label distribution,
data augmentation techniques were employed to mitigate overfitting and improve generalization.

2.3 Related Work

Section 2.3.1 explores ABSA research within the domain of higher education, with a particular
focus on student feedback regarding their university study experiences. This section is divided
into two parts: a technical view, which examines the methods employed in ABSA research, and a
business view, which considers the intended outcomes of ABSA applications in a business context.
Finally, Section 2.3.2 reviews related works that integrate sentiment analysis results into OLAP
systems.

2.3.1 ABSA of University Reviews

The following section reviews studies that apply ABSA to university reviews, with a focus on the
technical perspective.

11

Technical Perspective

According to Pan and Yang, 2009, most machine learning algorithms assume that the training data
and unseen target data come from the same domain with a similar data distribution. However,
this assumption may not always hold in practice, as ML models may be trained on data from a
different domain or language than the one of interest. In such cases, knowledge transfer can be
leveraged to improve model performance. Ramponi and Plank (2020) argue that the performance
of a model often suffers when applied to a new, unseen domain because the aspects in the trained
domain may differ significantly from those in the target domain. For example, a large language
model (LLM) trained on financial data might be familiar with aspects like revenue, expenses,
investments, whereas a model applied to the university domain might encounter terms such as
lectures, books, professors, study contents. As a result, the model trained on financial data would
likely perform worse on university-related data.

Research on ABSA in higher education is limited (Melba Rosalind and Suguna, 2022). Nevertheless,
the remainder of this section provides an overview of recent studies focused on ABSA for educational
domain texts.

Nikolić et al. (2020) developed an ABSA system for the Serbian language using a hybrid approach
that combined dictionary-based methods with machine learning, citing insufficient annotated
training data for fully relying on deep learning models. They collected student surveys from
a single university in Serbia as well as publicly available student reviews from the ’Rate my
Professors’ website. The reviews were split into sentences and sentence segments, with aspect
categories defined under three main categories: professors, courses, and other. Sub-categories
included lectures and helpfulness under professors, and materials and organization under courses.
Annotators were asked to identify both an aspect category and a sentiment for each sentence
segment.

Melba Rosalind and Suguna (2022) built an ABSA system for online student reviews in English.
They first preprocessed the reviews by removing irrelevant information such as stopwords, then
split the reviews into sentences. Using the Latent Dirichlet Allocation (LDA) algorithm for topic
modeling, they identified aspect categories within the sentences. Lastly, they applied a machine
learning algorithm to determine the sentiment associated with each aspect category. Figure 2.3
illustrates their proposed ABSA system.

Edalati et al. (2022) conducted ABSA using data collected from the Coursera platform, which
consisted of student feedback rating their experiences with online courses. The authors employed
several algorithms, including Random Forest, Support Vector Machine, and Decision Trees. They
also used deep learning models and extracted teaching-related aspects in combination with predicted
student opinions on those aspects.

Similarly, Kastrati et al. (2020) applied ABSA to Coursera reviews, proposing a framework for
the automatic extraction of student opinions related to specific aspects. They annotated domain-
related aspects in a weakly supervised manner, allowing them to avoid the labor-intensive process
of manual annotation and to identify aspect categories reflected in the unlabeled reviews. The
researchers used convolutional neural networks (CNNs) to identify aspects and classify sentiment
polarities.

12

Figure 2.3: Concept of a proposed ABSA system. Own illustration, adapted from Melba Rosalind and
Suguna (2022).

Dehbozorgi and Mohandoss (2021) analyzed students’ speech and performance by using the
Python package Text2Emotion to classify emotions such as anger, happiness, surprise, fear, and
sadness. They applied rule-based POS tagging to extract aspects and used the k-nearest neighbors
algorithm to predict students’ performance, linking aspects to their emotions.

Schurig et al. (2022) applied ABSA to feedback from surveys that rated online teaching during the
COVID-19 pandemic. As many reviews were written in a mix of English and Danish, they used the
Google Cloud API to translate everything into English. Additionally, they employed dependency
parsing rules to extract aspects, specifically the aspect terms present in the sentences. Sentiments
were predicted using the libraries TextBlob, NLTK VADER, and Flair, with Flair leveraging a
pretrained transformers model to predict positive and negative sentiment polarities. Finally, the
authors manually defined aspect categories and evaluated the aspect terms detected earlier.

Bhowmik et al. (2023) collected student comments that had already been labeled with teaching
aspects. After preprocessing the data to remove irrelevant characters, they developed a deep
learning model based on a bidirectional LSTM network to predict the sentiments associated with
the identified aspects.

Sindhu et al. (2019) collected student reviews from a single university, defining 12 aspect categories
through interviews with domain experts. After preprocessing and splitting the comments, they
manually annotated around 5,000 sentences with an aspect category and sentiment. Using word
embeddings with the word2vec framework and a two-layer LSTM, they performed the ABSA
modeling procedure.

The following section outlines studies that apply ABSA to university reviews from a business
perspective.

13

Business Perspective

As a reminder, the objective of this thesis is to design and implement a data warehouse system that
supports higher education institutions (HEIs) in the systematic analysis of sentiments expressed
in students’ ratings. The goal is to ultimately gain insights into why students have positive or
negative feelings about studying at a particular university. With this in mind, it is essential to
consider the literature that addresses the business requirements of an ABSA system, rather than
focusing solely on the technical details, as discussed in the previous section. Therefore, this section
highlights how ABSA can serve as a valuable decision-making tool for higher education institutions.

Dolianiti et al. (2019) identified five distinct use cases or task types for sentiment analysis within
the educational domain:

1. Instruction evaluation

2. Institutional decision/policymaking

3. Intelligent information/learning systems enhancement

4. Assignment evaluation and feedback improvement

5. New research insights

Instruction evaluation has proven to be a popular data source for applying sentiment analysis.
Many studies have focused on analyzing student feedback from open-ended questions in course
evaluations (Koufakou et al., 2016; Dhanalakshmi et al., 2016; Gottipati et al., 2017). Some
studies have used publicly available reviews from websites like "Rate My Professors" or Massive
Open Online Course (MOOC) platforms such as Coursera (Azab et al., 2016; Onan, 2021; Dalal
et al., 2014; Z. Liu et al., 2016). These course evaluations aim to improve courses in the upcoming
semesters. However, other studies have sought to analyze student feedback more quickly in order
to enhance course quality within the current semester. For example, Colace et al. (2014) applied
sentiment analysis to student discussions on the Moodle forum for a given course. They found
that students’ sentiments improved during the course, as the teacher adapted their teaching based
on the feedback. Similarly, Altrabsheh et al. (2013) developed a sentiment analysis system for
real-time feedback during lectures. Students provided feedback via Twitter, enabling instructors
to quickly assess whether the pace of the lecture was suitable or if students needed assistance.
Onan (2021) analyzed 66,000 MOOC reviews, comparing machine learning, ensemble learning,
and deep learning approaches. They found that Long Short-Term Memory (LSTM) networks
combined with GloVe word embeddings delivered the best results. Pramod et al. (2022) proposed
a faculty evaluation system using sentiment analysis. They conducted a structured questionnaire
to collect student feedback on faculty performance and analyzed qualitative responses to detect
sentiment polarities, which varied across faculty and over time. These results were combined with
quantitative data to predict faculty popularity. Similarly, Roaring et al. (2022) evaluated faculty
performance at a university by comparing numerical ratings with textual comments. They found
that low ratings (1) correlated with negative sentiment, neutral ratings (2) were linked to neutral
words, and higher ratings (3-5) were associated with positive sentiment.

14

Since the task type institutional decision/policymaking best aligns with the data and objectives of
this thesis, it will be discussed in more detail at the end of this section.

Intelligent information/learning systems enhancement is defined by Dolianiti et al., 2019 as the
development of learning systems focused on helping individual students rather than analyzing
general opinions from the student body. Sentiment analysis can aid in understanding individual
student characteristics, thereby creating a more personalized learning experience. For example, the
study by Scaffidi (2016) analyzed forum messages to determine whether replies provided solutions
to user-specific problems. Sentiment analysis was applied to the responses to assess whether the
subsequent comments addressed the issues raised in the initial message.

Assignment evaluation and feedback improvement is another task type (Dolianiti et al., 2019).
According to Dolianiti et al. (2019), sentiment analysis (SA) can be used to help automate the
evaluation of assignments written in the form of essays by students. Furthermore, feedback from
teachers can be augmented with additional information based on the sentiments expressed.

As the task type new research insights, Dolianiti et al. (2019) summarizes all miscellaneous use
cases, such as detecting the relationship between students’ sentiments and their performance.

The ratings used in this study reflect opinions on not only courses or professors, but also on several
other aspects, such as equipment, library, study content, and organization. In literature, however,
most works analyze comments that evaluate only one specific course (Dolianiti et al., 2019). Yet,
the use of sentiment analysis for institutional decision/policymaking must not be neglected, as it
can help increase the university’s attractiveness and facilitate the process of student recruitment.
The analysis of broader aspects, beyond those found in course evaluations, can be beneficial for
this purpose. This area is related to the broader field of educational data mining, which, according
to Shaik et al. (2023), helps educational institutions in both the student recruitment process and
improving policies concerning student retention. The remainder of this section discusses recent
studies related to this task type.

With the research goal of assisting policymakers in higher education institutions, Hussain et al.
(2022) developed a three-layer ABSA system using topic modeling and hybrid machine learning.
The first layer was used to extract general high-level aspects from the data using the Latent
Dirichlet Allocation (LDA) algorithm as the topic modeling technique. Using similar techniques,
the second layer then extracted low-level aspects associated with the high-level aspects. As a
reminder, in this thesis, high-level aspects are referred to as aspect terms present in the sentence,
whereas low-level aspects are the aspect categories. Figure 2.4 illustrates their ABSA workflow.

The authors then detected sentiment polarities associated with the aspects in a third layer using
various machine learning methods. They argue that their results may enhance decision-making
processes at higher education institutions.

In another study, social media comments from Twitter were collected to rate selected German
universities. In the first step, the comments were classified as either positive or negative. In the
second step, they were analyzed in greater depth with regard to underlying topics. The authors
justified their approach by arguing that the insights provided could complement university rankings,
which, according to Abdelrazeq et al. (2016), do not always prove to be reliable when measuring
critical indicators.

15

Figure 2.4: ABSA Workflow. Own illustration, adapted from Hussain et al. (2022).

Cirqueira et al. (2017) sought to improve relationship management processes at a Brazilian university
by applying topic modeling and sentiment analysis to data from the university’s Facebook page.
They classified the overall sentiment polarities (positive, negative, neutral) expressed not only by
students, but also by staff. They then detected the main aspects addressed using Latent Dirichlet
Allocation (LDA) as a topic modeling technique. The findings provided valuable insights that
helped university administrators enhance communication, address problem areas, and improve
relationships with stakeholders. In a similar study, Santos et al. (2018) analyzed online reviews from
international students rating their host universities to identify key drivers of university attractiveness.
By using LDA for topic modeling and sentiment analysis, they uncovered hidden aspects and how
these were rated positively or negatively. These insights could assist university administrators
in adjusting their communication strategies to promote positively perceived aspects or address
problematic areas.

A slightly different approach was pursued by Jena (2019), who analyzed data from Twitter,
Facebook, and Moodle. In the first step, they used machine learning methods to detect sentiment
polarities (positive, negative, neutral) from students. In the second step, employing big data
frameworks, they predicted student emotions such as Amusement, Anxiety, Boredom, Confusion,
Enthusiasm, Excitement, and Frustration. The results of this study could help universities take
student feedback into account when planning specific activities.

2.3.2 Social Business Intelligence

In a study on Social Business Intelligence (SBI), which combines user-generated content (UGC)
with corporate data, Golfarelli, 2014 addresses OLAP analysis of textual UGC and highlights
its deviations from traditional OLAP systems within the context of business intelligence (BI)
applications. The author argues that, unlike standard BI projects, OLAP systems for UGC analysis
require additional modules, such as the semantic enrichment of unstructured data.

At a high level, the study proposes an architecture consisting of three components: the crawl-
ing component, the semantic enrichment component, and the ETL component. The crawling
component extracts UGC from the web, transforms it into a structured format, and loads it into
the data staging area, also referred to as the operational data store (ODS). Optionally, the ODS
can be linked to a document database. The semantic enrichment component extracts semantic
information from the data present in the ODS. Finally, the ETL component is responsible for

16

regularly extracting the data from the ODS and integrating it with corporate data sourced from
an Enterprise Data Warehouse (EDW). Afterward, the data is loaded into multidimensional cubes
Golfarelli, 2014.

In related research, Gallinucci et al., 2015 proposes the meta-star approach for modeling flexible
topic hierarchies for UGC. Since topics found in social media data are dynamic and change over
time, the authors argue that a traditional static star schema is insufficient. In this thesis, a
topic modeling approach was considered but ultimately discarded. This is because the topics
identified were equivalent to those already presented as aspect categories on the evaluation platform.
Consequently, the topic hierarchy modeled in this thesis is static and low in complexity, making
the traditional star schema sufficient.

In comparison to these studies (Golfarelli, 2014; Gallinucci et al., 2015), in this thesis, the crawling
component is equivalent to the collection of online reviews from a university evaluation platform.
However, no document database is used; instead, the reviews are stored locally as Excel files.
The semantic enrichment component reflects the application of the ABSA model, which detects
aspects and corresponding student sentiments. The ETL component is only partially addressed in
this thesis, as there is no underlying business data warehouse, and therefore no corporate data is
integrated. However, the prediction results of the ABSA are stored in a multidimensional cube.

Another study conducted by Cuzzocrea et al., 2016 analyzes Twitter tweets by combining Formal
Concept Theory (FCT) with OLAP techniques. They collect the data using Twitter’s public APIs
and detect topics using the FCT approach. The data is then modeled in a multidimensional format
and analyzed using standard OLAP operations. In similar research, Kraiem et al., 2015 aim to
collect and analyze social media data in an OLAP fashion, focusing on Twitter tweets. Besides
the standard ETL operations, they design a generic multidimensional schema based on the data
structure of the tweets.

With the objective of designing a data warehouse for UGC, Moalla et al., 2022 extract data from
various social media accounts (Facebook, Twitter, and YouTube) and model three data marts, one
for each account. To build the complete data warehouse, they combine the different schemas from
the data marts into a single schema. They then use machine learning techniques, such as Support
Vector Machines, for sentiment analysis before loading the data into a NoSQL database. For data
collection, public APIs are utilized. In contrast, this thesis focuses on a single data source and,
since no API is available, uses web scraping techniques. In addition, a relational database was
used in this thesis to store the obtained multidimensional data.

17

3

System Design

This chapter serves as an introduction to the main part of the thesis. Its purpose is to highlight
the clear distinction between the ABSA model training process and its application. On the one
hand, it provides an overview of the fine-tuning process undertaken in this thesis, which is detailed
in Chapters 4–5. On the other hand, it outlines the architecture of the data warehouse system
designed in this thesis, with its implementation covered in Chapter 6.

3.1 Training Process

The training process in this thesis comprises two distinct components: the training of an ABSA
model (Fig. 3.1) and the training of an aspect category classifier (Fig. 3.2). The ABSA model is
responsible for extracting one or more aspect terms implicitly present in a sentence (e.g., classes)
and determining their associated sentiment polarities (positive, negative, or neutral).

The aspect classifier, on the other hand, is tasked with categorizing the aspect term(s) into an
aspect category from a predefined set (e.g., lectures). As discussed later, the ABSA training
implementation from the Python framework Python, used in this thesis, initially lacked support for
classifying an aspect term into an explicit aspect category that is not directly mentioned in the
sentence. As a result, a separate classifier was developed to address this limitation, leading to two
distinct training processes.

Figure 3.1: Fine-tuning the ABSA Model

18

The process of fine-tuning the ABSA model is illustrated in Figure 3.1. The process begins with the
collection of suitable data for training or fine-tuning the model. In this case, since no pre-existing
training data was available, student feedback was crawled from a university evaluation platform
using web scraping techniques. This feedback serves two purposes: as training data for the ABSA
model and later as input for populating the sentiment cube. However, alternative data sources
could also be considered for this step, such as course evaluations conducted each semester by the
university.

The next step involves selecting a language model to serve as the base model for ABSA training, as
developing an ABSA model from scratch was deemed unfeasible. Once a base model is chosen, the
collected data must be preprocessed. This step includes several data transformation procedures to
ensure that the data is ready for training. In this thesis, preprocessing involved data segmentation,
data annotation, and data augmentation. Data segmentation refers to splitting each student
review comment into individual sentences, as the ABSA model requires one sentence per input,
and each record in the training dataset corresponds to a single sentence. Data annotation involves
manually labeling each sentence with one or more aspect terms and their corresponding sentiment
polarities, as no labeled training data was initially available. Data augmentation aims to artificially
extend the annotated dataset to address issues such as class imbalance and overfitting.

In the subsequent step, the prepared dataset must be adjusted to meet the format requirements
of pyabsa’s training implementation. This involves transforming the data into a specific format
compatible with the Python library. Depending on the training framework used, this step may not
always be necessary.

The next stage is the modeling or training phase, which involves fine-tuning the base model using
the prepared training data. This stage leverages the completed dataset as input to the base model
to develop the ABSA model.

Finally, the model is evaluated. If the developed model does not meet performance expectations,
the process can be revisited from earlier steps to identify and address any issues.

The process of developing the aspect category classifier is illustrated in Figure 3.2. In this thesis, a
predefined set of aspect categories was selected, which later represent the final entity of the aspect
dimension within the sentiment cube. To achieve this, a custom training dataset was created by
labeling each previously annotated sentence with the appropriate aspect category corresponding to
each aspect term.

Next, the training data is prepared by replacing each aspect category in the dataset with its one-hot
encoding representation. The prepared training data is then fed into a base model suitable for
multi-label text classification. In this thesis, an implementation of the BERT model was chosen;
however, other language models could also be used for the aspect category classifier. Finally, the
classifier is evaluated in the testing phase.

As mentioned earlier, both processes are detailed in Chapters 4–5. Chapter 4 focuses on the
collection of student feedback as raw training data, while Chapter 5 discusses the training of the
ABSA model and the development of the aspect category classifier.

19

Figure 3.2: Developing the Aspect Category Classifier

3.2 Data Warehouse System Architecture

The architecture of the data warehouse system designed in this thesis is shown in Figure 3.3 and
is inspired by the reference architecture from Vaisman and Zimányi (2014). The foundation of
the system is the data source, which represents a real-world example of a university evaluation
platform.

Figure 3.3: Data Warehouse System Architecture

The next layer is the back-end layer, which serves as the data staging area and is designed as a
two-module component: a web scraping module and an aspect-based sentiment analysis module.
This layer is responsible for the ETL process: data extraction, transformation, and loading. First,
student feedback to be analyzed is extracted from the data source using the same web scraping
function employed for collecting the training data during the ABSA model training. In the next
step, the data is enriched with aspect terms, sentiment polarities, and aspect categories by applying
the developed ABSA model and aspect category classifier. Finally, the results are loaded into a
data staging area, represented in this thesis by a relational staging database.

The subsequent layer is the data warehouse tier, which corresponds to the data warehouse
itself—specifically, the sentiment cube. Its multidimensional structure is designed to support

20

querying and is populated with data from the staging area. The final layer is the front-end tier,
implemented in a rudimentary form in this thesis. Here, it is represented by SQL queries provided
as examples for analyzing the sentiment cube.

As mentioned earlier, the implementation of the data warehouse system is discussed in Chapter
6. This includes the definition of the sentiment cube, the data integration processes using web
scraping and the developed models, and analysis examples presented as SQL queries.

21

4

Web Scraping of Student Feedback

This chapter addresses the collection of student feedback as raw training data for the fine-tuning
process of the ABSA model. It focuses on collecting the data needed for two purposes: creating a
training dataset, as discussed in Chapter 5, and collecting the raw data to be analyzed.

To understand the required data, Section 4.1 provides a brief overview of the business perspective
of the use case. It emphasizes the importance of analyzing students’ sentiments in detail, as
previously discussed, and outlines the business requirements.

Section 4.2 describes the characteristics of typical reviews on university evaluation platforms.
Section 4.3 details the web scraping process used to collect 10,810 student ratings from a
real-world university evaluation platform.

4.1 Business Requirements

Information found in university rankings alone does not suffice to capture students’ satisfaction
(Johnes, 2018; Moustafa, 2024). Hence, it is assumed that analyzing student feedback is necessary.
Furthermore, based on the findings of Siegel and Alexa (2020), analysis at the document or
sentence level may not be sufficient to draw meaningful conclusions about how students perceive
various aspects of specific university offerings. Therefore, the general assumption is that HEIs need
to employ ABSA to gain insights into their students’ satisfaction with different services provided.

Additionally, it is assumed that understanding the satisfaction levels of not only an institution’s
own students but also those of other HEIs is of interest, as it enables meaningful comparisons.

The findings from research and the assumptions drawn were confirmed through a discussion
with a marketing professor at Johannes Kepler University (JKU) Linz. For JKU Linz, it was
particularly important to uncover insights from their students’ sentiments, hidden in various
textual data sources. Currently, JKU does not have a system capable of fully leveraging the
potential of textual feedback provided by their students. Moreover, apart from the annual lecture
evaluations, no existing data is readily available for this use case. Consequently, one requirement
for a potential system would be the ability to collect reviews written by students before analyzing
hidden sentiments. Additionally, there was a need to compare the sentiments expressed by JKU
students with those of students enrolled at other Austrian HEIs. This would enable valuable
conclusions to be drawn from both internal and external perspectives. The system would need to
make it possible to compare student satisfaction from different perspectives, such as time and

22

study course. For instance, it should allow for comparisons of satisfaction with lectures in study
course A at university A to satisfaction with lectures in study course A at university B, both during
the first half of 2023.

Following the discussion, it was assumed that other HEIs face similar requirements to those of JKU
Linz. Furthermore, it was assumed that, for this use case, collecting reviews from Austrian HEIs
would suffice, eliminating the need to gather data from HEIs in other German-speaking countries.
Therefore, the system needed to be capable of crawling reviews from students enrolled at Austrian
HEIs. Collecting reviews on HEIs from different countries, however, could also be considered.

One of the goals of the analysis is to identify which aspects of studying at an Austrian HEI are
perceived positively by students and which aspects are subject to complaints. With equivalent
insights regarding other Austrian HEIs, it may become possible to compare the services offered by
one institution with those of its competitors.

As a result, the system’s requirements include collecting textual student feedback on various
Austrian HEIs from the web and analyzing the hidden sentiments embedded within this feedback,
with a focus on different HEI offerings as well as other factors, such as time and study course. This
enables comparisons of university services provided by different Austrian HEIs. It was assumed
that OLAP techniques might be suitable for this analytical purpose. Consequently, OLAP was
utilized in this thesis.

Ultimately, the insights revealed by the system could assist HEIs in highlighting their strengths,
addressing weaknesses, improving student retention, and, most importantly, enhancing student
recruitment.

4.2 Data Selection

The data source for populating the data warehouse system must consist of student feedback, as
this is the data to be analyzed later. While student feedback can be found across various platforms,
such as Facebook, blogs, or rating sites, university evaluation platforms are likely the most reliable
source for gathering students’ opinions on specific services offered at higher education institutions
(HEIs).

Figure 4.1 presents a fictional example of a German-language review from a generic university
evaluation platform. This example is used in this thesis to illustrate the development of a web
scraping component for collecting student feedback, which serves as training data for the ABSA
model training pipeline (see Figure 3.1).

The example review provides student feedback on experiences with the Bachelor’s program in
Biological Chemistry at a specific HEI. As illustrated, a typical review includes a title (Unorganisiert),
a course of study (Biological Chemistry (B.Sc.)), a comment (upper text), an overall star rating
(3.6), and a publication date (07.10.2023). Occasionally, reviews may also include feedback on
the university’s digitalization efforts (lower text) and whether the author recommends the program
or university (smiley icon at the top left).

The data collected in this thesis is sourced from a prominent university evaluation platform (UEP)
based in Germany, which served as the basis for the example review in Figure 4.1. To the best

23

Figure 4.1: Example of a Review from a Generic UEP (Own Illustration)

of my knowledge, no other publicly available data source is better suited for the use case of this
thesis. Other potential data sources for students’ opinions may include social media channels such
as Facebook, Twitter, or Instagram. However, the platform used in this study provides by far the
most complete, specialized, and comprehensive source of ratings for Austrian higher education
institutions (HEIs). It contains ratings for all HEIs based in both Austria and Germany and allows
current students to rate their study experience.

A total of 74 Austrian-based HEIs were considered, resulting in the collection of 10,810 reviews.
The data is briefly described below.

Each review consists of two text fields. In the upper field, students can freely compose a general
comment, sharing their overall study experience at the respective HEI. In the optional lower
field, students are prompted to respond to the question "Wie gut ist deine Hochschule digital
aufgestellt?" (ENG: "How well is your university set up digitally?"). Additionally, each review must
include a title and specify the study degree pursued by the student. A smiley icon located in the
top left corner indicates whether the reviewer recommends the study degree or the respective HEI.
The mandatory star rating in the top right corner reflects an overall rating, ranging from 1 to 5.
Each review also includes the reviewer’s first name and the date the rating was created. Apart
from the first name, no personal data is captured by the platform. Users also have the option to
write anonymously. Since this study does not aim to collect personal data, this is not a concern.

The majority of the reviews are written in German, with only a few exceptional cases in English.
The English reviews were also collected, as it was assumed that including English data would not
pose a problem, given that the pretrained language model BERT was trained on English corpora.

Regarding the selection of data features, two options were considered. The first option involved
initially web scraping all the data features required to build the sentiment cube, while the second
option involved collecting only those necessary for the training procedure and scraping the rest
after the model training. It was decided to proceed with the first option, so all attributes of the
data required for the sentiment cube were web scraped, as detailed in Section 4.3.

The collected features comprise nine attributes: university name, university type, review title,
study degree, overall rating, date, comment, COVID comment, and recommendation. The COVID
comment refers to the second text field describing the digital setup of the higher education

24

institution, often addressing the period during the pandemic.

These fields were considered relevant for subsequent querying of the analysis results. Among them,
university name, university type, study degree, and date were identified as essential features for
OLAP querying. The inclusion of the date is particularly crucial for understanding how student
sentiments evolve over time.

The fields for overall rating and recommendation were considered supplementary. While the review
title often contains sentiment-related information, it was excluded from the analysis, as it typically
only summarizes the rating in a few words, which duplicates sentiment information already present
in the text fields.

Finally, the comment and COVID comment fields are necessary for training the ABSA model, as
they contain the relevant information about aspects and sentiments.

The subsequent section explains how the reviews can be collected from the university evaluation
platform (UEP) using web scraping techniques.

4.3 Web Scraping Process

The student ratings on the used platform are public, hence, everyone can read them. For this
purpose, one does not even need to be registered on the platform. However, crawling the data was
necessary, as there was no option to download the reviews. To this end, web scraping was applied,
as it serves as an efficient technique for automatically crawling data from websites (Khder, 2021).

As a web scraping tool, Beautiful Soup1 was chosen. It is a Python framework designed to extract
data from HTML and XML files. It works with various parsers to provide intuitive methods for
navigating, searching, and modifying the parse tree.

The following Subsection 4.3.1 presents example code that can be used for web scraping reviews
from UEPs. The code is described in detail.

It is worth noting that the code is provided in a generic format (see the uppercase HTML
elements/tags and class attribute values). Therefore, it must be adapted accordingly. For instance,
the generic HTML element "CONTAINER_ELEMENT" may be replaced with "div," whereas
the generic class attribute "REVIEW" may be replaced with the respective class attribute value
representing the review (refer to line 37 in Listing 4.2). The values for both the HTML element
and the class attribute may vary between different UEPs.

After describing the generic code, Subsection 4.3.2 concludes the chapter by presenting the
outcomes of the data collection process, obtained by applying the code to a real-world UEP.

4.3.1 Web Scraping Implementation

Listing 4.1: Libraries needed for Web Scraping
1 from bs4 import BeautifulSoup

2 import requests

3 import pandas as pd

1https://beautiful-soup-4.readthedocs.io/en/latest/

25

https://beautiful-soup-4.readthedocs.io/en/latest/
https://beautiful-soup-4.readthedocs.io/en/latest/

4 import numpy as np

5 from time import sleep

6 from random import randint

The scraping process was carried out using Python and Jupyter Notebook. In Listing 4.1, typical
libraries used for the web scraping process are depicted. Beautiful Soup facilitates web crawling,
the requests library can be utilized for making HTTP requests to the platform’s web server,
pandas handles data manipulation tasks, and numpy supports basic numerical computations.

In total, three functions were implemented for web scraping the data: one main function containing
the core logic and two helper functions utilized within the main function.

The main function get_uni_reviews ultimately crawls all reviews from one HEI at a time. It
is divided into three parts, as illustrated in the following three listings. Listing 4.2 depicts the
first part. This function expects three parameters: the URL leading to the ratings of one HEI,
the name of the university, and the type of the university. Since both the name and type of the
university were not intuitively found on the same URL containing the ratings, it was decided to
manually pass them to each scraping iteration. Alternatively, they could have been extracted
through scraping if desired. As illustrated by the example review in Figure 4.1, the features to be
collected from each review via web scraping include the review title, study course/degree, overall
rating, recommendation, date, comment, and COVID-related comment. This data is gathered by
accessing their corresponding HTML elements and class attributes. The web scraping process is
described in more detail below.

Listing 4.2: Main function get_uni_reviews (1/3)
1 def get_uni_reviews(url , uni , uni_type):

2 # creating a dictionary that will be passed to modify headers in

http request

3 headers = {

4 'User -Agent ': YOUR_USER_AGENT

5 }

6

7 global review_titles

8 global study_courses

9 global rating_values

10 global recommendation

11 global comment_dates

12 global all_comments

13 global covid_comment

14

15 review_titles = []

16 study_courses = []

17 rating_values = []

18 recommendation = []

19 comment_dates = []

20 all_comments = []

21 covid_comment = []

22

23 pages = np.arange (1 ,1000 ,1)

26

24

25 try:

26 for page in pages:

27 page = requests.get(url+"seite -"+str(page), headers=headers)

28 soup = BeautifulSoup(page.text , 'html.parser ')

29 soup.prettify ()

30

31 if next(page) is False:

32 print("No more pages left.")

33 break

34

35 print(page.status_code) #should be 200 (status -> OK)

36 print(page.raise_for_status ()) #should be None (no error

occurred)

37 reviews_from_one_uni = soup.find_all("CONTAINER_ELEMENT",

class_="REVIEW")

38 sleep(randint (1,3))

In the beginning of the function, the computer’s user agent is passed to the variable headers which
is later needed by the Beautiful Soup object.

In lines 7-13, all data features, except university name and university type, are defined as global
variable. In lines 15-21, they are assigned an empty array, which later would be filled with
data from the student reviews. In line 26, a for-loop is executed which iterates through each
page containing reviews, starting with the URL passed to the function. Throughout the library
requests an HTTP request is sent to the web server, accessing the URL. A key point here is the
construction of the substring "seite-"+str(page) in line 27, which facilitates the transition to
the next URL hosting the subsequent ratings. The content of each page is captured in the variable
"soup", denoting a Beautiful Soup (BS) object. Another crucial aspect is depicted in line 37. The
find_all function from Beautiful Soup retrieves all HTML elements, in this example tagged as
"CONTAINER_ELEMENT" with the class attribute "REVIEW", resulting in the assembly of all
reviews as containers, displayed in the current page. Line 31 calls the first helper function next,
which is described in more detail later. The for-loop defined in line 26 terminates when the value
of next(page) is false (line 31), indicating that there are no more pages left to crawl reviews from.
Finally, a noteworthy point in Listing 4.2 is in line 38. The function sleep is used to make the
program wait briefly before continuing with the subsequent code. This turned out to be helpful
because, in the second part of the main function, another HTTP request is made. Without this
waiting time, issues such as server overload or request throttling occurred.

Listing 4.3 depicts the second part of the main function. The core component here is the nested
for-loop, which iterates through all reviews from the current page, which were collected in the first
part of the function, as shown in Listing 4.2. This ensures that the necessary data features within
each individual review are processed. By applying the BS function find to each review, it was
possible to extract all elements of the review by accessing their corresponding HTML elements and
classes. In this way, all data features could be populated. For example, if a review included the
tag "ICON_ELEMENT" with the class attribute "SMILEY_POSITIVE" this indicated that the
HEI was recommended (see line 15). Consequently, the recommendation array was updated with

27

the value "Ja" or "Nein," depending on whether the class attribute was "SMILEY_POSITIVE" or
"SMILEY_NEGATIVE" respectively.

For obtaining the review title, study degree, rating total, date, comment, and COVID comment, the
function get_text(strip=True) was applied. For the comment, it was necessary to distinguish
between a long and short comment. If a student wrote a comment exceeding a certain number of
characters, the full comment had to be opened by pressing a "Read More" button. This distinction
is realized by calling the second helper function getnexturl (line 26), which is described in more
detail later. The COVID comment is optional for the student to fill out. Therefore, in case of
absence, the value "n.a." was added to the respective array. At the end of the second part of the
get_uni_reviews function, the outer for-loop terminates, indicating that all pages containing the
ratings of the respective university have been iterated through. Consequently, all required data is
saved in the previously defined arrays.

Listing 4.3: Main function get_uni_reviews (2/3)
1 for review in reviews_from_one_uni:

2 # Review titles - variable review_titles

3 title = review.find("TITLE_ELEMENT",

class_="TITLE_OF_A_REVIEW").get_text(strip = True)

4 review_titles.append(title)

5

6 # Study courses - variable study_courses

7 study = review.find("PARAGRAPH_ELEMENT",

class_="STUDY_COURSE_OF_A_REVIEW").get_text(strip =

True).rstrip('\n')

8 study_courses.append(study)

9

10 # Total rating values of the review - variable rating_values

11 rating = review.find("CONTAINER_ELEMENT",

class_="RATING_VALUE_OF_A_REVIEW").get_text(strip = True)

12 rating_values.append(rating)

13

14 # Recommendations ("Ja" or "Nein") - variable recommendations

15 if(review.find("ICON_ELEMENT", class_="SMILEY_POSITIVE") is

not None):

16 recommendation.append("Ja")

17 elif(review.find("ICON_ELEMENT", class_="SMILEY_NEGATIVE")

is not None):

18 recommendation.append("Nein")

19

20 # Publication dates - variable comment_dates

21 if(review.find("INLINE_ELEMENT", class_="DATE_OF_A_REVIEW")

is not None):

22 date = review.find("INLINE_ELEMENT",

class_="DATE_OF_A_REVIEW").get_text(strip = True)

23 comment_dates.append(date)

24

25 # Comments (text) - variable all_comments -differentiate

between short and long comments!

28

26 newurl = getnexturl(review)

27 if (newurl is not None):

28 try:

29 page = requests.get(newurl , headers=headers)

30 soup = BeautifulSoup(page.text , 'html.parser ')

31 soup.prettify ()

32 longcomment = soup.find("CONTAINER_ELEMENT",

class_="COMMENT_OF_A_REVIEW").get_text(strip =

True)

33 all_comments.append(longcomment)

34 except Exception as e:

35 time.sleep (5)

36 print(e)

37 else:

38 comment = review.find("PARAGRAPH_ELEMENT", class_=

"COMMENT_OF_A_REVIEW").get_text(strip = True)

39 all_comments.append(comment)

40

41 # Covid comments - variable covid_comment

42 if(review.find("CONTAINER_ELEMENT",

class_="COVID_COMMENT_OF_A_REVIEW") is not None):

43 cov_text = review.find("CONTAINER_ELEMENT",

class_="COVID_COMMENT_OF_A_REVIEW")\

44 .get_text(strip=True).strip('Wie reagiert

deine Hochschule auf die

Corona -Krise?')

45 covid_comment.append(cov_text)

46 else:

47 covid_comment.append("n.a.")

48

49 except Exception as e:

50 print(e)

The third and final part of the main function is depicted in Listing 4.4 and involves saving the
data. First, a pandas DataFrame uni_reviews is created and populated with the collected data
by attaching dictionaries that include the previously created arrays. The DataFrame is then saved
as both Excel and JSON files to the local file system. Finally, the function returns the DataFrame,
representing all reviews from one HEI.

Listing 4.4: Main function get_uni_reviews (3/3)
1 # Create Dataframes for each Uni

2 uni_reviews = pd.DataFrame ({"Hochschule": uni , "Typ": uni_type , "Titel":

review_titles , "Studiengang": study_courses , "Bewertung":

rating_values , "Datum": comment_dates , "Kommentar": all_comments ,

"Umgang mit Corona": covid_comment , "Weiterempfehlung":

recommendation })

3 print(uni_reviews)

4

5 # Path to save data -> Create Excel

6 path_to_save = 'C:/Users/YOUR_USER/Documents/Data/Excel/%s.xlsx' % (uni)

29

7 uni_reviews.to_excel(path_to_save , encoding='utf -8', index=False)

8

9 # Path to save data -> Create JSON

10 path_to_save_json = 'C:/Users/YOUR_USER/Documents/Data/JSON/%s.json' %

(uni)

11 uni_reviews.to_json(path_to_save_json , force_ascii=False)

12

13 return uni_reviews

As discussed earlier, the helper function next is used by the main function. It determines whether
the current page is the last page. The function requires the HTTP response object of the current
page, which is then used to create a BeautifulSoup (BS) object, likewise as in the main function.
By searching within the tag "NAVIGATION_LIST_ELEMENT" for the class "PAGINATION" or
similar, the function checks if there is a subsequent page.

Listing 4.5: Helper Function next

1 def next(next_page):

2 soup = BeautifulSoup(next_page.text , 'html.parser ')

3 next_ = soup.find('NAVIGATION_LIST_ELEMENT ', {'class ':'PAGINATION '})

4 if next_ is None:

5 return False

6 else:

7 return True

The helper function getnexturl is also called by the main function. Its purpose is to distinguish
between reviews that have a "Read More" button and those that do not. It takes the current
review, represented by a BeautifulSoup (BS) object, as input. If the review contains a class similar
to "READMORE" within a "LINK_ELEMENT" tag, the URL linked to by the "Read More" button
is created and returned. Otherwise, the function returns None, indicating that the review contains
a short comment without a "Read More" button. If the URL is not None, the main function
proceeds to crawl the long comment from the new URL. Otherwise, it retains the original URL.

Listing 4.6: Helper Function getnexturl

1 def getnexturl(soup):

2 if soup.find('LINK_ELEMENT ', class_='READMORE '):

3 newurl = str(soup.find('LINK_ELEMENT ')['URL_ATTRIBUTE '])

4 return newurl

5 else:

6 return None

4.3.2 Results of Web Scraping

This section presents the results of the web scraping process. The generic code presented above
was used on a UEP to collect reviews commenting on in total 74 different Austrian-based HEIs.
Due to personal preferences, the Excel data was prioritized for further work over the JSON data.
Figure 4.2 provides an example of collected ratings from JKU in the form of an Excel sheet snippet.
In total, 10,810 ratings from 74 different HEIs were collected, resulting in 74 Excel files.

30

Figure 4.2: Excel Sheet Snippet of Collected JKU Ratings

The number of ratings varies significantly across universities. Figure 4.3 presents an overview of
the collected ratings, with the y-axis indicating the number of ratings available for each university.
The University of Vienna stands out with the highest number of ratings, totaling 1,584. Following
closely is the FOM University, with 1,572 ratings. Other universities with significant numbers of
ratings are the University of Innsbruck, the TU Vienna, and the University of Graz, with 661, 575,
and 556 reviews respectively. The JKU Linz occupies the 10th position with a total of 385 ratings.
It trails behind the TU Graz, the University of Salzburg, and the WU Vienna, which have 514, 426,
and 412 ratings respectively. In total, 17 Austrian HEIs had less than 10 ratings, as can be seen in
4.3. Still, all collected reviews were considered valuable for later data annotation and training,
as discussed in Chapter 5. The assumption was that the majority of universities contain ratings
addressing similar aspects or aspect categories. In other words, for simplicity’s sake, all ratings
were associated with only one domain: higher education.

31

Figure 4.3: Overview of Collected Ratings - HEI Name and Number of Ratings

32

5

Development of a Model for Aspect-based Sentiment
Analysis

This chapter discusses the training of the ABSA model and the development of the aspect category
classifier, utilizing the data collected through web scraping as detailed in Chapter 4. It involves
various steps including aspect category selection, data preprocessing, model training, model
evaluation, and lastly, the development of a classifier for predicting aspect categories. The aim
of this module is to be able to detect student sentiments expressed on certain aspects of a HEI.
Therefore, it is necessary to develop a model, that can both extract aspect terms from a sentence
on which an opinion is expressed, and predict the corresponding sentiment. Moreover, the aspects
eventually need to be in a categorical format to later serve for OLAP querying. Since the ABSA
model trained during this thesis only extracts aspect terms, explicitly occurring in the sentence, a
second ML model respectively classifier had to be developed. The second model is responsible
for classifying an aspect term into an aspect category. Alternatively, a model could have been
developed which is able to extract aspect terms, detect sentiments, and classify aspect terms. In
this scenario, a second ML model would not be needed.

The overall design of the ABSA workflow follows a similar approach to those found in the literature,
as covered in Section 2.3.1. In contrast to traditional ABSA approaches, extensive preprocessing
of the data is not necessary. This is because the sentiment analysis was performed using a
BERT-based model. However, several processing steps to prepare the training data were still
required. After collecting the student feedback, the data is prepared for the modeling phase.

Following the CRISP-DM cycle proposed by Wirth and Hipp (2000), a standard process model
for data mining projects, this central module of the data warehouse system’s back-end tier was
conceptualized as an iterative flow, depicted in Figure 5.1.

The first step (Aspect Category Selection) details the process of defining a set of aspect categories
to be later classified by the second ML model. This step involves understanding both business
and data understanding and is addressed in Section 5.2. The subsequent step in the cycle (Data
Preprocessing) reflects necessary data preprocessing before training both the ABSA model and the
category classifier. This step includes data segmentation, data annotation, data augmentation,
and training data preparation and is covered in Section 5.3. The next step after data preprocessing
represents the modeling process (Modeling), which aims at training the two models with the
required training data. After completing training, the models can be evaluated in a next step
(Model Evaluation). To reduce complexity, the development and evaluation of the two models was

33

Figure 5.1: Sentiment Analysis Module (adapted from Wirth and Hipp, 2000).

divided: Section 5.4 covers PyABSA training of the ABSA model, while its evaluation is addressed
in Section 5.5. Section 5.6 showcases both the development and evaluation of the second model
needed for aspect category classification. Applying the trained models to the online reviews forms
the last step of the cycle (Model Deployment). This step, however, is covered in Chapter 6, where
both the data warehouse and front-end tiers of the designed system are discussed. Argued by
Wirth and Hipp (2000), the cycle can be terminated or restarted, depending on the performance
of the developed models. For instance, if the performance of the trained ABSA model is not
sufficient, the data might be augmented, which is part of the data preprocessing step. Another
scenario might be that after final data analysis, business stakeholders request changes concerning
the selection of the aspect categories. In this case, it can be proceeded with the first step of the
cycle (Wirth and Hipp, 2000).

Before starting with the first step of the cycle, the following section briefly introduces the Python
library PyABSA, a modularized ABSA framework chosen for this work.

5.1 PyABSA – a Framework for Reproducible ABSA

Given the challenges ABSA poses for beginners, a user-friendly framework was needed that offers
straightforward functionalities for ABSA and facilitates the training of a custom model for this
specific use case. PyABSA is a library that proved helpful for this purpose. It is a modularized
Python framework for reproducible ABSA built on PyTorch. Leveraging BERT-based models,
it can be used for both zero-shot ABSA via its API and for further training by feeding custom
training data. In this research, the latter approach was utilized to adapt to the domain of higher
education involving German ratings. The framework includes task-specific logic, adding layers
to the BERT architecture for fine-tuning a pretrained language model, as outlined earlier in
Section 2.2.2. It supports several ABSA tasks, with the core tasks being Aspect Term Extraction
(ATE), Aspect Polarity Classification (APC), and Aspect Term Extraction and Aspect Polarity
Classification (ATEPC). The latter is a compound task combining ATE and APC (H. Yang et al.,
2023). It’s important to note that different terms are sometimes used within PyABSA sources,
with APC and Aspect Sentiment Classification (ASC) referring to the same task, and ATEPC and

34

End-to-End-ABSA (E2EABSA) also being synonymous. Since both ATE and APC are relevant
for this thesis, the focus was on the compound task ATEPC. To this end, a custom dataset for
training is created using the collected data (refer to 4), and a custom ABSA model is developed
by passing the training dataset to PyABSA’s trainer.

Having outlined the framework used in this thesis, the subsequent section discusses the first step
of the cycle: aspect category selection, detailing the process of defining a set of categories to be
later classified by the second ML model.

5.2 Aspect Category Selection

Before proceeding with preprocessing the collected data, it was essential to consider how aspect
categories would be later detected by the ABSA model. As outlined in the theoretical part of this
thesis, there are alternative methods to consider. Aspect categories can either be directly predicted,
referred to here as implicit aspect terms, or they can be predicted after first extracting explicit
aspect terms. However, given PyABSA’s logic of detecting aspect terms occurring explicitly within
a sentence (task ATE), it was evident to opt for the same approach.

During this period, PyABSA lacked a subtask specifically aimed at aspect category detection.
Therefore, it became necessary to develop a model capable of predicting a category given an
aspect term. This was crucial for the final development of the sentiment cube, as it requires a
fixed set of categories for querying, rather than hundreds of different aspect terms. As mentioned
earlier, this step will be discussed further in Section 5.6. However, at this stage, it was necessary
to decide which categories the classifier would later predict.

Figure 5.2 presents the categories of a HEI defined by the UEP which were considered highly
relevant as a predefined set of aspect categories. Students may rate each category with stars
ranging from 1 to 5. The overall rating is calculated by averaging the individual aspect ratings.

Figure 5.2: HEI Categories from the UEP (Own Illustration)

To access this view, one must click on the button Umfrageergebnisse (ENG: survey results), located
at the bottom center of a review from the chosen UEP. Note that participation in the survey is
optional on this UEP, and therefore both this button and view may not always be present. In the
case of survey participation, the platform gathers more detailed data, such as student age, gender,

35

duration of study, start of studies, and more. However, this information is too detailed for the
scope of the final sentiment cube and was therefore not collected. The categories defined by the
UEP are in total seven.

Figure 5.3: HEI Categories Extended by the Addition of "Lage" (Location) and "Campus"

It appears that the platform has slightly modified the name of the category "Bibliothek" (ENG:
library) to "Literaturzugang" (ENG: access to literature). Before the process of data annotation
started, the seven categories shown in Figure 5.2 were considered. The English equivalents
of these categories are Facilities, Library, Digital Studying, Lecturers, Courses, Organization,
Curriculum/Study Contents. Because students rated their study experience based on these aspects
provided by the UEP, they were chosen as the basis for the set of aspect categories.

During the data annotation process, a considerable number of students expressed opinions regarding
both the location of the HEI and its campus. Consequently, it was decided to incorporate the
aspects of "Campus" and "Lage" (ENG: location) into the existing set of aspect categories. The
updated set is illustrated in Figure 5.3.

Before commencing data annotation, there was an opportunity to explore additional aspects
mentioned in the reviews. The objective was to identify other aspects rated within the UEP’s
predefined set of categories. Methods such as topic modeling, which can uncover latent themes
within texts, were considered. One effective technique for topic modeling is Latent Dirichlet
Allocation (LDA) (Jelodar et al., 2019), which was utilized to identify additional topics that could
potentially serve as aspect categories.

To apply the theory of LDA, the Python library gensim was used to discover the most used
terms within the ratings. To this end, the text data from the columns "Titel", "Kommentar",
and "Umgang mit Corona" (refer to 4.2) was used and processed. After reading the data from
the Excel files, it was transformed to a Pandas DataFrame and eventually concatenated to one
big DataFrame. Several processing steps such as lemmatizing and tokenizing the data lead to
a list of tokenized documents. In other words, the text collected from the ratings was each by
each transformed into a list of tokens. Each document is represented by a list of tokens and
reflects one single rating. In Listing 5.1, the list of tokenized documents (tokenized_docs) is
passed to the function Dictionary, which is provided by gensim. The variable id2word represents
a dictionary returned by the function. It includes key-value-pairs for each unique token/term
within tokenized_docs, joined with a unique integer ID. This dictionary is then used by the LDA
algorithm to discover the most frequent terms and clusters them into topics.

36

Listing 5.1: Creation of a Dictionary including unique terms
1 # Mapping from word IDs to words

2 id2word = corpora.Dictionary(tokenized_docs)

After obtaining the dictionary, the next step was to create bag-of-word representations (BOW)
for each document (rating). To achieve this, LDA necessitates the generation of one document-
term matrix for each document. Listing 5.2 illustrates this process. For each document from
tokenized_docs, a BOW or a document-term matrix is generated using the function doc2bow on
the previously created dictionary id2word.

Ultimately, the variable corpus contains a list of document-term matrices for each document or
rating, representing the frequency of each term in each document.

Listing 5.2: Creation of the Document-Term-Matrix for LDA
1 # Prepare Document -Term Matrix

2 corpus = []

3 for doc in tokenized_docs:

4 corpus.append(id2word.doc2bow(doc))

Thereafter, an LDA model was trained using gensim’s LdaModel function. This model was
initialized with the dictionary id2word and the document-term matrices corpus, as demonstrated
in Listing 5.3. Finally, the parameter num_topics was set to 5, indicating the number of latent
topics the algorithm should extract.

Listing 5.3: LDA Topic Modeling with gensim
1 topic_model = gensim.models.ldamodel.LdaModel(

2 corpus = corpus , # Document -Term Matrix

3 id2word = id2word , # Map word IDs to words

4 num_topics = 5, # Number of latent topics to extract

5 random_state = 100,

6 passes = 100, # Number of passes through the corpus during

training

7)

The following figures visualize the results of the topic modeling approach using pyLDAvis, depicting
the most frequent words within each of the five detected latent topics. For this visualization, the
relevance metric λ was set to 0. The relevance metric ranges between 0 and 1 and ranks the terms
based on two factors: term frequency and exclusivity. With λ set to 0, exclusivity is prioritized,
meaning terms unique to the regarded topic and not appearing frequently in other topics are
ranked higher. Conversely, with λ set to 1, terms that appear frequently within the regarded topic
are ranked higher, regardless of their frequency in other topics (Sievert and Shirley, 2014). With λ

set to 0, the red color of the bars represents the estimated term frequency within the topic, while
the blue color indicates the overall term frequency. The blue color is barely recognizable because
λ being set to 0 ranks terms that appear infrequently in other topics.

Figure 5.4 shows the result for Topic 1. The model associates a total of 34.8% of all tokens with
the topic. Given the frequent terms "Praxis" and "Theorie," this topic could potentially be linked

37

to a category such as "Praxisanteil" (ENG: practical component) or "Praxis-Theorie-Balance"
(ENG: practice-theory balance). However, it was decided not to define this as an additional aspect
category. This is because the aspect of practice-theory balance can be reflected by the predefined
category "Studieninhalte" (ENG: curriculum/study contents), which already exists in the predefined
set. Similarly, frequent terms detected in the rest of the topics were already covered by the base set
of categories. The result of all five topics, including the top three occurring terms, is summarized
below:

• Topic 1: Praxis, Theorie, praktisch (34.8% of all tokens)

• Topic 2: Literatur, Kultur, JUS (5.6% of all tokens)

• Topic 3: Fakultät, Abschnitt, Journalismus (5% of all tokens)

• Topic 4: Organisation, online, digital (34.8% of all tokens)

• Topic 5: Chemie, TU, Biologie (19.8% of all tokens)

Topic 2 seems to correlate with the category "Bibliothek" (library). Topic 3 exhibits associations with
multiple categories. Topic 4 appears to align with the existing aspect categories of "Organisation" or
"Digitales Studieren." Meanwhile, Topic 5 predominantly revolves around study degrees, suggesting
a possible connection to the existing aspect categories "Studieninhalte" (curriculum/study contents)
or "Lehrveranstaltungen" (lectures). However, due to the subjective nature of category definition
and the somewhat arbitrary nature of linking frequent words to aspect categories, it was deemed
unnecessary to introduce any additional aspect categories to the base set. The observed lack of
relevance in the results may stem from the high correlation or overlap among the topics present in
the data. Additionally, the identified topics can be mapped to the existing base set of categories.

38

Figure 5.4: LDA Algorithm - Topic 1 Including Frequent Terms

Figure 5.5: LDA Algorithm - Topic 2 Including Frequent Terms

39

Figure 5.6: LDA Algorithm - Topic 3 Including Frequent Terms

Figure 5.7: LDA Algorithm - Topic 4 Including Frequent Terms

It turned out that the results of the topic modeling approach did not yield promising results for
this use case. As shown in the list above, there are no frequent words occurring which could be

40

Figure 5.8: LDA Algorithm - Topic 5 Including Frequent Terms

associated with a category other than the already defined ones on the UEP. Therefore, no further
categories were included.

If the ABSA model fails to detect any aspect term within a sentence or the detected aspect term
cannot be associated with any of the nine predefined categories, a general category, "Allgemein",
is included in the set of predefined aspect categories. As a result, there are a total of 10 defined
aspect categories.

5.3 Data Preprocessing

After deciding on which aspect categories to select, the subsequent step involved preparing a dataset
essential for training the ABSA model. This necessitated researching the specific requirements set
by PyABSA for training data. As outlined in Chapter 2, the BERT’s context-aware nature renders
typical NLP preprocessing steps such as stemming, lemmatization, and the removal of stop words
and punctuation unnecessary. However, the preparation of the collected data to fit for the model
involved other data preprocessing steps.

Initially, data segmentation had to be performed, as models trained with PyABSA expect a sentence
as input, not a whole comment. Therefore, the reviews had to be split into sentences. This step is
described in Section 5.3.1. The next step was to annotate the data to create the required dataset
for training the model. This included labeling each sentence with both an aspect term and its
corresponding sentiment (positive, neutral, or negative). The data annotation process is outlined
in Section 5.3.2. After annotation, the training data was augmented due to two reasons: a high
imbalance found in the distribution of sentiments, and a low quantity of training examples. The
process of data augmentation is detailed in Section 5.3.3. The last preprocessing step was to first

41

split the training data into three subsets, before transforming them into the format required by
PyABSA. This process is covered in Section 5.3.4.

5.3.1 Data Segmentation

The collected data comprises 74 Excel files, totaling 10,810 ratings. Assuming an average of seven
sentences per comment and COVID-related comment, there are approximately 75,670 sentences to
annotate. To manage the workload, only 10 percent of the reviews were selected for annotation,
resulting in 8,312 sentences. Moreover, the sample was generated in a randomized manner to
ensure a representative and unbiased sample of the data (refer to 5.4). As discussed earlier in
Chapter 2, it was assumed that several thousand examples typically suffice for further post-training
of a pretrained model.

As previously mentioned, it was essential to verify the requirements for training data. Provided by
the author of PyABSA, Figure 5.9 depicts two data examples in the APC format. This format
is necessary in PyABSA for predicting sentiments and addresses how to handle examples with
multiple aspect terms: each aspect term requires a separate tuple, necessitating duplication of
the sentence. Additionally, each example corresponds to a single sentence rather than an entire
paragraph. Therefore, both comments and COVID comments needed to be segmented into
individual sentences.

Figure 5.9: Training Data Example - APC Format in PyABSA (H. Yang, 2022)

The APC format illustrated in Figure 5.9 will be pertinent in Section 5.3.4. Subsequently, the
process of splitting reviews into sentences is detailed.

To streamline the data segmentation, a Python function, illustrated in Listing 5.4, was developed.
The function was utilized to write sentences to be annotated into an Excel file. For splitting text
into sentences, the Python library SoMaJo was used. It is a library containing tokenizing and
splitting functionalities. It was selected due to its specialization in German and English social
media texts (Proisl and Uhrig, 2016). However, other tools could have been used as well. The
function requires a path to an Excel file containing all crawled ratings from a single HEI. Therefore,
each of the 74 Excel files was processed individually by passing their respective file paths to the
function. In essence, the function was called 74 times, resulting in the creation of one Excel file
containing all sentences. The following paragraphs detail the content of the function.

After passing the Excel file path to the function, it was transformed into a pandas DataFrame.
Subsequently, using the sample function from pandas, a randomized sample of 10 percent was

42

taken in line 11. Since only the comment and COVID comment contain the data relevant for
training, the two columns "Kommentar" and "Umgang mit Corona" were simultaneously retrieved
using pandas’ column selection [[]]. Then, both the comments and COVID comments were saved
into individual variables all_comments and all_covid_comments, respectively. These variables
represent pandas Series whose contents were then copied into a list named paragraphs, where
each element corresponds to a complete comment or rating.

The next step involved using SoMaJo’s tokenizer to segment each sentence, resulting in tokenized
sentences stored in the variable sentences. To facilitate further processing, these sentences were
converted into a list format. To achieve this, a for loop (defined in line 49) iterated through each
sentence, appending the text of each token to an initially empty Python list result_sentences

(created in line 46).

Additionally, the sentences were cleaned of extra blank spaces added by SoMaJo’s tokenizer before
each end punctuation mark of a sentence, a task accomplished in lines 53-55. Subsequently,
the finalized list of sentences was copied into a pandas DataFrame df_sen and returned by
the function. In addition to the "sentence" column, the DataFrame was added three additional
columns: "aspect", "sentiment", and "aspect category."

Listing 5.4: Function create_sentences - Data Segmentation for Annotation
1 import pandas as pd

2 from somajo import SoMaJo

3

4 def create_sentences(reviews):

5 # reviews: Excel file containing all ratings from one single

university

6

7 # Transform to pandas DataFrame

8 reviews_df = pd.read_excel(reviews)

9

10 # Take random 10 percent of the reviews

11 reviews_random = reviews_df.sample(frac =0.1)[["Hochschule",

"Kommentar", "Umgang mit Corona"]]

12

13 # Get comments respectively covid comments

14 all_comments = reviews_random["Kommentar"]

15 all_covid_comments = reviews_random["Umgang mit Corona"]

16

17 # To be tokenized

18 paragraphs = []

19

20 # Add normal comment

21 for review in all_comments:

22 if isinstance(review , str): # Check if the comment is already a

string

23 paragraphs.append(review)

24 elif isinstance(review , float) and pd.isna(review): # Handle

NaNs if present

25 paragraphs.append("")

43

26 else: # Convert to string if it's not already

27 paragraphs.append(str(review))

28

29 # Add covid comment

30 for review in all_covid_comments:

31 if isinstance(review , str): # Check if the comment is already a

string

32 paragraphs.append(review)

33 elif isinstance(review , float) and pd.isna(review): # Handle

NaNs if present

34 paragraphs.append("")

35 else: # Convert to string if it's not already

36 paragraphs.append(str(review))

37

38

39 # SoMaJo - library for splitting text in grammatically correct

sentences (effective for German texts)

40 tokenizer = SoMaJo("de_CMC", split_camel_case=True)

41

42 # Tokenize paragraphs

43 sentences = tokenizer.tokenize_text(paragraphs)

44

45 # List used for resulting sentences

46 result_sentences = []

47

48 # Get the text for each token and append to a list

49 for sentence in sentences:

50 result_sentences.append(" ".join([token.text for token in

sentence]))

51

52 # Removing blank spaces before punctuation

53 for i in range(len(result_sentences)):

54 result_sentences[i] = result_sentences[i]. replace(" ,",

",").replace(" .", ".").replace(" !", "!").replace(" ?", "?")

55

56 # Transform list into pandas DataFrame

57 df_sen = pd.DataFrame ({'sentence ': result_sentences , 'aspect ': None ,

'sentiment ': None , 'aspect category ': None})

58

59 return df_sen

Listing 5.5 demonstrates the function get_file_paths, designed to retrieve a list of file paths
containing all 74 Excel files comprising the scraped reviews. It takes as a parameter the directory
path where these Excel files are located.

Listing 5.5: Function get_file_paths - Data Preparation for Annotation
1 import os

2

3 def get_file_paths(path_to_raw_reviews):

44

4 # path_to_raw_reviews: path including all 74 Excel files containing

student reviews

5

6 # Verify that path_to_raw_reviews is a valid directory

7 if not os.path.isdir(path_to_raw_reviews):

8 raise ValueError(f"The provided path '{path_to_raw_reviews}' is

not a valid directory.")

9

10 # Initialize an empty list to store file paths for each of the 74

Excel files

11 file_paths = []

12

13 # Iterate through all items (files and directories) in the directory

14 for item in os.listdir(path_to_raw_reviews):

15 item_path = os.path.join(path_to_raw_reviews , item)

16

17 # Check if the item is a regular file (not a directory)

18 if os.path.isfile(item_path):

19 file_paths.append(item_path)

20

21 return file_paths

Listing 5.6 presents a function designed to generate a pandas DataFrame that consolidates all
sentences retrieved by the create_sentences function. It utilizes both of the previously described
functions. Subsequently, this DataFrame is saved into an Excel file intended for annotation
purposes. As discussed earlier in Chapter 2, BERT learns bidirectional context simultaneously.
Therefore, it was assumed that no further preprocessing, such as the removal of stop words, was
necessary, as BERT benefits from this enriched context.

Listing 5.6: Function prepare_annotation - Data Preparation for Annotation
1 def prepare_annotation(path_to_raw_reviews):

2

3 # Create an empty DataFrame for Training Data

4 df = pd.DataFrame(columns =['sentence ', 'aspect ', 'sentiment ',

'aspect category '])

5

6

7 # Get file paths containing all 74 Excel files

8 file_paths = get_file_paths(path_to_raw_reviews)

9

10 # Write sentences of each Excel file to the result Excel for

Annotation

11 for file_path in file_paths:

12 df_sen = create_sentences(file_path)

13

14 # Append df_sen to df

15 df = pd.concat ([df, df_sen], ignore_index=True)

16

17 return df

45

5.3.2 Data Annotation

Figure 5.10 illustrates a snippet of the Excel file prepared for annotation. Before eventually
transforming the training data into the format required by PyABSA, the data was first labeled
within the Excel file.

The annotation of the data was performed entirely by myself. As part of this thesis, the data
was manually labeled to ensure the quality and consistency of the annotations. This involved
assigning them to specific aspects and sentiments. For the annotation, a systematic approach
was followed, where each sentence was reviewed carefully, its relevant aspect term was extracted,
and a label (positive, neutral, negative) was assigned that corresponds with the selected aspect
term. Moreover, at this time, it was not clear how the corresponding aspect categories would
be predicted later. Therefore, the decision was made to additionally label each sentence with an
aspect category. This ensured that there would be training data available to model a classifier for
category prediction.

Figures 5.11shows a snippet of the annotated sentences. In summary, the following attributes were
considered:

• Sentence: The sentence to be annotated.

• Aspect: The relevant aspect of the sentence, if any occurred, such as "Professoren," (ENG:
professors) "Materialien," (ENG: materials) or "organisiert" (ENG: organized).

• Sentiment: The corresponding polarity of the selected aspect term, categorized as "positive,"
"negative," or "neutral."

• Aspect Category: One of the 10 predefined aspect categories, serving as a higher-level class
to group similar aspects together.

Figure 5.10: Snippet of Data Prepared for Annotation

As discussed earlier, if more than one aspect term was identified within a sentence—meaning if
multiple terms were subjectively deemed relevant—the sentence was duplicated to ensure that
each tuple contained only one aspect term.

For example, rows 35 to 37 illustrate a duplicated sentence due to the identification of multiple
aspect terms. The English translation of the sentence is: "The 2 lecturers who run the place really

46

have a passion for the content, which is also noticeable in the lectures, only the teaching style
and the expectations of the students still need work." In this instance, the phrase "really have a
passion for the content" expresses a positive sentiment towards the aspect term "lecturers", while
"which is also noticeable in the lectures" conveys another positive opinion about the aspect term
"lectures". Conversely, "still need work" expresses a negative sentiment towards the aspect term
"teaching style". In total, three aspect terms were identified within the same sentence, consisting
of two positive sentiments and one negative sentiment. The aspect categories assigned to the
extracted aspect terms are "Dozenten" (ENG: lecturers), "Lehrveranstaltungen" (lectures), and
again "Lehrveranstaltungen". Figure 5.12 summarizes the annotations for this sentence.

As previously discussed, the aspect terms were required to match exactly those present in the
sentence, including any typos. If no aspect terms were identified, a NULL value was inserted,
indicating the generic aspect category "Allgemein". Additionally, PyABSA considers neutral
sentiments alongside positive and negative ones. Therefore, if an aspect term was identified
towards an objective expression, it was associated with neutral sentiment. Moreover, in some
sentences, there can be both a positive and negative phrase associated with the same aspect term.
In such cases, the neutral label was also used. For instance, the following sentence contains both a
positive and negative sentiment expressed towards the aspect term "Lehrveranstaltungen": "Zum
Teil richtig gute Lehrveranstaltungen und zum Teil wieder welche, bei denen ich mir mehr erhofft
habe." (ENG: "Some of the courses are really good and some of them I had hoped for more.")
Consequently, in situations like this, the neutral label was chosen as the sentiment, justified by
balancing both positive and negative opinions.

Figure 5.11: Snippet of Data Annotated

As a result of data annotation, a dataset containing 8,312 tuples was created. However, since
PyABSA does not support NULL aspect terms, tuples without a detected aspect term (i.e., those
with the value "NULL") were removed. This lead to a dataset with a total of 6,499 examples.
As mentioned earlier, PyABSA requires custom training datasets to include only the attributes
"sentence," "aspect term," and "sentiment. Thus, to further prepare the data for model training,
a copy of the file was created, omitting the "aspect category" column. A file containing the
attributes "aspect" and "aspect category" was saved for the potential development of a separate
category classifier, as discussed earlier.

The next step involved analyzing the sentiment label distribution in the annotated data. Figure

47

Figure 5.12: Example of an Annotated Sentence (Translated from German)

5.13 illustrates a significant class imbalance, particularly with a scarcity of negative labels compared
to positive ones. Given the higher significance of negative feedback over neutral, addressing this
class imbalance became crucial. Therefore, the subsequent Section 5.3.3 outlines an oversampling
process aimed at balancing the class distribution. Simultaneously, the dataset was extended to
obtain more examples and further prevent overfitting.

Figure 5.13: Class Imbalance before Data Augmentation

5.3.3 Data Augmentation

As discussed earlier in Chapter 2, various data augmentation and oversampling techniques are
available to address both data scarcity and class imbalance issues. It was decided to utilize the
Python library NLPAug for data augmentation in NLP tasks. This framework offers a range of
methods for augmenting textual data, including random token insertions, word swapping, deletion,
and substitution. Moreover, NLPAug provides advanced techniques leveraging pretrained language
models such as BERT Ma, 2019. For the purpose of this thesis, contextual word embeddings
using a BERT-based model were used. The used model is called "dbmdz/bert-base-german-cased"
(Hugging Face Inc. and deepset, 2023), which was specifically designed for German text. The
selection of this technique is justified by PLLMs outperforming traditional methods, as discussed
earlier in Chapter 2.

To achieve a fully balanced dataset across all three sentiment classes, the approach involved
initially doubling the number of tuples in the neutral class, increasing from 2,084 to 4,168 examples.
Subsequently, the positive and negative sentiment examples, initially 3,079 and 1,336 respectively,
were augmented to match the size of the neutral class at 4,168 examples each. This resulted in a
dataset totaling 12,504 examples with an equal distribution of sentiments.

48

To facilitate augmentation, a Python function was developed requiring a pandas DataFrame

with columns "sentence", "aspect", and "sentiment". The DataFrame is filtered based on the
sentiment class targeted for oversampling. The function returns a new pandas DataFrame featuring
augmented sentences. This augmentation involves randomly inserting tokens into each sentence
while preserving the original tuple count. The implementation of this function can be found in
Listing 5.7.

To utilize NLPAug’s contextual word embeddings, the nlpaug.augmenter.word module was
imported. In lines 6-7, an instance of ContextualWordEmbsAug was created, specifying the model
path for embedding construction. Moreover, the action parameter was set to determine the
augmentation technique. Besides "insert", "substitute", "swap", or "delete" could be selected as
parameter value. After experimenting with "substitute" for several attempts, it was concluded
to proceed with "insert" instead of substitutions. This is because using "substitute" would
replace extracted aspect terms with synonyms, necessitating the labeling of augmented sentences.
The approach pursued was to assign the same aspect term and sentiment label to the resulting
augmented sentences as the original sentences, thereby avoiding additional manual annotation.
Moreover, substitutions have shown to potentially alter the sentence’s semantics by changing
phrases relevant to the polarity of the aspects. Deletions were disregarded for similar reasons, and
while "swap" was considered, it was found not to significantly alter the sentence structure. Thus,
random insertions were chosen as they might effectively augment the sentence content.

In line 10, the DataFrame was trimmed to the "sentence" column, as augmentation was solely
regarding sentences. In line 13, a pandas Series of booleans was saved as dupl, indicating
whether a sentence has already occurred or if it is the first occurrence. This was achieved by
setting the keep parameter to "first". The Series dupl was then converted to a Python list in
line 16. This list was necessary later to ensure that duplicated sentences are augmented equally.

In line 19, the original sentences were copied into a list. An empty list aug_list was created in
line 22 to store the augmentation results.

Then, a for loop (lines 27-32) iterates through a combination of both lists: sen_list and
dupl_list. If a sentence represents its first occurrence, it is augmented using NLPAug’s augment

function, and the result is appended to aug_list. Otherwise, if the sentence is a duplicate, the
previously augmented sentence is appended again to aug_list.

Finally, a DataFrame containing the augmented sentences is created, comprising the same number
of tuples as the input DataFrame.

Listing 5.7: Function augment_context_words - Data Augmentation
1 import nlpaug.augmenter.word as naw

2 import pandas as pd

3

4 # Function that takes a df and returns a df with augmented sentences

5 def augment_context_words(df):

6 aug = naw.ContextualWordEmbsAug(

7 model_path='dbmdz/bert -base -german -cased', action="insert")

8

9 # Taking just the sentence column drom df

10 df_s = df.drop(columns =["aspect", "sentiment"])

49

11

12 # Create a Series of booleans (dupl) saying whether a sentence is a

duplicate or not

13 dupl = df_s["sentence"]. duplicated(keep='first ')

14 dupl.name = 'Duplicates '

15 # Using Series.values.tolist ()

16 dupl_list = dupl.values.tolist ()

17

18 # Using Series.values.tolist ()

19 sen_list = df_s["sentence"]. values.tolist ()

20

21 # New empty df for the augmented sentences

22 aug_list = []

23

24 # A for loop that iterates over the 2 lists of sentences and

duplicates

25 # A df of the augmented sentences is returned

26 # If a sentence is a duplicate --> same augmented sentence is

created for this sentence

27 for x, y in zip(sen_list , dupl_list):

28 if y == False:

29 aug_sen = aug.augment(x)

30 aug_list.append(aug_sen)

31 else:

32 aug_list.append(aug_sen)

33

34 return pd.DataFrame(aug_list)

Figures 5.14 and 5.15 illustrate the augmentation of a single sentence using different actions with
the ContextualWordEmbsAug module: once with the action parameter set to "substitute", and
once with it set to "insert".

Figure 5.14: Example of NLPAug’s Contextual Word Embeddings - Substitutions

Figure 5.15: Example of NLPAug’s Contextual Word Embeddings - Insertions

The function augment_context_words was applied to each of the three sentiment classes. Fol-
lowing this, the resulting augmented DataFrames had the corresponding values for the attributes
"aspect" and "sentiment added from the original data. Subsequently, the augmented DataFrames
were merged with the DataFrames containing the original sentences. Finally, as done previously
before oversampling the data, one large DataFrame merging all three sentiment classes was created,
resulting in a total of 12,504 examples.

50

As mentioned earlier, the data was not lemmatized or stemmed, nor were stop words removed.
However, at this stage, it was considered good practice to remove symbols to prevent potential
errors during model training. Listing 5.8 illustrates a function that expects a pandas DataFrame

and returns it cleaned of any characters that do not match the regular expression “a-zA-Z0-
9äöüÄÖÜß!?,: \n.”.

Listing 5.8: Function to Remove Symbols from DataFrame
1 import re

2

3 def clean_dataframe_from_symbols(df):

4 df_updated = df.replace(to_replace ='[^a-zA-Z0 -9äöüÄÖÜß!?,: \n\.]',

value = '', regex = True)

5

6 return df_updated

Having created a new training dataset, the next step was to further transform it into the format
required by PyABSA’s Trainer function. Additionally, the classic train-test split of the dataset
was performed, which is essential for the training process. These steps are covered in detail in the
next section.

5.3.4 Training Data Preparation

As mentioned earlier in Section 5.3, the training data needed to be converted into a format
specifically required by PyABSA. First, the augmented training data is split into three DataFrames:
one for training, one for validation, and one for testing, all of which will be necessary for
PyABSA’s Trainer function. Subsequently, each dataset is converted into the APC (Aspect
Polarity Classification) format, before finally transforming the data from APC format to the ATEPC
(Aspect Term Extraction Polarity Classification) format. The latter transformation could be easily
accomplished using a function provided by PyABSA. However, the initial conversion to APC format
needed to be developed by the user. It was decided to split the data first and then transform it
into the APC format.

In the following, the procedure of the train-test split is explained, before outlining the conversion
of the data format.

Listing 5.9 presents the function split_stratified_into_train_val_test. It is adapted from
StackOverflow (2016a) and used to divide the dataset into three subsets. It takes six parameters:
df_input for the DataFrame to be split, stratify_colname for the column name used for
stratification, frac_train, frac_val, and frac_test for the split proportions, and random_state

to control the randomness of the split.

To perform the splitting, the function train_test_split from the sklearn library is used. Since
it splits data into only two subsets, it is executed twice: once to split the DataFrame into a training
set and a temporary set (lines 18-23), and again to split the temporary set into a validation set
and a test set (27-32). Although the dataset was already balanced after data augmentation, it was
decided to use stratification as best practice in classification tasks. The stratify parameter in
sklearn’s train_test_split function ensures a balanced label distribution in all three subsets.

51

To prevent potential errors due to incorrect inputs, two if statements were added. The first,
in line 7, ensures that the fractions representing the train, validation, and test splits sum up to
1.0 (100%). The second, in line 11, verifies that the column specified for stratification is indeed
present in the DataFrame. Furthermore, line 34 checks that the length of the resulting three
subsets sum up to the length of the input DataFrame. Eventually, the function returns the three
subsets. Lines 39-41 provide an example of how the function is called, using an 80-10-10 split:
80 percent for the training subset, and 10 percent each for the validation and test subsets. The
input df_clean reflects the dataset resulting from data annotation and augmentation (12,504
examples). The argument "sentiment" indicates the label column.

Ultimately, the three subsets were saved locally as Excel files. In addition to the 80-10-10 split,
the training data was also prepared in 70-15-15 and 60-20-20 splits.

Listing 5.9: Function Used for the Train-Test Split. Adapted from StackOverflow (2016a)
1 from sklearn.model_selection import train_t56est_split

2

3 def split_stratified_into_train_val_test(df_input , stratify_colname='y',

4 frac_train =0.6, frac_val =0.15,

frac_test =0.25,

5 random_state=None):

6

7 if frac_train + frac_val + frac_test != 1.0:

8 raise ValueError('fractions %f, %f, %f do not add up to 1.0' % \

9 (frac_train , frac_val , frac_test))

10

11 if stratify_colname not in df_input.columns:

12 raise ValueError('%s is not a column in the dataframe ' %

(stratify_colname))

13

14 X = df_input # Contains all columns.

15 y = df_input [[stratify_colname]] # Dataframe of just the column on

which to stratify.

16

17 # Split original dataframe into train and temp dataframes.

18 df_train , df_temp ,

19 y_train , y_temp = train_test_split(X,

20 y,

21 stratify=y,

22 test_size =(1.0 - frac_train),

23 random_state=random_state)

24

25 # Split the temp dataframe into val and test dataframes.

26 relative_frac_test = frac_test / (frac_val + frac_test)

27 df_val , df_test ,

28 y_val , y_test = train_test_split(df_temp ,

29 y_temp ,

30 stratify=y_temp ,

31 test_size=relative_frac_test ,

32 random_state=random_state)

52

33

34 assert len(df_input) == len(df_train) + len(df_val) + len(df_test)

35

36 return df_train , df_val , df_test

37

38 # Splitting df with ratio 80/10/10

39 df_train , df_val , df_test =

split_stratified_into_train_val_test(df_clean , "sentiment", 0.8,

0.10, 0.10)

As a next step, the three datasets needed to be converted into the APC format. To achieve this,
the function transform_to_apc_format, illustrated in Listing 5.10 was implemented. It takes a
string value, representing the Excel file path of one of the three subsets. Eventually, it returns a
string value representing each row of the Excel file in the required APC format. This is done by
applying pandas’ iterrows function.

Listing 5.10: Function Used for Conversion to APC Format
1 def transform_to_apc_format(path: str):

2 df = pd.read_excel(path)

3 #df = df.drop(columns=['Unnamed: 0', 'Unnamed: 1', 'Unnamed: 2'])

4

5 df = df.reset_index () # make sure indexes pair with number of rows

6

7 # define a string variable that we will feed the result data

8 res=''

9

10 # looping through each row of the df and create the needed format

11 for index , row in df.iterrows ():

12 asp = str(row['aspect '])

13 sen = str(row['sentence ']).replace(asp , 'T')

14 res = res + sen + '\n'

15 res = res + asp + '\n'

16 sent = str(row['sentiment '])

17 res = res + sent + '\n'

18

19 return res

Listing 5.11 depicts two steps: the conversion of the three splits into APC format and the saving
of each of the three results into text files. The latter reflects a requirement of PyABSA’s function
convert_apc_set_to_atepc_set.

Listing 5.11: Conversion of the three Splits into APC Format and Saving as Text File
1 ####### Transform the 3 Excel Splits each into APC -Format

2 path_train = 'C:/Users/YOUR_USER/Documents/Prepare Train

Dataset/Excel_Dataframes_Unis/Clean Split

Data /80 _10_10/Train_Set.xlsx'

3 path_val = 'C:/Users/YOUR_USER/Documents/Prepare Train

Dataset/Excel_Dataframes_Unis/Clean Split Data /80 _10_10/Val_Set.xlsx'

53

4 path_test = 'C:/Users/YOUR_USER/Documents/Prepare Train

Dataset/Excel_Dataframes_Unis/Clean Split Data /80 _10_10/Test_Set.xlsx'

5

6 train_apc = transform_to_apc_format(path_train)

7 val_apc = transform_to_apc_format(path_val)

8 test_apc = transform_to_apc_format(path_test)

9

10 ####### write the result to a new text file:

11 #open text file

12 text_file = open("C:/Users/YOUR_USER/Documents/Prepare Train

Dataset/Excel_Dataframes_Unis/Clean Split

Data /80 _10_10/datasets/apc_datasets/train.apc.dataset.txt", "w")

13 #write string to file

14 text_file.write(train_apc)

15 #close file

16 text_file.close()

17

18 text_file = open("C:/Users/YOUR_USER/Documents/Prepare Train

Dataset/Excel_Dataframes_Unis/Clean Split

Data /80 _10_10/datasets/apc_datasets/val.apc.dataset.txt", "w")

19 #write string to file

20 text_file.write(val_apc)

21 #close file

22 text_file.close()

23

24 text_file = open("C:/Users/YOUR_USER/Documents/Prepare Train

Dataset/Excel_Dataframes_Unis/Clean Split

Data /80 _10_10/datasets/apc_datasets/test.apc.dataset.txt", "w")

25 #write string to file

26 text_file.write(test_apc)

27 #close file

28 text_file.close()

Figure 5.16 illustrates examples of the resulting APC format. For instance, the first sentence, "Die
Professoren hingegen sind alle mit Herz bei der Sache." (ENG: "The professors, on the other hand,
are all passionate about their work.") includes the annotated aspect term "Professoren" with a
sentiment label "positive". In APC format, the first line shows the sentence where the aspect term
is replaced with "T". The second and third lines denote the aspect term and its sentiment,
respectively.

Subsequently, the three text files were transformed by using PyABSA’s function convert_apc

_set_to_atepc_set. In Listing 5.12, the function is used from Zheng (2024). PyABSA requires
the text files to be named in the following format: train.apc.dataset.txt, val.apc.dataset.txt, and
test.apc.dataset.txt.

Listing 5.12: Conversion of the three Text Files from APC Format to ATEPC Format. Adapted from
Zheng (2024)

1 from pyabsa import convert_apc_set_to_atepc_set

2

54

3 train_atepc =

convert_apc_set_to_atepc_set('C:/Users/YOUR_USER/Documents/Prepare

Train Dataset/Excel_Dataframes_Unis/Clean Split

Data /80 _10_10/datasets/apc_datasets/train.apc.dataset.txt')

4 val_atepc =

convert_apc_set_to_atepc_set('C:/Users/YOUR_USER/Documents/Prepare

Train Dataset/Excel_Dataframes_Unis/Clean Split

Data /80 _10_10/datasets/apc_datasets/val.apc.dataset.txt')

5 test_atepc =

convert_apc_set_to_atepc_set('C:/Users/YOUR_USER/Documents/Prepare

Train Dataset/Excel_Dataframes_Unis/Clean Split

Data /80 _10_10/datasets/apc_datasets/test.apc.dataset.txt')

As a result, three ATEPC files were saved locally. Figure 5.17 illustrates the first sentence from
5.16 in ATEPC format. During the conversion of the text files, the function appends ".atepc" to
their names (e.g., train.apc.dataset.txt becomes train.apc.dataset.txt.atepc).

Figure 5.16: Example Sentences in APC Format

Having prepared the training data needed to train a custom model in PyABSA, the next section
delves into the training process of the ABSA model, using the three files in ATEPC format.

5.4 Modeling

As an initial step in the modeling process, a configuration setup had to be imported from PyABSA.
The configuration settings cover various aspects essential for training and evaluation. For both
usage and training of ABSA models in PyABSA, the module AspectTermExtraction needs to
be imported. Listing 5.13 depicts the code for preparing the configuration. By using PyABSA’s

55

Figure 5.17: Example of one Sentence in ATEPC Format

ATEPCConfigManager, different configuration setups can be initialized. For instance, Listing 5.13
presents code adapted from Zheng (2024), showcasing a preconfigured set of parameters for
training an ABSA model that supports multiple languages. Furthermore, in line 6 the base model
is defined which is to be further trained with the created training data. In this case, the PyABSA
model "FAST_LCF_ATEPC" is used, which is one of the library’s models fine-tuned on specific
ABSA tasks. It can be initialized by calling the class ATEPCModelList.

Listing 5.13: PyABSA Configuration for Training. Adapted from Zheng (2024)
1 from pyabsa import AspectTermExtraction as ATEPC

2

3 config = (

4 ATEPC.ATEPCConfigManager.get_atepc_config_multilingual ()

5) # this config contains 'pretrained_bert ', it is based on pretrained

models

6 config.model = ATEPC.ATEPCModelList.FAST_LCF_ATEPC # improved version of

LCF -ATEPC

Listing 5.14 provides an example illustrating the customization of predefined configurations. It
demonstrates the configuration employed for the initial model training in this study, where the only
parameter varied across different model trainings was "pretrained_bert". For the initial training
attempt, the pretrained BERT model "yangheng/deberta-v3-base-absa" was utilized, which is a
PyABSA model based on BERT and fine-tuned on ABSA. In concrete, "deberta-v3-base" refers
to the BERT variant "DeBERTa", which was used by PyABSA’s author for further fine-tuning.
DeBERTa stands for Decoding-enhanced BERT for Disentangled Attention, a version of BERT
improved by innovations in both decoding and attention mechansim (He et al., 2021). Unlike the
pretrained_bert parameter, which specifies the base BERT model used as the backbone, the
model parameter—in this case set to FAST_LCF_ATEPC—represents the specific architecture
fine-tuned for the task of ATEPC (Aspect Term Extraction and Polarity Classification).

In the following, the rest of the configuration parameters depicted in Listing 5.14 are explained.
The parameter config.evaluate_begin = 0 specifies that evaluation should start from the first
epoch, ensuring early monitoring of performance. The command max_seq_len = 128 sets the
maximum length for input sequences, standardizing them to 128 tokens, while batch_size = 16

determines that during training, 16 samples will be processed in each batch. Logging frequency is
specified by log_step = -1, where a negative value usually implies default settings or no logging.

56

L2 regularization is applied with l2reg = 1e-8 to prevent overfitting. The model is trained over
num_epoch = 20 epochs, referring to 20 passes through the training data. For reproducibility,
seed = 42 is set to initialize the random number generator in a specific state. Automatic Mixed
Precision (AMP) is disabled with use_amp = False, meaning only 32-bit floating-point types are
used. To improve efficiency, cache_dataset = True allows caching of the dataset for quicker
subsequent runs. Finally, cross_validate_fold = -1 indicates that cross-validation is not used,
focusing on a single train-test split for model training and evaluation (H. Yang et al., 2023). Since
the amount of generated training data reflects thousands of examples, it was assumed that it is
large enough. As a result, cross-validation was not applied for training the model.

Listing 5.14: Futher Configuration Parameters for Training in PyABSA. Adapted from Zheng (2024)
1 config.evaluate_begin = 0

2 config.max_seq_len = 128

3 config.batch_size = 16

4 config.pretrained_bert = 'yangheng/deberta -v3-base -absa'

5 config.log_step = -1

6 config.l2reg = 1e-8

7 config.num_epoch = 20

8 config.seed = 42

9 config.use_bert_spc = True

10 config.use_amp = False

11 config.cache_dataset = True

12 config.cross_validate_fold = -1

Finally, Listing 5.15 illustrates the code used for training the ABSA model. In line 1, the variable
my_dataset is defined to represent the directory path where the three training data files are stored.
To train a model for the ATEPC task, an instance of the PyABSA class ATEPCTrainer must be
instantiated, as shown in line 3. Several parameters are required to configure the trainer: config

specifies the earlier described configuration, dataset expects a directory path containing the
three subsets for training or a PyABSA DataSetObject, from_checkpoint is optional and takes
the name of a pretrained checkpoint, auto_device determines whether to use CUDA or CPU,
checkpoint_save_mode controls how the model is saved, and path_to_save specifies the directory
where the model should be saved. Four files are automatically saved upon training completion:
an .args file storing the command-line arguments or training parameters, a file containing the
tokenizer information used during training, a configuration file detailing the settings used for the
model and training process, and a state dictionary file containing the learned parameters of the
model.

For the initial model trained, the checkpoint "multilingual" was utilized, as indicated in line 6 of
Listing 5.15. However, subsequent models created during this study were trained without relying
on a checkpoint. This decision stemmed from a reported bug in PyABSA’s multilingual checkpoint,
as acknowledged by its author. Given that other checkpoints were not suitable for the German
language specific to this use case, training proceeded without utilizing the optional checkpoint
parameter. After consulting with the author of PyABSA, this approach was recommended.
As an argument for dataset, using a directory path was preferred over defining the PyABSA
DataSetObject, and for saving the model, the State Dict mode was employed.

57

Listing 5.15: Training Procedure in PyABSA. Adapted from Zheng (2024)
1 my_dataset = 'C:/Users/YOUR_USER/Documents/Prepare Train

Dataset/Modeling/integrated_datasets/atepc_datasets /177. University '

2

3 trainer = ATEPC.ATEPCTrainer(

4 config=config ,

5 dataset=my_dataset ,

6 from_checkpoint="multilingual", # optional - in case of training

resuming from a pretrained checkpoint , pass the name of the

checkpoint

7 auto_device=DeviceTypeOption.AUTO , # use cuda if available

8 checkpoint_save_mode=ModelSaveOption.SAVE_MODEL_STATE_DICT , # save

only state dict , instead of the model as a whole

9 path_to_save='C:/Users/YOUR_USER/Documents/Prepare Train

Dataset/Modeling/saved_trained_models '

10)

Eventually, several models were trained using various splits of training data and different pretrained
BERT models in the configuration.

Figure 5.18 summarizes the models trained, excluding the initial model trained with a checkpoint.
The first models utilized the "bert-base-multilingual-uncased" pretrained BERT model, trained on
three different data splits. Additionally, experiments were conducted using varying amounts of
training data: some models were trained on datasets before augmentation, while others utilized
the fully augmented dataset.

Following consultation with PyABSA’s author, additional modeling attempts involved different
pretrained BERT models. Subsequently, two more models were trained using an 80-10-10 split:
one employing the "dbmdz/bert-base-german-cased" model, specifically designed for the German
language and sourced from the Bavarian State Library; the other using the "microsoft/mdeberta-
v3-base" model, recommended by PyABSA’s author. Moreover, due to superior performance
observed with the 80-10-10 split, the other two splits were excluded when training the last two
models.

Figure 5.18: ABSA Models Trained in PyABSA

58

5.5 Model Evaluation

This section is divided into two parts: the first part describes metrics evaluated within PyABSA
training, while the second part presents an alternative evaluation approach.

5.5.1 PyABSA Evaluation - Metric Visualizer

PyABSA has its own evaluation functionality during the training process, referred to as "met-
ric_visualizer". Once the training completes, it generates a visualization displaying three key
metrics: APC_ACC, APC_F1, and ATE_F1. These metrics assess the accuracy and F1 scores for
both PyABSA tasks: APC (Aspect Polarity Classification) and ATE (Aspect Term Extraction).

Figures 5.19 and 5.20 depict the visualizations generated by PyABSA’s evaluation after training,
both before and after data augmentation. In both cases, the pretrained BERT parameter was set
to "bert-base-multilingual-uncased" with a training split of 80-10-10.

Figure 5.19: PyABSA’s Metric Visualizer - Before Data Augmentation

According to PyABSA metrics, the model trained with data before augmentation (5.19) achieved
an accuracy of 74.88% for the APC task during the best epoch, with respective scores of 72.75%
for APC_F1 and 81.49% for ATE_F1. In contrast, the model trained with augmented data (5.20)
reached a peak accuracy of 85.8% for the APC task, along with 85.73% for APC_F1 and 81.92%
for ATE_F1.

These figures demonstrate improvements in both metrics following data augmentation. There-
fore, two models using "dbmdz/bert-base-german-cased" and "microsoft/mdeberta-v3-base" as
pretrained BERT were also trained with the augmented datasets. The PyABSA metrics calculated
during the training of both models are depicted in Figure 5.21. The model based on Microsoft’s
DeBERTa demonstrated better metrics compared to the model based on "dbmdz/bert-base-
german-cased".

However, during tests with these models, the observed metrics did not align with those reported
by PyABSA’s metric_visualizer. This discrepancy indicated a poorer perception of the models’
performance based on the test results. An example of the test results is illustrated in Figure

59

Figure 5.20: PyABSA’s Metric Visualizer - After Data Augmentation

Figure 5.21: PyABSA Metrics

5.22, showcasing the first 35 sentences, sourced from PH Steiermark ratings, along with their
detected aspects and sentiments. Listing 5.16 provides the code for how testing was conducted.
First, in line 1, the model trained with "microsoft/mdeberta-v3-base" as the pretrained BERT is
initialized. This was achieved by calling PyABSA’s AspectExtractor object, which originates from
the PyABSA module AspectTermExtraction. The string passed to AspectExtractor represents
the name of the directory path that contains the four model files generated immediately after
training in PyABSA. Then, sentences were extracted from reviews collected in Chapter 4, sourced
from PH Steiermark. This was done using the previously described create_sentences function
from Listing 5.4. Line 9 takes only the sentences retrieved from df_ph_steiermark and converts
their values into a Python list. By applying the predict function inherited by the model to each
sentence, the model detects aspects and their corresponding sentiments. In line 22, the results for
each sentence were collected in a list named results and subsequently stored in both a JSON file
and an Excel file.

Listing 5.16: Testing the Fine-Tuned DeBERTa Model with sentences rating PH Steiermark
1 aspect_extractor_mdeberta =

ATEPC.AspectExtractor('DIRECTORY_PATH_TRAINED_MODEL ',

2 auto_device=True , # False

means load model on CPU

3 cal_perplexity=True ,

4)

5

60

Figure 5.22: PH Steiermark Test Results Using DeBERTa - First 35 Sentences

6 ph_steiermark =

pd.read_excel('C:/Users/YOUR_USER/Documents/Scraping/Data/

7 Excel/PH_Steiermark.xlsx')

8 df_ph_steiermark = create_sentences(ph_steiermark)

9 ph_steiermark_sentences = df_ph_steiermark['sentence ']. tolist ()

10

11 import json

12

13 # Initialize a list to store results

14 results = []

15

16 for sentence in ph_steiermark_sentences:

17 result = aspect_extractor_mdeberta.predict(sentence ,

18 save_result=True ,

19 print_result=True , # print the result

20 ignore_error=True , # ignore the error when the

model cannot predict the input

21)

22 results.append(result)

23 #print(result) # Print the result to the console

24

25 # Save all results to a JSON file

26 with open('test_results.json', 'w') as f:

27 json.dump(results , f, indent =4)

28

29 # Convert results to a pandas DataFrame

30 df_results = pd.DataFrame(results)

31

32 # Save results to an Excel file

33 excel_file = "ABSA_Test_results_PH_Steiermark.xlsx"

34 df_results.to_excel(excel_file , index=False)

61

Although acceptable PyABSA metrics were achieved during training, the perceived performance of
the models prompted additional evaluations beyond PyABSA’s metric_visualizer, as described
in the next section.

5.5.2 Further Evaluation

To conduct an independent evaluation, several Python functions were developed. This evaluation
utilized the model based on "microsoft/mdeberta-v3-base", chosen for its superior performance
observed during testing. Listing 5.17 illustrates the function my_own_evaluate, which requires an
initialized ABSA model stored in the variable aspect_extractor, a pandas DataFrame containing
labeled test sentences from the training data, and an Excel file path for saving the resulting
predictions. The function outputs both the test DataFrame test_df and predictions stored in a
DataFrame predictions_df.

In line 7, the function extract_aspect_polarity is used to capture predictions for each sentence
from test_df into lists. The specific functionality of this function will be further explained in
Chapter 6. If the model fails to identify any aspect, an empty string is recorded for both aspect and
sentiment in predictions_df (first if statement). Conversely, if the model successfully detects an
aspect term, all predicted values are appended to predictions_df (second if statement).

Listing 5.17: Function to create a DataFrame with predictions
1 def my_own_evaluate(aspect_extractor , test_df , path_to_save_pred_df):

2 predictions_df = pd.DataFrame(columns =['sentence ', 'aspect ',

'sentiment '])

3

4 for index , row in test_df.iterrows ():

5 sample = row['sentence ']

6

7 aspects , sentiments , confidences =

extract_aspect_polarity(sample , aspect_extractor)

8

9 if len(aspects) == 0:

10 predictions_df = predictions_df.append ({

11 'sentence ': sample ,

12 'aspect ': '',

13 'sentiment ': ''

14 }, ignore_index=True)

15

16 else:

17 for i in range(len(aspects)):

18 # save predictions in 2nd df

19 predictions_df = predictions_df.append ({

20 'sentence ': sample ,

21 'aspect ': aspects[i],

22 'sentiment ': sentiments[i]

23 }, ignore_index=True)

24

25 predictions_df.to_excel(path_to_save_pred_df)

26

62

27 return predictions_df , test_df

A second function (see Listing 5.18) was utilized to generate merged DataFrames essential for
computing various metrics, including accuracy and recall. This function takes both test_df and
predictions_df from the previous function and returns three distinct DataFrames merged based
on them: one merged using an inner join solely on the sentences, another merged on sentences
and aspects, and a third merged on sentences, aspects, and sentiments.

The first merged DataFrame is crucial for calculating recall (see Listing 5.19), the second is used
to compute the accuracy of the Aspect Term Extraction (ATE) task, and the third is utilized to
calculate the accuracy of both ATE and Aspect Polarity Classification (APC) tasks simultaneously.

Listing 5.18: Obtain Merged DataFrames from Test Data and Predictions
1 def get_merged_dfs(test_df , pred_df):

2 import pandas as pd

3

4 merged_df_on_sentence_only = pd.merge(test_df , pred_df ,

on=['sentence '], how='inner ')

5 merged_df_for_ATE_Task = pd.merge(test_df , pred_df , on=['sentence ',

'aspect '], how='inner ')

6 merged_df_for_ATE_APC_Task = pd.merge(test_df , pred_df ,

on=['sentence ', 'aspect ', 'sentiment '], how='inner ')

7

8 if merged_df_for_ATE_Task.empty:

9 print('Keine Uebereinstimmungen gefunden.')

10 else:

11 print('Uebereinstimmungen gefunden.')

12

13 acc_ate = (len(merged_df_for_ATE_Task) / len(test_df)) * 100

14 print(f"Das ist die ATE -Accuracy: {acc_ate} %")

15

16 acc_ate_apc = (len(merged_df_for_ATE_APC_Task) / len(test_df)) * 100

17 print(f"Das ist die ATE_APC -Accuracy: {acc_ate_apc} %")

18

19

20 return merged_df_on_sentence_only , merged_df_for_ATE_Task ,

merged_df_for_ATE_APC_Task

Listing 5.19 takes as inputs the test data test_df and three merged DataFrames obtained from
the previous function. It computes three key metrics: accuracy for the single task ATE, accuracy
for the combined task ATE_APC, and recall for the combined task ATE_APC. The metric values
obtained are as follows: 40.0% for ATE accuracy, 37.38% for ATE_APC accuracy, and 55.67% for
ATE_APC recall.

Listing 5.19: Obtain Metrics: Accuracy for ATE, Accuracy for ATE_APC, and Recall for ATE_APC
1 def get_metrics(test_df , merged_df_sen , merged_df_sen_asp ,

merged_df_sen_asp_senti):

2

3 true_pos = len(merged_df_sen_asp)

63

4 acc_ate = (true_pos / len(test_df)) * 100

5 print(f"Das ist die ATE -Accuracy: {acc_ate} %")

6

7 acc_ate_apc = (len(merged_df_sen_asp_senti) / len(test_df)) * 100

8 print(f"Das ist die ATE_APC -Accuracy: {acc_ate_apc} %")

9

10 # now for metric recall:

11 false_neg = 0

12

13 # Count rows where aspect_y and sentiment_y are NaN

14 false_negatives = merged_df_sen[merged_df_sen['aspect_y ']. isnull () &

merged_df_sen['sentiment_y ']. isnull ()]

15

16 # Number of false negatives

17 false_neg = len(false_negatives)

18

19 recall_ate_apc = (true_pos / true_pos + false_neg) * 100

20 print(f"Das ist der ATE_APC -Recall: {recall_ate_apc} %")

21

22 return acc_ate , acc_ate_apc , recall_ate_apc

Figure 5.23: Evaluation Metrics Derived from Own Analysis

Doing an overall comparison between the metrics obtained by PyABSA (refer to 5.20) and those
obtained independently (refer to 5.23, the results indicate a significant performance drop when
considering the custom metrics, which reflect the perceived performance of the model.

The final section of this chapter outlines the development of a BERT-based classifier essential for
categorizing aspect terms into aspect categories. This step was crucial before proceeding to load
all ABSA results into a database for comprehensive analysis. In this way, numerous and varied
aspect terms can be summarized and ultimately replaced by a fixed number of high-level aspect
categories for querying.

5.6 Building an Aspect Category Classifier

To perform aspect category classification, the pretrained BERT model "dbmdz/bert-base-german-
cased," originating from the Bavarian State Library, was utilized. While the pretrained model
generally understands language and context, it is not aware of the predefined 10 aspect categories
and cannot classify the aspect terms without further training. Therefore, it needed to be fine-tuned

64

for the specific task of multi-label text classification. This was accomplished by adapting a solution
from The Artificial Guy (2024). To facilitate the recreation of the classifier development, it was
decided to include the adapted code.

A custom training dataset was created using the aspects and categories from the training data,
comprising 12,504 examples obtained through data augmentation (see Section 5.3.3). This was
achieved by applying one-hot encoding to the target labels for easier processing. Additionally, a
BERT model was defined, incorporating a dropout layer and a linear layer. The following listings
provide the details of the classifier’s development. Section 5.6.1 discusses the preparation of the
training data, while Section 5.6.2 focuses on the modeling process.

5.6.1 Training Data Preparation

Listing 5.20 presents code adapted from StackOverflow. Specifically, StackOverflow (2015) was
referenced for splitting the training data, while StackOverflow (2016b) was utilized to create
one-hot encodings for the aspect categories. Moreover, similar to the training preparation for
the ABSA model, the function train_test_split from sklearn was used to split the data. The
variable data represents the training data containing the two attributes aspect and aspect category,
while the variable y is the target variable, consisting of only the aspect category column. Since the
distribution of aspect categories is not balanced, the function is set to split the data by stratifying
on the target variable. Additionally, the split is performed to allocate 70% of the data for training
and 30% for validation.

In lines 6 and 7, one-hot encodings are generated for the target variable from both the training
and validation data, and saved to X_train_dummies and X_test_dummies, respectively. Then, in
lines 10 and 11, both training and validation data are trimmed to include only the aspect terms,
before being concatenated with the one-hot encodings in lines 14-15. This procedure replaces each
unique aspect category with a binary column indicating the presence (1) or absence (0) of that
category. This transforms the multi-label classification problem into a binary classification problem.
Furthermore, since the targets were embedded in X_train and X_test, there was no further usage
of the variables y_train and y_test resulting from the split. Lastly, the hyperparameters used for
training are set in lines 22-26.

Listing 5.20: Train-Test Split and One-Hot Encodings. Adapted from StackOverflow (2015) and Stack-
Overflow (2016b).

1 # Train Test Split

2 from sklearn.model_selection import train_test_split

3 X_train , X_test , y_train , y_test = train_test_split(data , y, stratify=y,

test_size =0.3)

4

5 # One -Hot Encoding the Labels

6 X_train_dummies = pd.get_dummies(X_train['aspect category '])

7 X_test_dummies = pd.get_dummies(X_test['aspect category '])

8

9 # Filtering to Aspect Terms

10 X_train = X_train.drop(columns =['aspect category '])

11 X_test = X_test.drop(columns =['aspect category '])

12

65

13 # Joining the Aspect Terms with the One -Hot -Encodings (Aspect Categories)

14 X_train = pd.concat ([X_train , X_train_dummies], axis =1)

15 X_test = pd.concat ([X_test , X_test_dummies], axis =1)

16

17 # Changing Names and reset the index

18 train_df = X_train.reset_index(drop=True)

19 val_df = X_test.reset_index(drop=True)

20

21 # Hyperparameters Used for Data Preparation and Training

22 MAX_LEN = 256

23 TRAIN_BATCH_SIZE = 32

24 VALID_BATCH_SIZE = 32

25 EPOCHS = 2

26 LEARNING_RATE = 1e-05

Figure 5.24 illustrates one-hot encodings for the target variable before the train-test split.

Figure 5.24: One-Hot-Encodings for Aspect Categories

The following Listings 5.21 to 5.27 are adapted from The Artificial Guy (2024), which provides
guidance on performing multi-label text classification using BERT and PyTorch. Listing 5.21
represents the class CustomDataset, which is essential for handling and preparing data for training
and evaluation with the BERT model. The data must be transformed in several steps to match
the required input format for the model.

Before the class declaration, both the BERT model and tokenizer are imported from the transformers
library. The BERT model is needed later in Section 5.6.2, while the BERT tokenizer is required in
this step for data preparation. It is defined using the "dbmdz/bert-base-german-cased" model.
Additionally, the variable target_list contains the 10 aspect categories, which are necessary
within the CustomDataset class. Inside the class, the value of an aspect term is saved in the
variable self.title, representing the features or input data, while the possible values for aspect
categories are saved in self.targets, representing the labels or target data.

Listing 5.21: Pytorch Class for Transforming a pandas DataFrame for BERT Training. Adapted from The
Artificial Guy (2024)

1 from transformers import BertTokenizer , BertModel

2

66

3 tokenizer = BertTokenizer.from_pretrained('dbmdz/bert -base -german -cased')

4

5 target_list = ['Allgemein ', 'Ausstattung ', 'Bibliothek ', 'Campus ',

'Digitales Studieren ', 'Dozenten ', 'Lage',

6 'Lehrveranstaltungen ', 'Organisation ', 'Studieninhalte ']

7

8 class CustomDataset(torch.utils.data.Dataset):

9

10 def __init__(self , df, tokenizer , max_len):

11 self.tokenizer = tokenizer

12 self.df = df

13 self.title = df['aspect ']

14 self.targets = self.df[target_list]. values

15 self.max_len = max_len

16

17 def __len__(self):

18 return len(self.title)

19

20 def __getitem__(self , index):

21 title = str(self.title[index])

22 title = " ".join(title.split())

23

24 inputs = self.tokenizer.encode_plus(

25 title ,

26 None ,

27 add_special_tokens=True ,

28 max_length=self.max_len ,

29 padding='max_length ',

30 return_token_type_ids=True ,

31 truncation=True ,

32 return_attention_mask=True ,

33 return_tensors='pt'

34)

35

36 return {

37 'input_ids ': inputs['input_ids ']. flatten (),

38 'attention_mask ': inputs['attention_mask ']. flatten (),

39 'token_type_ids ': inputs["token_type_ids"]. flatten (),

40 'targets ': torch.FloatTensor(self.targets[index])

41 }

In Listing 5.22, the two training subsets resulting from Listing 5.20 are converted into two
CustomDataset objects. This process requires the training DataFrame, a tokenizer, and the
maximum input length, as specified by the __init__ function in the class from Listing 5.21.

Subsequently, both the training and validation datasets undergo further conversion using the
DataLoader class from PyTorch. This step ensures that both datasets are managed with specified
batch sizes and that the training data is shuffled for each epoch to prevent overfitting. However,
to maintain consistent evaluation metrics, the validation data was not shuffled.

67

Listing 5.22: Conversion of the Training Data. Adapted from The Artificial Guy (2024)
1 train_dataset = CustomDataset(train_df , tokenizer , MAX_LEN)

2 valid_dataset = CustomDataset(val_df , tokenizer , MAX_LEN)

3

4 train_data_loader = torch.utils.data.DataLoader(train_dataset ,

5 batch_size=TRAIN_BATCH_SIZE , shuffle=True , num_workers =0

6)

7

8 val_data_loader = torch.utils.data.DataLoader(valid_dataset ,

9 batch_size=VALID_BATCH_SIZE , shuffle=False , num_workers =0

10)

5.6.2 Modeling

Having established the prerequisites for the training data, this section focuses on modeling the
classifier. Listing 5.23 introduces two essential functions for managing checkpoints during the
training process. The load_ckp function is used after training to load a model. It expects a path
to a saved checkpoint file and loads its parameters to a model passed to the function. Alongside
the model’s state dictionary, the function returns the optimizer’s state, the epoch of the checkpoint,
and the minimum validation loss encountered during training.

Conversely, the save_ckp function plays a crucial role during training. Using torch.save, it stores
a checkpoint of the model (state) at the specified path checkpoint_path. If the boolean variable
is_best is set to True during training, indicating the model has achieved the best performance at
that specific epoch, the checkpoint is also copied to the path best_model_path, as demonstrated
in Listing 5.25.

Listing 5.23: Loading and Saving of Checkpoints. Adapted from The Artificial Guy (2024)
1 def load_ckp(checkpoint_fpath , model , optimizer):

2 """

3 checkpoint_path: checkpoint path

4 model: model that we want to load checkpoint parameters into

5 optimizer: optimizer we defined in previous training

6 """

7 # load check point

8 checkpoint = torch.load(checkpoint_fpath)

9 # initialize state_dict from checkpoint to model

10 model.load_state_dict(checkpoint['state_dict '])

11 # initialize optimizer from checkpoint to optimizer

12 optimizer.load_state_dict(checkpoint['optimizer '])

13 # initialize valid_loss_min from checkpoint to valid_loss_min

14 valid_loss_min = checkpoint['valid_loss_min ']

15 # return model , optimizer , epoch value , min validation loss

16 return model , optimizer , checkpoint['epoch '], valid_loss_min

17

18 def save_ckp(state , is_best , checkpoint_path , best_model_path):

19 import shutil

20 """

21 state: checkpoint we want to save

68

22 is_best: is this the best checkpoint; min validation loss

23 checkpoint_path: path to save checkpoint

24 best_model_path: path to save best model

25 """

26 f_path = checkpoint_path

27 # save checkpoint data to the path given , checkpoint_path

28 torch.save(state , f_path)

29 # if it is a best model , min validation loss

30 if is_best:

31 best_fpath = best_model_path

32 # copy that checkpoint file to best path given , best_model_path

33 shutil.copyfile(f_path , best_fpath)

Listing 5.24 introduces the setup of a BERT-based neural network model designed for multi-label
text classification. In line 1, the device the model will be loaded on is defined. Notably, within
BERTClass, lines 6 and 10 are key: self.bert_model is initialized using the pretrained BERT
model "dbmdz/bert-base-german-cased" via the BertModel module (imported in 5.21), while
self.linear specifies the linear layer torch.nn.Linear used for classification. In addition, 10 is
set as number of output classes, corresponding to the predefined aspect categories.

The conclusion of Listing 5.24 introduces the definition of the loss function, crucial during the
training phase. As the task is transformed into a binary classification problem using one-hot
encodings, the binary cross-entropy loss (BCEWithLogitsLoss) is employed.

Listing 5.24: Definition of the BERT Class and Loss Function. Adapted from The Artificial Guy (2024)
1 device = torch.device('cuda') if torch.cuda.is_available () else

torch.device('cpu')

2

3 class BERTClass(torch.nn.Module):

4 def __init__(self):

5 super(BERTClass , self).__init__ ()

6 self.bert_model =

BertModel.from_pretrained('dbmdz/bert -base -german -cased',

return_dict=True)

7 self.dropout = torch.nn.Dropout (0.3)

8 # Setting the Linear Layer comprising a 10- dimensional output

layer

9 # Parameter 10 Refers to 10 aspect categories (targets)

10 self.linear = torch.nn.Linear (768, 10)

11

12 def forward(self , input_ids , attn_mask , token_type_ids):

13 output = self.bert_model(

14 input_ids ,

15 attention_mask=attn_mask ,

16 token_type_ids=token_type_ids

17)

18 output_dropout = self.dropout(output.pooler_output)

19 output = self.linear(output_dropout)

20 return output

69

21

22 def loss_fn(outputs , targets):

23 return torch.nn.BCEWithLogitsLoss ()(outputs , targets)

The core logic of training is implemented in the train_model function, illustrated in Listing 5.25.
It was needed for training and validating the model for several epochs. Furthermore, it tracks the
validation loss (using the loss function) to monitor model performance and automatically saves
the best model using the save_ckp function from Listing 5.23.

The parameters expected by the train_model function include the number of epochs to train
the model (n_epochs), DataLoaders for the training and validation datasets (training_loader,
validation_loader), the BERT-based model to be trained (model), and the optimizer used
for training (optimizer). Lastly, checkpoint_path is the path to save checkpoint files, while
best_model_path expects the path to save the best model checkpoint.

The function begins by initializing a tracker, valid_loss_min, which keeps track of the minimum
validation loss encountered during training. In line 11, a for loop is defined with n_epochs as
number of iterations. This loop lasts until the end of the function, before train_model ultimately
returns the trained model. Inside this loop, there are two distinct blocks: one for training and one
for validation.

During the training block, the model parameters are adjusted using backpropagation, where
gradients are computed and weights are updated to minimize the training loss. This process is
crucial for improving the model’s ability to make predictions on the training data.

Conversely, during the validation block, the model’s performance is evaluated on unseen validation
data. Here, no gradients are computed, and weights are not updated, as indicated by the use of
torch.no_grad(). This ensures that the model’s evaluation on the validation set remains inde-
pendent of its training, thereby providing an unbiased assessment of its generalization capabilities
and guarding against overfitting.

Throughout training, checkpoints of the model are saved to the checkpoint_path, and the best
model, based on the validation loss, is also saved to the best_model_path. This ensures that the
best performing model observed during training is preserved for future use or further evaluation.

The two lists defined before the function, val_targets and val_outputs, are used to store the
true labels and predicted outputs for the validation dataset. While this thesis does not include a
detailed evaluation of the developed classifier, and thus these lists are filled but not used, they
could be used for calculating evaluation metrics of the trained model.

Listing 5.25: Training Implementation. Adapted from The Artificial Guy (2024)
1 val_targets =[]

2 val_outputs =[]

3

4 def train_model(n_epochs , training_loader , validation_loader , model ,

5 optimizer , checkpoint_path , best_model_path):

6

7 # initialize tracker for minimum validation loss

8 valid_loss_min = np.Inf

70

9

10

11 for epoch in range(1, n_epochs +1):

12 train_loss = 0

13 valid_loss = 0

14

15 model.train()

16 print('##### Epoch {}: Training Start #####'.format(epoch))

17 for batch_idx , data in enumerate(training_loader):

18 #print('yyy epoch ', batch_idx)

19 ids = data['input_ids '].to(device , dtype = torch.long)

20 mask = data['attention_mask '].to(device , dtype = torch.long)

21 token_type_ids = data['token_type_ids '].to(device , dtype =

torch.long)

22 targets = data['targets '].to(device , dtype = torch.float)

23

24 outputs = model(ids , mask , token_type_ids)

25

26 optimizer.zero_grad ()

27 loss = loss_fn(outputs , targets)

28 #if batch_idx %5000==0:

29 # print(f'Epoch: {epoch}, Training Loss: {loss.item()}')

30

31 optimizer.zero_grad ()

32 loss.backward ()

33 optimizer.step()

34 #print('before loss data in training ', loss.item(), train_loss)

35 train_loss = train_loss + ((1 / (batch_idx + 1)) * (loss.item()

- train_loss))

36 #print('after loss data in training ', loss.item(), train_loss)

37

38 print('##### Epoch {}: Training End #####'.format(epoch))

39

40 print('##### Epoch {}: Validation Start #####'.format(epoch))

41 ######################

42 # validate the model #

43 ######################

44

45 model.eval()

46

47 with torch.no_grad ():

48 for batch_idx , data in enumerate(validation_loader , 0):

49 ids = data['input_ids '].to(device , dtype = torch.long)

50 mask = data['attention_mask '].to(device , dtype = torch.long)

51 token_type_ids = data['token_type_ids '].to(device , dtype =

torch.long)

52 targets = data['targets '].to(device , dtype = torch.float)

53 outputs = model(ids , mask , token_type_ids)

54

55 loss = loss_fn(outputs , targets)

71

56 valid_loss = valid_loss + ((1 / (batch_idx + 1)) *

(loss.item() - valid_loss))

57 val_targets.extend(targets.cpu().detach ().numpy().tolist ())

58 val_outputs.extend(torch.sigmoid(outputs).cpu().detach ().

59 numpy().tolist ())

60

61 print('##### Epoch {}: Validation End #####'.format(epoch))

62 # calculate average losses

63 #print('before cal avg train loss ', train_loss)

64 train_loss = train_loss/len(training_loader)

65 valid_loss = valid_loss/len(validation_loader)

66 # print training/validation statistics

67 print('Epoch: {} \tAvgerage Training Loss: {:.6f} \tAverage

Validation Loss: {:.6f}'.format(

68 epoch ,

69 train_loss ,

70 valid_loss

71))

72

73 # create checkpoint variable and add important data

74 checkpoint = {

75 'epoch ': epoch + 1,

76 'valid_loss_min ': valid_loss ,

77 'state_dict ': model.state_dict (),

78 'optimizer ': optimizer.state_dict ()

79 }

80

81 # save checkpoint

82 save_ckp(checkpoint , False , checkpoint_path , best_model_path)

83

84 ## TODO: save the model if validation loss has decreased

85 if valid_loss <= valid_loss_min:

86 print('Validation loss decreased ({:.6f} --> {:.6f}). Saving

model ...'.format(valid_loss_min ,valid_loss))

87 # save checkpoint as best model

88 save_ckp(checkpoint , True , checkpoint_path , best_model_path)

89 valid_loss_min = valid_loss

90

91 print('############# Epoch {} Done #############\n'.format(epoch))

92

93 return model

In Listing 5.26, the BERT-based model is initialized and moved to the device for computation.
Moreover, an optimizer is instantiated, which plays a crucial role in adjusting the model’s parameters
during training when passed to the train_model function. Lastly, two file paths are defined for
saving the checkpoints of the trained model.

Listing 5.26: Parameter Initialization Prior to Training. Adapted from The Artificial Guy (2024)
1 model = BERTClass ()

2 model.to(device)

72

3

4 optimizer = torch.optim.Adam(params = model.parameters (),

lr=LEARNING_RATE)

5

6 ckpt_path = r"C:\Users\YOUR_USER\Documents\Prepare Train

Dataset\Building Classifier for Aspect Categories\curr_ckpt\model.pth"

7 best_model_path = r"C:\Users\YOUR_USER\Documents\Prepare Train

Dataset\Building Classifier for Aspect

Categories\best_model\best_model.pth"

Figure 5.25 depicts the invocation of the training function and displays the subsequent training
results outputted in the console.

Figure 5.25: Training the Aspect Category Classifier over 2 Epochs

Ultimately, the trained model was saved to the variable trained_model (in 5.25). However,
this variable represents the model including all parameters after the end of all epochs. It is not
necessarily the best model achieved. Therefore, for further evaluation and testing of the trained
model, it is loaded by applying the earlier described load_ckp function from Listing 5.23.

5.6.3 Evaluation

Testing of the trained classifier is exemplified in Listing 5.27. In lines 23-33, the example aspect
"Lernräume" is tokenized using the BERT tokenizer, generating input encodings suitable for the
model. Further key aspects to note are in lines 41 and 42, where the model’s output is transformed
into a predicted category label. This transformation involves determining the category with the
highest predicted probability for each target.

Listing 5.27: Testing the Trained Classifier. Adapted from The Artificial Guy (2024)
1 # Path containing the checkpoint of the best model

2 best_model_path = r"C:\Users\YOUR_USER\Documents\Prepare Train

Dataset\Building Classifier for Aspect

Categories\best_model\best_model.pth"

3

4 # Initailizing the BERT Model and Optimizer

5 model = BERTClass ()

6 optimizer = torch.optim.Adam(params = model.parameters (),

lr=LEARNING_RATE)

73

7

8 model , optimizer , epoch , valid_loss_min = load_ckp(best_model_path ,

model , optimizer)

9

10 ######## Test the Classifier

11

12 # Set model to evaluation/validation mode:

13 model.eval()

14

15 # Defining values for my 10 categories and save to variable "categories"

16 categories = ['Allgemein ', 'Ausstattung ', 'Bibliothek ', 'Campus ',

'Digitales Studieren ', 'Dozenten ', 'Lage', 'Lehrveranstaltungen ',

'Organisation ', 'Studieninhalte ']

17

18 # Example of aspect to be classified as string

19 aspect = "Lernräume"

20

21 # Create encodings representing the aspect (using BertTokenizer)

22 # Encodings whose input_ids , attention_masks and token_type_ids are

later used and passed to the model

23 encodings = tokenizer.encode_plus(

24 aspect , # aspect to be classified

25 None ,

26 add_special_tokens=True ,

27 max_length=MAX_LEN ,

28 padding='max_length ',

29 return_token_type_ids=True ,

30 truncation=True ,

31 return_attention_mask=True ,

32 return_tensors='pt'

33)

34

35 with torch.no_grad ():

36 input_ids = encodings['input_ids '].to(device , dtype=torch.long)

37 attention_mask = encodings['attention_mask '].to(device ,

dtype=torch.long)

38 token_type_ids = encodings['token_type_ids '].to(device ,

dtype=torch.long)

39 output = model(input_ids , attention_mask , token_type_ids)

40 final_output = torch.sigmoid(output).cpu().detach ().numpy().tolist ()

41 y = categories[int(np.argmax(final_output , axis =1))]

42 print(y)

Figure 5.26 displays the prediction results of the trained classifier using 20 example aspects. Each
aspect is shown on the left side, accompanied by its predicted category.

Having developed both the ABSA model and the aspect category classifier, the following chapter
covers the data integration process, specifically the implementation of the data warehouse system.
It explains how the developed web scraping functionality and the two models for ABSA are
integrated to form the back-end tier of the data warehouse system. Furthermore, it covers the

74

Figure 5.26: Inference Testing of the Trained Classifier

development of a sentiment cube, which forms the data warehouse tier, and concludes with
examples of how to analyze the created cube.

75

6

Sentiment Cube

This chapter begins with Section 6.1, which describes the conceptual model of the data warehouse
using the Dimensional Fact Model (DFM) notation. Furthermore, the model’s logical implementa-
tion in a database is covered in Section 6.2. Section 6.3 addresses the integration of the ABSA
results with the created sentiment cube. On the one hand, it includes a presentation of how the
two core functionalities from the previous chapters were integrated, covering data collection, model
deployment, and database population in one modularized Python function. On the other hand, it
demonstrates how a relational staging database is populated and then used as the data source for
the previously defined data warehouse. Lastly, Section 6.4 provides examples of how the resulting
sentiment cube may be applied by HEIs using SQL queries.

6.1 Conceptual Model

To create the data warehouse, a conceptual model was initially designed to ease further imple-
mentation. To this extent, the Dimensional Fact Model (DFM) notation was used, introduced by
Golfarelli et al. (1998). In contrast to entity relationship models, which address modeling relational
data for building a transactional database, the dimensional fact model is a way of representing
multidimensional data. It aims at providing an easy and intuitive understanding of the dimensional
data at a conceptual level, before the model is being transferred to the logical implementation of
the data warehouse (Golfarelli et al., 1998).

At this stage, it was important to reflect on two questions: what data serves as input for the
two developed ML models, and what is the business outcome of the models’ predictions. For the
ABSA model, one single sentence serves as input, obtained by splitting each review comment by
sentences. For the aspect category classifier, one single aspect term serves as input, which is to
be previously extracted by the ABSA model. The business outcome or output of both models’
predictions is a sentiment score associated with an aspect term and sentence.

To create the DFM, one must initially define a fact or facts, before deciding on which attributes
serve as the fact’s measures, and which serve as dimensions and hierarchies (Golfarelli et al., 1998).

Figure 6.1 depicts the DFM of the data warehouse to be implemented later. A sentiment table was
modeled as the only fact, representing the business interest. As the ABSA model predicts both a
sentiment score and the corresponding confidence of predicting it, both a score and confidence
were added as the fact’s measures. The lowest levels of each dimension are defined by the lowest

76

granularity of sentiment, determining the fact. Since each sentiment’s prediction is expecting a
sentence as input and results in its linkage with an aspect term, two dimensions were created:
one rating dimension and one aspect dimension. The rating dimension has the sentence as its
lowest level. The sentence derives from a rating, which can be linked with the study program
and university the student refers to. Moreover, each rating can be associated with a date. To be
able to aggregate prediction results over time, the dimensional attributes "day", "month", and
"year" were added. These were derived from the earlier fetched date attribute from the rating
website, representing the day the rating was published. The rating total and recommendation,
linked to each rating, and the university type, linked to a university, were added as non-dimensional
attributes. This is because they merely serve as additional descriptive information. The aspect
dimension has an aspect at its lowest level, followed by its predicted aspect category. This design
allows for later roll-up queries, for instance when seeking to obtain sentiment scores by aspect
category and a university’s study program.

Figure 6.1: Dimensional Fact Model for the Sentiment Cube

6.2 Logical Implementation

This section covers how the previously modeled data was stored in a database. According to
Vaisman and Zimányi (2014), there are several approaches to implement a multidimensional
model. Mostly, the data is implemented by using relational data models, referring to relational
online analytical processing (ROLAP). This approach was also used in this thesis, as it is well
established and simple to adapt (Vaisman and Zimányi, 2014). However, other approaches such
as multidimensional OLAP (MOLAP) or hybrid OLAP (HOLAP) could have been used.

Moreover, there are different ways of structuring the logical model. Following the star schema, one
central fact table is connected with one dimensional table per dimension. The dimension tables
in a star schema are typically not normalized. In contrast, applying the snowflake schema, each
dimension is split into several dimension tables, normalizing its attributes (Vaisman and Zimányi,
2014). Since the data model of this use case is of low complexity and the amount of data is
manageable, the star schema was selected for logical implementation, illustrated in Figure 6.2.

77

Figure 6.2: Star Schema of the Sentiment Cube

To implement the designed star schema, Microsoft SQL Server Management Studio (SSMS) was
used as a relational database management system, with Microsoft SQL Server as the database
engine. Listing 6.1 depicts the logical definition of the data warehouse in SSMS.

Listing 6.1: Logical Implementation of the Sentiment Cube in SSMS
1 CREATE DATABASE student_ratings_DW;

2 USE student_ratings_DW;

3 GO

4

5 CREATE TABLE DimRatingSentence (

6 SentenceID INT ,

7 RatingID INT NOT NULL ,

8 Date_ DATE NOT NULL ,

9 Day_ INT NOT NULL ,

10 Month_ INT NOT NULL , -- 1:12

11 Year_ INT NOT NULL ,

12 Sentence VARCHAR(max) NOT NULL ,

13 RatingTotal FLOAT (24) NOT NULL ,

78

14 Recommendation BIT ,

15 UniType VARCHAR (300) NOT NULL ,

16 StudyProgramID INT NOT NULL ,

17 StudyProgram VARCHAR (300) NOT NULL ,

18 UniversityID INT NOT NULL ,

19 University VARCHAR (300) NOT NULL ,

20 CONSTRAINT PK_DimRatingSentence PRIMARY KEY (SentenceID)

21);

22

23 CREATE TABLE DimAspect (

24 AspectID INT ,

25 Aspect VARCHAR (300) NOT NULL ,

26 AspectCategoryID INT NOT NULL ,

27 AspectCategory VARCHAR (300) NOT NULL ,

28 CONSTRAINT PK_DimAspect PRIMARY KEY (AspectID)

29);

30

31 CREATE TABLE FactSentiment (

32 Sentence INT NOT NULL FOREIGN KEY REFERENCES

DimRatingSentence(SentenceID),

33 Aspect INT NOT NULL FOREIGN KEY REFERENCES DimAspect(AspectID),

34 Sentiment INT NOT NULL ,

35 Confidence FLOAT (24) NOT NULL ,

36 CONSTRAINT PK_FactSentiment PRIMARY KEY (Sentence , Aspect)

37);

6.3 Data Integration

Having set the foundation for populating the sentiment cube, it was time to integrate the previously
implemented modules addressed in Chapters 4 and 5: data collection and sentiment analysis. This
integration involves the web crawling of all online reviews of a HEI and their subsequent processing
using the two developed ML models. Once the aspects and sentiments are detected, they are
inserted into a relational staging database. This entails populating the database with all reviews,
including every sentence and its associated prediction results. Finally, the data is loaded into the
data warehouse to enable OLAP querying on a sentiment cube.

To provide an end-to-end integration, starting with data collection and ending with database popula-
tion, several Python functions were developed and embedded in one main function absa_pipeline,
illustrated in Listing 6.2. This modular setup simplifies further usage because individual function-
alities can be easily exchanged. For instance, if another library is used for data crawling online
reviews, the function get_uni_reviews can be replaced. After calling the main function, all
reviews from one HEI are crawled and processed.

Listing 6.2: Integration of Data Collection, Data Processing, and Data Population
1 def absa_pipeline(url , uni , uni_type , excel_path , json_path):

2 # import pyabsa

3 from pyabsa import AspectTermExtraction as ATEPC

4

79

5 # url: URL containing ratings for a single uni

6 # uni: String representing the desired name for the uni

7 # uni_type: String representing the desired name for the uni type

8 # excel_path: path where the reviews of the uni will be saved as

excel

9

10 # scrape reviews from ONE HEI and save to df

11 df = get_uni_reviews(url , uni , uni_type , excel_path , json_path)

12

13 if url is None:

14 print("The URL provided is not valid.")

15

16 # if dataframe is emtpy then it was not possible to scrape it, so

just ignore it

17 if df.empty:

18 print("Data Collection failed.")

19 return

20

21 # clean df (5 steps ...)

22 df = clean_df(df)

23

24 # save df as excel to local (Overwriting to same path by the cleaned

dataframe !)

25 # Create Excel without index

26 excel_path = excel_path + '/%s.xlsx' % (uni)

27 df.to_excel(excel_path , encoding='utf -8', index=False)

28

29 # generate a list of the pandas dataframe

30 df_list = df.values.tolist ()

31

32 # insert Rating and inherent sentences into DB and save df_sentences

of all reviews

33 df_sentences = INSERT_DB(df_list , None)

34

35 # save df_sentences of single HEI locally

36 df_sentences.to_excel(r'C:\Users\YOUR_USER\Documents\

37 Pipeline\DF_Sentences_DB -Insertions \% s_sentences_inserted.xlsx' %

(uni), encoding='utf -8', index=False)

In line 22, a function clean_df was added to ensure that the data type of each crawled attribute
aligns with the SQL data type defined for the database. This involves several steps, such as
changing the date format from "dd-mm-YYYY" to "YYYY-mm-dd".

The function INSERT_DB, called in line 33, contains the core logic. It takes two arguments: all
crawled reviews from a HEI as a list and, if desired, a path to an alternative ABSA model. Listing
6.3 shows a snippet of the INSERT_DB function. As the ABSA model using mdeberta as the
pretrained BERT proved to yield the best results, it was defined as the default.

Listing 6.3: Initialization of the ABSA Model
1 def INSERT_DB(df_list , path_to_model):

80

2 # df_list: list containing all crawled reviews from a HEI

3 # path_to_model: path that represents a folder containing a

checkpoint of ABSA Model (state_dict , tokenizer , config , args)

4

5 # initialize ABSA Model!

6 if path_to_model is not None:

7 aspect_extractor = ATEPC.AspectExtractor(path_to_model ,

8 auto_device=True , # False

means load model on CPU

9 cal_perplexity=True ,

10)

11

12 else: # use mdeberta Model as default ABSA Model

13 aspect_extractor = ATEPC.AspectExtractor('mdeberta Model -

fast_lcf_atepc_custom_dataset_cdw_apcacc_86 .67_

14 apcf1_86 .69 _atef1_64 .86',

15 auto_device=True , # False

means load model on CPU

16 cal_perplexity=True ,

17)

The resulting variable aspect_extractor represents the ABSA model, which was later applied on
each single sentence.

Listing 6.4 depicts the function extract_aspect_polarity which was used for this purpose. It
expects a sentence to be predicted and a PyABSA AspectExtractor object, representing the
developed ABSA model. Since PyABSA’s predict function saves the predictions in a JSON file,
they have to be read accordingly. Eventually, the function returns all detected aspect terms of a
single sentence as input, their corresponding sentiment polarities, and their prediction confidences.

Listing 6.4: Application of the ABSA Model
1 def extract_aspect_polarity(sentence , aspect_extractor):

2 # uses the ML-model API to extract aspects from a sentence and

determines its polarities

3 # sentence: sentence to be analyzed (string)

4 # aspect_extractor: PyABSA AspectExtractor object representing the

ABSA model

5

6 aspect_extractor.predict(sentence ,

7 save_result=True ,

8 print_result=True ,

9 ignore_error=True

10)

11

12 import json

13 # load ABSA results from JSON

14 with open('Aspect Term Extraction and Polarity

Classification.FAST_LCF_ATEPC.result.json', 'r',

encoding='utf -8') as file:

15 data = json.load(file)

81

16

17 # Saving results before they will be overwritten by next method call

18 aspects = data [0]['aspect ']

19 sentiments = data [0]['sentiment ']

20 confidences = data [0]['confidence ']

21

22 return aspects , sentiments , confidences

As mentioned earlier in Chapter 5, the developed ABSA model seems to lack German language
understanding. Therefore, its performance in aspect term detection is insufficient for quantitative
analysis purposes. Thus, if the function above returns empty values, the corresponding sentence
is ignored and not inserted into the database. This ensures that the database represents only
sentences with actual predictions, enabling more useful OLAP querying.

Finally, after applying the function absa_pipeline for each URL containing all reviews of an
Austrian HEI on the UEP, the database is populated. Figure 6.3 shows a snippet of the database
entries. For clarity reasons, the SentenceCount column represents a counter for all sentences
within one rating.

Figure 6.3: Snippet of the Sentences Table from the Database

To fill the data warehouse with the populated database as the source, Microsoft SQL Server
Integration Services (SSIS) was used. Figure 6.4 depicts the data integration process designed
in SSIS. Minor data manipulation tasks were fulfilled during the process, such as mapping the
sentiment values from "positive" to 1, "neutral" to 0, and "negative" to -1. Equivalently, the data
could have been loaded using solely SQL queries or other integration tools.

Figure 6.4: Data Integration Process using Microsoft SSIS

82

6.4 Querying the Sentiment Cube

To gain useful insights, the developed sentiment cube can be analyzed using a variety of tools and
techniques, such as Power BI or Microsoft SQL Server Reporting Services (SSRS). In this thesis,
SQL queries were used as the analysis method.

For instance, the query in Listing 6.5 calculates the average sentiment score and the average ABSA
model’s confidence of each sentence, considering only ratings commenting on business informatics
related study programs and concerning the aspect category "study contents".

Listing 6.5: SQL Query 1: Average Sentiment Score on Study Contents in Business Informatics Programs
1 SELECT

2 R.University ,

3 R.StudyProgram ,

4 A.AspectCategory ,

5 ROUND(SUM(CAST(F.Sentiment AS FLOAT))/count (*), 2) AS "Average

Sentiment Score",

6 count (*) as "Total Sentences",

7 SUM(F.Sentiment) AS "Total Sentiment Score",

8 ROUND(SUM(F.Confidence)/count (*), 2) AS "Average

9 Confidence"

10 FROM FactSentiment_ F

11 JOIN DimAspect_ A

12 ON F.Aspect = A.AspectID

13 JOIN DimRatingSentence_ R

14 ON F.Sentence = R.SentenceID

15 WHERE R.StudyProgram LIKE '%Wirtschaftsinformatik%' AND A.AspectCategory

= 'Studieninhalte '

16 GROUP BY

17 R.University ,

18 R.StudyProgram ,

19 A.AspectCategory

20 ORDER BY

21 "Average Sentiment Score" DESC

Figure 6.5: Result of SQL Query 1

The result of the query is depicted in Figure 6.5. For instance, the sentiment score of a sentence
commenting on the study contents of the Business Informatics Bachelor study program at JKU
Linz is on average 0.74. In comparison, the equivalent metric concerning the Austrian HEIs "TU

83

Wien" and "Uni Wien" are 0.31 and 0.22 respectively. This might indicate that the Business
Informatics Bachelor program at JKU Linz might outperform the same program offered by the
other two HEIs in terms of its study contents.

Listing 6.6 provides another example of an SQL query on the sentiment cube. It calculates the
average sentiment score and the average ABSA model’s confidence of each sentence written in
2023, considering only ratings commenting on business administration related study programs and
concerning the aspect category "lectures".

Listing 6.6: SQL Query 2: Average Sentiment Score on Lectures in Business Administration Programs
1 SELECT

2 R.University ,

3 R.StudyProgram ,

4 A.AspectCategory ,

5 ROUND(SUM(CAST(F.Sentiment AS FLOAT))/count (*), 2) AS "Average

Sentiment Score",

6 count (*) as "Total Sentences",

7 SUM(F.Sentiment) AS "Total Sentiment Score",

8 ROUND(SUM(F.Confidence)/count (*), 2) AS "Confidence Average",

9 R.Year_

10 FROM FactSentiment_ F

11 JOIN DimAspect_ A

12 ON F.Aspect = A.AspectID

13 JOIN DimRatingSentence_ R

14 ON F.Sentence = R.SentenceID

15 WHERE

16 (R.StudyProgram LIKE '%Wirtschaft%' AND R.StudyProgram LIKE

'%Betrieb%')

17 AND A.AspectCategory = 'Lehrveranstaltungen '

18 AND R.Year_ = 2023

19 GROUP BY

20 R.University ,

21 R.StudyProgram ,

22 A.AspectCategory ,

23 R.Year_

24 ORDER BY

25 "Average Sentiment Score" DESC

Figure 6.6: Result of SQL Query 2

84

The output of this query is illustrated in Figure 6.6. For instance, the sentiment score of a
sentence commenting on the lectures of the Business Administration Bachelor study program at
"Uni Wien" is, on average, -0.24. In comparison, the equivalent metric concerning the lectures of
the International Business Administration Bachelor program at the same university is 0.62. This
might indicate that the lectures from the latter study program are perceived as more positive by
the students.

85

7

Conclusion

This thesis explores the design and implementation of a data warehouse system for analyzing
student sentiment in online reviews from university evaluation platforms, with a focus on Austrian
Higher Education Institutions (HEIs). Large Language Models (LLMs), such as BERT, were
leveraged to develop a system capable of transforming unstructured text from online reviews
into structured data suitable for OLAP analysis. The resulting sentiment cube enables HEI
administrators to extract valuable insights into student satisfaction across multiple dimensions,
including universities, study programs, time periods, and aspect categories, which refer to specific
aspects of the educational experience.

The prototype system successfully demonstrates the feasibility of automating student feedback
analysis, allowing for data-driven decisions regarding student retention, recruitment, and the
improvement of services offered by HEIs. This approach is particularly beneficial for managing the
vast amounts of unstructured textual data generated by students in online forums, reviews, and
evaluations, which are otherwise difficult to process manually.

However, several limitations were identified. One significant challenge is the limited coverage of
aspect categories. Topic modeling was performed, but the resulting topics were deemed unhelpful,
as they did not extend the predefined set of aspect categories. Another limitation is the difficulty
in capturing nuanced contextual meanings in student reviews. For example, the model struggles
with complex sentiments such as irony or sarcasm, which are common challenges in NLP tasks.
Additionally, the ABSA model was not always able to extract an aspect term from every review.
In some cases, no aspect term was identified, meaning that not all data examples were included in
the final analysis. Furthermore, the aspect categories defined for university-wide feedback may
not perfectly align with the specific context of individual courses or programs. Future research
could involve expanding aspect categories or defining custom categories for specific courses, which
would improve the precision of the analysis.

Moreover, future work may focus on enhancing the reliability and accuracy of the system by
incorporating additional data sources, such as course evaluations conducted each semester. Integ-
rating ABSA with topic modeling techniques like Latent Dirichlet Allocation (LDA) could provide
a more nuanced understanding of the topics discussed in student reviews, potentially leading
to better categorization of aspects. Additionally, addressing classical NLP challenges such as
negation handling and sarcasm detection will be crucial for refining the sentiment analysis process.

86

Overcoming these challenges will allow the system to be further adapted and scaled for use across
different institutions and contexts, providing more tailored insights into student satisfaction.

In summary, this thesis lays the groundwork for automating the analysis of student feedback at
HEIs using a data warehouse system combined with ABSA. While the results are promising, several
areas for improvement were identified, ensuring that future iterations of the system can offer more
accurate and context-aware insights to support decision-making at universities.

87

Bibliography

Abdelrazeq, A., Janßen, D., Tummel, C., Jeschke, S., & Richert, A. (2016). Sentiment analysis of
social media for evaluating universities. Automation, Communication and Cybernetics in
Science and Engineering 2015/2016, 233–251.

Alford, J. (2002). Defining the client in the public sector: A social-exchange perspective. Public
administration review, 62(3), 337–346.

Altrabsheh, N., Gaber, M., & Cocea, M. Sa-e: Sentiment analysis for education [Additional
Information: Frontiers of Artificial Intelligence and Applications (FAIA) series, IOS Press.;
5th KES International Conference on Intelligent Decision Technologies ; Conference date:
26-06-2013 Through 28-06-2013]. English. In: Additional Information: Frontiers of Artificial
Intelligence and Applications (FAIA) series, IOS Press.; 5th KES International Conference
on Intelligent Decision Technologies ; Conference date: 26-06-2013 Through 28-06-2013.
2013.

Azab, M., Mihalcea, R., & Abernethy, J. (2016). Analysing ratemyprofessors evaluations across
institutions, disciplines, and cultures: The tell-tale signs of a good professor. Social
Informatics: 8th International Conference, SocInfo 2016, Bellevue, WA, USA, November
11-14, 2016, Proceedings, Part I 8, 438–453.

Bhowmik, A., Noor, N. M., Miah, M. S. U., Mazid-Ul-Haque, M., & Karmaker, D. (2023). A com-
prehensive dataset for aspect-based sentiment analysis in evaluating teacher performance.
AIUB Journal of Science and Engineering (AJSE), 22(2), 200–213.

Chaudhuri, S., & Dayal, U. (1997). An overview of data warehousing and olap technology. ACM
Sigmod record, 26(1), 65–74.

Cirqueira, D., Pinheiro, M., Braga, T., Jacob Jr, A., Reinhold, O., Alt, R., & Santana, Á. (2017).
Improving relationship management in universities with sentiment analysis and topic
modeling of social media channels: Learnings from ufpa. Proceedings of the International
Conference on Web Intelligence, 998–1005.

Colace, F., Santo, M. D., & Greco, L. (2014). Safe: A sentiment analysis framework for e-learning.
Int. J. Emerg. Technol. Learn., 9, 37–41. https://api.semanticscholar.org/CorpusID:
44914999

Cuzzocrea, A., De Maio, C., Fenza, G., Loia, V., & Parente, M. (2016). Olap analysis of mul-
tidimensional tweet streams for supporting advanced analytics. Proceedings of the 31st
annual ACM symposium on applied computing, 992–999.

88

https://api.semanticscholar.org/CorpusID:44914999
https://api.semanticscholar.org/CorpusID:44914999

Dalal, R., Safhath, I., Piryani, R., Kappara, D., & Singh, V. K. (2014). A lexicon pooled machine
learning classifier for opinion mining from course feedbacks. Intelligence and Security
Informatics. https://api.semanticscholar.org/CorpusID:42719205

Dehbozorgi, N., & Mohandoss, D. P. (2021). Aspect-based emotion analysis on speech for predicting
performance in collaborative learning. 2021 IEEE frontiers in education conference (FIE),
1–7.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805.

Dhanalakshmi, V., Bino, D., & Saravanan, A. M. (2016). Opinion mining from student feedback
data using supervised learning algorithms. 2016 3rd MEC international conference on big
data and smart city (ICBDSC), 1–5.

Dolianiti, F. S., Iakovakis, D., Dias, S. B., Hadjileontiadou, S. J., Diniz, J. A., Natsiou, G.,
Tsitouridou, M., Bamidis, P. D., & Hadjileontiadis, L. J. (2019). Sentiment analysis on
educational datasets: A comparative evaluation of commercial tools. Educational Journal
of the University of Patras UNESCO Chair.

Edalati, M., Imran, A. S., Kastrati, Z., & Daudpota, S. M. (2022). The potential of machine learning
algorithms for sentiment classification of students’ feedback on mooc. Intelligent Systems
and Applications: Proceedings of the 2021 Intelligent Systems Conference (IntelliSys)
Volume 3, 11–22.

Gallinucci, E., Golfarelli, M., & Rizzi, S. (2015). Advanced topic modeling for social business
intelligence. Information Systems, 53, 87–106.

Golfarelli, M. (2014). Social business intelligence: Olap applied to user generated contents. 2014
11th International Conference on e-Business (ICE-B), IS–11.

Golfarelli, M., Maio, D., & Rizzi, S. (1998). The dimensional fact model: A conceptual model for
data warehouses. International Journal of Cooperative Information Systems, 7(02n03),
215–247.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
Gottipati, S., Shankararaman, V., & Gan, S. (2017). A conceptual framework for analyzing students’

feedback. 2017 IEEE frontiers in education conference (FIE), 1–8.
Guilbault, M. (2016). Students as customers in higher education: Reframing the debate. Journal

of Marketing for Higher Education, 26(2), 132–142.
Han, P. (2014). A literature review on college choice and marketing strategies for recruitment.

Family and Consumer Sciences Research Journal, 43, 120–130. https://doi.org/10.1111/
FCSR.12091

Hawkins, D. M. (2004). The problem of overfitting. Journal of chemical information and computer
sciences, 44(1), 1–12.

He, P., Liu, X., Gao, J., & Chen, W. (2021). Deberta: Decoding-enhanced bert with disentangled
attention. International Conference on Learning Representations. https://openreview.net/
forum?id=XPZIaotutsD

Hemmatian, F., & Sohrabi, M. K. (2019). A survey on classification techniques for opinion
mining and sentiment analysis. Artificial Intelligence Review, 52(3), 1495–1545. https:
//doi.org/10.1007/s10462-017-9599-6

89

https://api.semanticscholar.org/CorpusID:42719205
https://doi.org/10.1111/FCSR.12091
https://doi.org/10.1111/FCSR.12091
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://doi.org/10.1007/s10462-017-9599-6
https://doi.org/10.1007/s10462-017-9599-6

Hemsley-Brown, J., & Oplatka, I. (2006). Universities in a competitive global marketplace: A
systematic review of the literature on higher education marketing. International Journal of
public sector management, 19(4), 316–338.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., Attariyan,
M., & Gelly, S. (2019). Parameter-efficient transfer learning for nlp. International conference
on machine learning, 2790–2799.

Hugging Face Inc. & deepset. (2023). Dbmdz/bert-base-german-cased: German bert model
[Accessed: 2024-06-15].

Hussain, S., Ayoub, M., Jilani, G., Yu, Y., Khan, A., Wahid, J. A., Butt, M. F. A., Yang, G.,
Moller, D. P., & Weiyan, H. (2022). Aspect2labels: A novelistic decision support system
for higher educational institutions by using multi-layer topic modelling approach. Expert
Systems with Applications, 209, 118119.

Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study. Intelligent
data analysis, 6(5), 429–449.

Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent dirichlet
allocation (lda) and topic modeling: Models, applications, a survey. Multimedia tools and
applications, 78, 15169–15211.

Jena, R. (2019). Sentiment mining in a collaborative learning environment: Capitalising on big
data. Behaviour & Information Technology, 38(9), 986–1001.

Johnes, J. (2018). University rankings: What do they really show? Scientometrics, 115(1), 585–606.
Kandhro, I. A., Ali, F., Uddin, M., Kehar, A., & Manickam, S. (2024). Exploring aspect-based

sentiment analysis: An in-depth review of current methods and prospects for advancement.
Knowledge and Information Systems. https://doi.org/10.1007/s10115-024-02104-8

Kastrati, Z., Imran, A. S., & Kurti, A. (2020). Weakly supervised framework for aspect-based
sentiment analysis on students’ reviews of moocs. IEEE Access, 8, 106799–106810.

Khder, M. A. (2021). Web scraping or web crawling: State of art, techniques, approaches and
application. International Journal of Advances in Soft Computing & Its Applications, 13(3).

Kimball, R., & Ross, M. (2011). The data warehouse toolkit: The complete guide to dimensional
modeling. John Wiley & Sons.

Kotler, P. (1977). From sales obsession to marketing effectiveness. Harvard business review, 55,
67–75.

Koufakou, A., Gosselin, J., & Guo, D. (2016). Using data mining to extract knowledge from student
evaluation comments in undergraduate courses. 2016 International Joint Conference on
Neural Networks (IJCNN), 3138–3142.

Kraiem, M. B., Feki, J., Khrouf, K., Ravat, F., & Teste, O. (2015). Modeling and olaping social
media: The case of twitter. Social Network Analysis and Mining, 5, 1–15.

Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions.
Progress in Artificial Intelligence, 5(4), 221–232.

Liddy, E. D. (2001). Natural language processing.
Ligthart, A., Catal, C., & Tekinerdogan, B. (2021). Systematic reviews in sentiment analysis: A

tertiary study. Artificial Intelligence Review, 1–57.
Liu, B. (2017). Many Facets of Sentiment Analysis. In E. Cambria, D. Das, S. Bandyopadhyay & A.

Feraco (Eds.), A Practical Guide to Sentiment Analysis (pp. 11–39). Springer International
Publishing. https://doi.org/10.1007/978-3-319-55394-8_2

90

https://doi.org/10.1007/s10115-024-02104-8
https://doi.org/10.1007/978-3-319-55394-8_2

Liu, B. (2022, May). Sentiment Analysis and Opinion Mining [Google-Books-ID: xYhyEAAAQBAJ].
Springer Nature.

Liu, Z., Liu, S., Liu, L., Sun, J., Peng, X., & Wang, T. (2016, March). 2016 sentiment recognition
of online course reviews using multi-swarm optimization-based selected features.

Ma, E. (2019). Nlp augmentation.
Melba Rosalind, J., & Suguna, S. (2022). Predicting students’ satisfaction towards online courses

using aspect-based sentiment analysis. International Conference on Computer, Communic-
ation, and Signal Processing, 20–35.

Min, B., Ross, H., Sulem, E., Veyseh, A. P. B., Nguyen, T. H., Sainz, O., Agirre, E., Heintz, I.,
& Roth, D. (2023). Recent advances in natural language processing via large pre-trained
language models: A survey. ACM Computing Surveys, 56(2), 1–40.

Moalla, I., Nabli, A., & Hammami, M. (2022). Data warehouse building to support opinion analysis
in social media. Social Network Analysis and Mining, 12(1), 123.

Moustafa, K. (2024). University rankings: Time to reconsider. BIOIMPACTS.
Nikolić, N., Grljević, O., & Kovačević, A. (2020). Aspect-based sentiment analysis of reviews in

the domain of higher education. The Electronic Library, 38(1), 44–64.
Olshavsky, R. W., & Spreng, R. A. (1995). Consumer satisfaction and students: Some pitfalls of

being customer driven. Journal of Consumer Satisfaction, Dissatisfaction and Complaining
Behavior, 8, 69–77.

Onan, A. (2021). Sentiment analysis on massive open online course evaluations: A text mining and
deep learning approach. Computer Applications in Engineering Education, 29(3), 572–589.

Otter, D. W., Medina, J. R., & Kalita, J. K. (2020). A survey of the usages of deep learning for
natural language processing. IEEE transactions on neural networks and learning systems,
32(2), 604–624.

Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10), 1345–1359.

Pitman, T. (2000). Perceptions of academics and students as customers: A survey of administrative
staff in higher education. Journal of Higher Education policy and management, 22(2),
165–175.

Pramod, D., Bharathi, S. V., & Raman, R. (2022). Faculty effectiveness prediction using machine
learning and text analytics. 2022 IEEE Technology and Engineering Management Conference
(TEMSCON EUROPE), 40–47.

Proisl, T., & Uhrig, P. (2016). SoMaJo: State-of-the-art tokenization for German web and social
media texts. In P. Cook, S. Evert, R. Schäfer & E. Stemle (Eds.), Proceedings of the 10th
Web as Corpus workshop (WAC-X) and the EmpiriST shared task (pp. 57–62). Association
for Computational Linguistics. https://doi.org/10.18653/v1/W16-2607

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019). Language models
are unsupervised multitask learners. OpenAI blog, 1(8), 9.

Ramponi, A., & Plank, B. (2020). Neural unsupervised domain adaptation in nlp—a survey. arXiv
preprint arXiv:2006.00632.

Reja, U., Manfreda, K. L., Hlebec, V., & Vehovar, V. (2003). Open-ended vs. close-ended questions
in web questionnaires. Developments in applied statistics, 19(1), 159–177.

91

https://doi.org/10.18653/v1/W16-2607

Roaring, B. F., Patacsil, F. F., & Parrone, J. M. (2022). Analyzing pangasinan state univer-
sity student’s faculty teaching performance rating using text mining technique. WSEAS
Transactions on Information Science and Applications, 19, 161–170.

Santos, C. L., Rita, P., & Guerreiro, J. (2018). Improving international attractiveness of higher
education institutions based on text mining and sentiment analysis. International Journal
of Educational Management, 32(3), 431–447.

Scaffidi, C. (2016). Mining online forums for valuable contributions. 2016 11th Iberian Conference
on Information Systems and Technologies (CISTI), 1–6.

Schurig, T., Zambach, S., Mukkamala, R. R., & Petry, M. (2022). Aspect-based sentiment analysis
for university teaching analytics.

Sennrich, R., Haddow, B., & Birch, A. (2015). Improving neural machine translation models with
monolingual data. arXiv preprint arXiv:1511.06709.

Shaik, T., Tao, X., Dann, C., Xie, H., Li, Y., & Galligan, L. (2023). Sentiment analysis and opinion
mining on educational data: A survey. Natural Language Processing Journal, 2, 100003.

Shorten, C., Khoshgoftaar, T. M., & Furht, B. (2021). Text data augmentation for deep learning.
Journal of big Data, 8(1), 101.

Siegel, M., & Alexa, M. (2020). Sentiment-Analyse deutschsprachiger Meinungsäußerungen:
Grundlagen, Methoden und praktische Umsetzung. Springer Fachmedien. https://doi.org/
10.1007/978-3-658-29699-5

Sievert, C., & Shirley, K. (2014). Ldavis: A method for visualizing and interpreting topics.
Proceedings of the workshop on interactive language learning, visualization, and interfaces,
63–70.

Sindhu, I., Daudpota, S. M., Badar, K., Bakhtyar, M., Baber, J., & Nurunnabi, M. (2019). Aspect-
based opinion mining on student’s feedback for faculty teaching performance evaluation.
IEEE Access, 7, 108729–108741.

StackOverflow. (2015). Stratified train/test split in scikit-learn [Accessed: 29.04.2024]. https:
//stackoverflow.com/questions/29438265/stratified-train-test-split-in-scikit-learn

StackOverflow. (2016a). How to split data into 3 sets (train, validation, and test)? [Accessed:
15.04.2024]. https://stackoverflow.com/questions/38250710/how-to-split-data-into-3-
sets-train-validation-and-test

StackOverflow. (2016b). Pandas get_dummies [Accessed: 29.04.2024]. https://stackoverflow.
com/questions/36285155/pandas-get-dummies

Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019). How to fine-tune bert for text classification? Chinese
computational linguistics: 18th China national conference, CCL 2019, Kunming, China,
October 18–20, 2019, proceedings 18, 194–206.

Tanaka, F. H. K. D. S., & Aranha, C. (2019). Data augmentation using gans. arXiv preprint
arXiv:1904.09135.

The Artificial Guy. (2024). Multi-label text classification using bert (pytorch) [Accessed: 10.05.2024].
https://github.com/theartificialguy/NLP-with-Deep-Learning/blob/master/BERT/
Multi % 20Label % 20Text % 20Classification % 20using % 20BERT % 20PyTorch / bert _
multilabel_pytorch_standard.ipynb

Vaisman, A., & Zimányi, E. (2014). Data warehouse systems. Data-Centric Systems and Applica-
tions, 9.

92

https://doi.org/10.1007/978-3-658-29699-5
https://doi.org/10.1007/978-3-658-29699-5
https://stackoverflow.com/questions/29438265/stratified-train-test-split-in-scikit-learn
https://stackoverflow.com/questions/29438265/stratified-train-test-split-in-scikit-learn
https://stackoverflow.com/questions/38250710/how-to-split-data-into-3-sets-train-validation-and-test
https://stackoverflow.com/questions/38250710/how-to-split-data-into-3-sets-train-validation-and-test
https://stackoverflow.com/questions/36285155/pandas-get-dummies
https://stackoverflow.com/questions/36285155/pandas-get-dummies
https://github.com/theartificialguy/NLP-with-Deep-Learning/blob/master/BERT/Multi%20Label%20Text%20Classification%20using%20BERT%20PyTorch/bert_multilabel_pytorch_standard.ipynb
https://github.com/theartificialguy/NLP-with-Deep-Learning/blob/master/BERT/Multi%20Label%20Text%20Classification%20using%20BERT%20PyTorch/bert_multilabel_pytorch_standard.ipynb
https://github.com/theartificialguy/NLP-with-Deep-Learning/blob/master/BERT/Multi%20Label%20Text%20Classification%20using%20BERT%20PyTorch/bert_multilabel_pytorch_standard.ipynb

Wang, S., Li, Z., Chao, W., & Cao, Q. (2012). Applying adaptive over-sampling technique based
on data density and cost-sensitive svm to imbalanced learning. The 2012 international
joint conference on neural networks (IJCNN), 1–8.

Wirth, R., & Hipp, J. (2000). Crisp-dm: Towards a standard process model for data mining.
Proceedings of the 4th international conference on the practical applications of knowledge
discovery and data mining, 1, 29–39.

Yang, H. (2022). ABSADatasets [Accessed: 2024-06-13].
Yang, H., Zhang, C., & Li, K. (2023). Pyabsa: A modularized framework for reproducible aspect-

based sentiment analysis. Proceedings of the 32nd ACM international conference on
information and knowledge management, 5117–5122.

Yang, Y., Malaviya, C., Fernandez, J., Swayamdipta, S., Bras, R. L., Wang, J.-P., Bhagavatula, C.,
Choi, Y., & Downey, D. (2020). Generative data augmentation for commonsense reasoning.
arXiv preprint arXiv:2004.11546.

Ying, X. (2019). An overview of overfitting and its solutions. Journal of physics: Conference series,
1168, 022022.

Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1253.

Zhang, W., Li, X., Deng, Y., Bing, L., & Lam, W. (2023). A survey on aspect-based sentiment
analysis: Tasks, methods, and challenges. IEEE Transactions on Knowledge and Data
Engineering, 35(11), 11019–11038. https://doi.org/10.1109/TKDE.2022.3230975

Zheng, Y. (2024). Pyabsa: Open framework for aspect-based sentiment analysis [Accessed:
22.04.2024]. https://github.com/yangheng95/PyABSA/tree/v2/pyabsa

93

https://doi.org/10.1109/TKDE.2022.3230975
https://github.com/yangheng95/PyABSA/tree/v2/pyabsa

	Introduction
	Background
	Data Warehousing and OLAP
	Aspect-Based Sentiment Analysis
	Related Work

	System Design
	Training Process
	Data Warehouse System Architecture

	Web Scraping of Student Feedback
	Business Requirements
	Data Selection
	Web Scraping Process

	Development of a Model for Aspect-based Sentiment Analysis
	PyABSA – a Framework for Reproducible ABSA
	Aspect Category Selection
	Data Preprocessing
	Modeling
	Model Evaluation
	Building an Aspect Category Classifier

	Sentiment Cube
	Conceptual Model
	Logical Implementation
	Data Integration
	Querying the Sentiment Cube

	Conclusion
	Bibliography

