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  I 

KURZFASSUNG 

Knowledge Graph OLAP kombiniert das Konzept von Knowledge Graphs (KG) mit einer multidimensi-

onalen Sicht auf Daten, wie sie im Bereich des Online Analytical Processing (OLAP) angewandt wird. 

KG-OLAP-Würfel enthalten Wissen in Form von RDF-Tripel, welche durch hierarchisch strukturierte 

Dimensionen definiert werden und kontextabhängige Wissensgraphen bilden. Das Modell ermöglicht 

die Anwendung von kontextuellen und Graph-spezifischen Operationen auf den Daten für verschie-

dene Arten von Analysen. Eine SPARQL-basierte Implementierung erwies sich jedoch als nicht geeig-

net für große Datenmengen, was den Bedarf für eine skalierbare Implementierung unterstreicht. Ziel 

dieser Arbeit ist es daher, eine Implementierung bereitzustellen, die für große Datenmengen im Rah-

men von KG-OLAP skalierbar ist und die erforderlichen Graph Operationen auf kontextualisiertem Wis-

sen in Form von RDF-Daten durchführen kann. Folglich wird eine prototypische Implementierung unter 

Verwendung des Frameworks Apache Spark für verteilte Datenverarbeitung vorgeschlagen, die KG-

OLAP-spezifische Graph Operationen auf RDF-Quadrupeln ausführt. Genauer gesagt wird das auf 

Spark aufbauende Graph Verarbeitungsframework GraphX verwendet. So werden RDF-Quadrupel auf 

die Graphendarstellung von Apache Spark GraphX abgebildet. Die Java-Implementierung ermöglicht 

dann die Konstruktion des Basisgraphen aus den RDF-Quelldaten, sowie die Durchführung folgender 

KG-OLAP-Graph Operationen auf dem Basisgraphen: individual-generating abstraction, triple-genera-

ting abstraction, value-generating abstraction, reification und pivot. Die Funktionalität und Anwendbar-

keit des Spark-basierten Prototyps wird in Experimenten mit einem bereitgestellten großen Bench-

mark-Datensatz mit Daten aus dem Bereich Flugverkehrsmanagement (engl. air traffic management) 

demonstriert. 
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ABSTRACT 

Knowledge Graph OLAP combines the concept of knowledge graphs (KG) and a multidimensional view 

on data as employed in online analytical processing (OLAP). KG-OLAP cubes contain knowledge in 

the form of RDF triples that are context-dependent, defined through hierarchically structured dimen-

sions creating contextualized knowledge graphs. The model enables contextual and graph operations 

on the data for various kinds of analyses. A SPARQL-based implementation has proven not to be 

applicable for big volumes of data, accentuating the need for a scalable implementation. This thesis 

therefore aims at providing an implementation that is scalable for large amounts of data within the KG-

OLAP setting and can perform the required graph operations on contextualized knowledge in the form 

of RDF data. Consequently, a prototypical implementation using the distributed processing framework 

Apache Spark is proposed that executes KG-OLAP graph operations on RDF quadruples. More spe-

cifically, the graph processing framework GraphX built on top of Spark is used. Thus, RDF quadruples 

are mapped to the Apache Spark GraphX graph representation. The Java implementation then allows 

for the construction of the initial graph from the RDF source data as well as for performing the following 

KG-OLAP graph operations on the base graph: individual-generating abstraction, triple-generating ab-

straction, value-generating abstraction, reification and pivot. The functionality and applicability of the 

Spark-based prototype is demonstrated in experiments on a provided large benchmark dataset con-

taining data regarding air traffic management. 
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1. Introduction 

The concept of Knowledge Graph OLAP (KG-OLAP) was introduced by Schuetz et al. (2021). 

Their work combines both knowledge graphs and online analytical processing (OLAP) opera-

tions into a framework. Hereby, a multidimensional model – a cube – is constructed, containing 

hierarchically structured contexts comprising data in different levels of granularity. Each cell of 

the OLAP cube represents a context defined through certain dimensional levels. The 

knowledge contained in those cells is then represented in the form of RDF triples which can 

either be more general or more specific knowledge with respect to the scope depending on 

their context’s granularity. With this system in place, operations like roll-up, abstraction, merge 

and slice-and-dice can then be performed to transform and analyse the data. Usually, the first 

choice for working with RDF data is using SPARQL as query language. Schuetz et al. (2021) 

also tested their concept on a SPARQL-based implementation which led to performance prob-

lems when having to deal with growing amounts of data. 

Due to the shortcomings of the SPARQL-based implementation and the rising importance of 

big data as a topic to be aware of when designing data processing systems, there is a need 

for an implementation of the KG-OLAP concept that is able to process large volumes of data 

in acceptable timespans. With growing amounts of data traditionally used technologies and 

frameworks are often no longer capable to handle the workload (Jacobs, 2009). Therefore, 

new, dedicated big data frameworks are being developed and used more and more, relying on 

optimizations such as distributed processing to keep up with the demand of staying efficient. 

A popular framework for big data processing is Apache Spark which was chosen for the im-

plementation of the prototype described within this thesis. Spark is a distributed processing 

framework that aims to stay performant even when having to work with large amounts of data. 

KG-OLAP operations like pivot, reification, and abstraction were therefore implemented using 

Apache Spark and experiments conducted to determine Spark’s applicability and efficiency for 

the KG-OLAP use case. The source code for the prototype and benchmark experiment results 

can be viewed at http://files.dke.uni-linz.ac.at/publications/mt2301/implementation.zip. 

This thesis aims to investigate whether Apache Spark is suitable for processing contextualized 

knowledge graphs and performing KG-OLAP operations on the data. Within that, also the ap-

plicability of Spark for RDF data in general is investigated. Furthermore, the performance of 

the proposed KG-OLAP implementation is examined. 

Based on the stated problem and resulting aims of this thesis, the following research questions 

were formulated to be answered: 

• Can Apache Spark (GraphX) be used to process RDF data and perform KG-OLAP 

query operations? 

• What is the performance of a KG-OLAP implementation using Apache Spark 

(GraphX)? 
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The first step towards answering the stated research questions was exploration of the state of 

the art of the field and related work. In particular, research on the basic concepts and technol-

ogies within this thesis relevant for the implementation of KG-OLAP in Apache Spark was con-

ducted. Subsequently, a literature review was performed to find out whether there are already 

existing similar approaches that process RDF data or contextualized knowledge graphs with 

the help of Apache Spark or Apache Spark GraphX. 

Following the research on the state of the art and related work, a prototype was implemented 

in Java using the Apache Spark GraphX framework. The implementation processes RDF data 

by performing KG-OLAP operations and transformations on the data using methods provided 

by Spark libraries. The resulting prototype was then used to transform the same data used in 

the evaluation of the SPARQL-based implementation by Schuetz et al. (2021). The results of 

those experiments allow for insights on whether the approach is applicable and feasible as an 

implementation of the KG-OLAP concept. 

In creating the prototype, certain assumptions were made and the scope was constrained to 

certain aspects of the original concept by Schuetz et al. (2021). First, RDFS or OWL reasoning 

was not considered within the implementation described in this thesis. Reasoning would have 

to take place before loading the RDF triplets into the repository where graph operations are 

then performed. Another assumption made is that the data loaded is already cleaned, contains 

valid RDF and no inconsistencies with respect to any RDFS expressions are present. 

The focus of the implementation was on graph operations whereas merging and slice-and-

dice-operations were out of scope of the prototype described within this thesis. Merge and 

slice-and-dice operations may be performed before the data is then loaded into the Spark 

GraphX graph. Those operations could, for example, be executed using a data lakehouse for 

KG-OLAP like in Haunschmied (2022). The potential Spark implementation and algorithmic 

structure of the merge and slice-and-dice operations is, however, still sketched within this the-

sis. The resulting implementation and performance experiments consider the pivot, reification, 

triple-generating abstraction, individual-generating abstraction and value-generating abstrac-

tion operations. 

The remainder of this thesis is structured as follows. Chapter 2 presents background infor-

mation on the state of the art of relevant technologies and concepts. Chapter 3 presents related 

work using Apache Spark GraphX, RDF data, OLAP and distributed processing of data in 

general. Afterward, in Chapter 4, the data and data model used for the representation in 

Apache Spark GraphX within this thesis are explained. The data model especially focusses on 

the mapping between the source RDF data and the GraphX graph. Then, Chapter 5 presents 

all KG-OLAP query operations implemented. Next, this thesis' Java implementation is de-

scribed in more technical terms before then in Chapter 6 the experimental setup and results of 

applying the implemented transformations and query operations described within this thesis 

are shown. Finally, in Chapter 7, findings of this thesis are discussed, and the research ques-

tions are answered. Furthermore, potential future work, regarding this thesis’ prototype and 

the KG-OLAP implementation is outlined. 
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2. Background 

This section of the thesis deals with the fundamentals needed for implementing the Spark KG-

OLAP prototype. Hereby the models and concepts that are used such as OLAP, knowledge 

graphs and so on are first described as well as KG-OLAP itself. Then, background information 

about parallel and big data processing in general is given as well as an introduction of the used 

framework Apache Spark. 

2.1. Online Analytical Processing (OLAP) 

The abbreviation OLAP stands for online analytical processing which is a paradigm especially 

designed for analytical queries. This stands in contrast to the concept of OLTP (online trans-

action processing) which is concerned with operational transactions rather than large analyses 

on data. 

OLAP systems are usually comprised of dimensions and facts that define a multidimensional 

model – a data cube. Hereby dimensions are organized in hierarchies with certain numbers of 

levels. The dimensions and their levels control in which granularity or detail one can view the 

measures (the facts) that are contained within the cells of the cube. Those facts are repre-

sented by numeric values. Depending on the level that the data should be viewed at, the fact 

values are aggregated or rolled-up (for example by counting or summing) to a certain hierarchy 

level of each cube dimension. Additionally, operations such as slicing or dicing the cube can 

be done for reducing the amount data to be analysed beforehand. For further details and pre-

cise definitions of data warehousing and OLAP itself it is referred to (Vaisman & Zimányi, 

2014). 

A very simple use case for an OLAP system and operations could for example be sales data, 

which is also used in the work of Chaudhuri & Dayal (1997). Hereby a numeric measure rep-

resenting the number of sales of a company could be used as a measure. Dimensions for this 

fact could then be the location (consisting of a hierarchy containing cities and countries) and 

the time period (consisting of a hierarchy of date, month and year). Now all dimensions to-

gether determine the measure, meaning that every combination of values of the dimension 

leads to a different aggregation of the number of sales. For example, there is one exact total 

number of sales for the 7th of August 2021 at Linz where the value for the time dimension is 

the 7th of August at the date level and the value for the location dimension is Linz at the city 

level. When then wanting to look at sales at higher levels there is for example also another 

exact total number of sales for the month of August in Austria and so on. This would be a roll-

up from the city to country level and the date to month level. With this system in place, numer-

ous different kinds of analysis are possible. 
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2.2. (Contextualized) Knowledge Graphs 

The second fundamental concept used within KG-OLAP and necessary to understand for the 

implementation of this thesis’ data processing are knowledge graphs. 

A lot of research has been done in recent years on knowledge graphs and how to represent 

knowledge using them, especially in the context of the semantic web. This led to the formation 

of a multitude of different definitions and descriptions of the term. 

Knowledge graphs are for example being described as networks containing entities and their 

types and properties as well as relations between those entities as in work by Krötzsch & 

Weikum (2016) or in other terms as “a set of interconnected typed entities and their attributes” 

(Gomez-Perez et al., 2017). 

As stated by Hogan et al. (2021) the advantage of representing knowledge as a graph rather 

than a table in a relational database is that graphs provide an abstraction that can be used 

independently of the domain. This independence stems from the fact that graphs rely on simple 

vertices and connections (relationships) between those vertices, which is a natural way of de-

scribing data in a lot of different fields. Furthermore, there is no fixed schema needed which 

increases flexibility when the knowledge graph is extended. 

Another key idea and extension to knowledge graphs used in KG-OLAP concerning RDF data 

representation is the contextualization of graphs. Contextualization here is described as addi-

tionally adding meta information to the knowledge graph. Such metadata could for example be 

time or location as it is used by Schuetz et al. (2021). This idea of contextualization is for 

instance used in the Contextualized Knowledge Repository (CKR) as described by Serafini & 

Homola (2012). In CKR, contexts are essentially considered a box that contain different state-

ments which are valid for a certain collection of dimensions. Therefore, there are two parts that 

the knowledge can be split into. The first part is knowledge about objects (which are the state-

ments within the box), the second part is the metadata or meta-knowledge about the box itself 

(which is represented by the dimensions). Since the dimensions themselves are hierarchically 

structured, this also means that some contexts contain statements that are more general, and 

others contain more specific knowledge creating coverage relations between the contexts and 

therefore between the knowledge they are comprised of. 

When using GraphX it is also necessary to mention a specific form of graphs called property 

graph. When modelling such a graph, the nodes or vertices are regarded as entities, edges 

represent the relationship between those entities and properties are used to describe a certain 

feature of this relationship or the entities themselves. So it could be said that a property graph 

is “a labelled multigraph where both vertices and edges may contain pairs of the form property–

value” (Angles, 2018). This means that all properties that are associated with the edges or the 

vertices are key–value pairs where values can be of any data type or structure. Moreover, all 

entities may have one or more labels associated with them as described by Tomaszuk (2016). 

In later sections concerning the implementation of this thesis’ graph processing, the property 
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graph concept is explained again in more detail and specifically how it is implemented and 

used by Apache Spark and GraphX. 

2.3. Knowledge Graph OLAP 

Now combining the mentioned concepts of OLAP and contextualized knowledge graphs, the 

key term KG-OLAP of this thesis will be explained. 

Knowledge Graph OLAP (KG-OLAP) as introduced by Schuetz et al. (2021) is a concept con-

taining a multidimensional model as well as query operations that can be used to analyse data 

represented as knowledge graphs. The model – the KG-OLAP cubes – contains knowledge 

that is ordered into a hierarchy by using hierarchically structured contexts similar to the CKR 

concept by Serafini & Homola (2012). Hereby, every cell in this KG-OLAP cube represents one 

of those contexts. Within each context (the cell) data is contained in the form of RDF triples. 

Those triples replace the usually used numeric measures in traditional OLAP cubes in data 

warehousing. The hierarchical ordering makes it possible to include knowledge that is more 

specific but also knowledge that is more general. 

There are two distinct kinds of operations and queries that can be performed on the KG-OLAP 

cube as stated in the framework definition. On the one hand, there are contextualized query 

operations, on the other hand, there are also graph operations. The most common examples 

for such query operations are merge and abstract. The merge operation, which is a contextu-

alized operation, takes knowledge from different cells – or contexts – and merges them into 

one. An abstraction operation, which is a graph operation, then takes individuals from within 

the merged contexts of the cube and replaces them with more abstract ones generating a more 

general view on the knowledge represented. Here, there are different ways of doing so avail-

able which will be described later. 

When compared to traditional OLAP, the key difference in KG-OLAP is that knowledge or facts 

are not described by using numeric values but rather RDF triples. Those triples and the 

knowledge they represent is then valid in the context that is characterized by the cell and its 

dimensional values. 

For more details on KG-OLAP, formal definitions of the concepts and query operations it is 

referred to the publication by Schuetz et al. (2021). 
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2.4. RDF and SPARQL 

As in this work and the KG-OLAP concept RDF is used to represent knowledge contained in 

the KG-OLAP cube cells, in this section, a brief overview of the Resource Description Frame-

work (RDF) will be given. Furthermore, the mostly used query language for RDF data – 

SPARQL – will be described shortly, since the KG-OLAP implementation by Schuetz et al. 

(2021) is based on SPARQL. 

As described in the work of Agathangelos et al. (2018), in RDF, data and therefore knowledge 

is represented as triples. Those triples consist of a subject, a predicate and an object. The 

predicate indicates the relation between the subject and the object. Hereby the basic elements 

within the data can be represented as URIs (or IRIs) or literals. Tomaszuk (2016) describes 

URIs or IRIs as identifiers that are unique and may be used globally to identify a certain re-

source. Literals are lexical values such as Strings or numbers. 

In addition to RDF there is RDFS (Resource Description Framework Schema) which – accord-

ing to the description used by Agathangelos et al. (2018) – adds semantics to the RDF data. 

The framework includes rules which help to generate new triples that are implicitly given 

through the already existing, explicitly given information. A collection of triples and the added 

semantics can then be represented as a directed graph. Nodes in this graph are the subjects 

and the objects. The labelled edges between the nodes represent the predicates – the rela-

tionships – between them as already explained. 

Querying RDF data is also described by Agathangelos et al. (2018) in their work. Whenever 

RDF data is to be queried mostly the language SPARQL is used as recommended by the 

World Wide Web Consortium W3C (W3C, 2013). SPARQL is a graph matching language 

where a query consists of triple patterns. Those patterns are essentially RDF triples including 

subjects, objects and/or predicates that may be either a variable or a concrete literal. Simply 

put, when querying a certain graph or collection of graphs those patterns are compared against 

the triples in the dataset. Whenever a triple contained in the graph matches the pattern, those 

statements are returned as the query result. 

More specifically, according to Agathangelos et al. (2018), the “SPARQL query” itself “consists 

of three parts: pattern matching, solution modifiers and output” (Agathangelos et al., 2018). 

Pattern matching may – additionally to the triple pattern itself – include optional parts, unions 

of multiple patterns, nesting or filtering for retrieving matching patterns in the graph data. So-

lution modifiers then may modify the computed query output by applying operations like dis-

tinct, order, limit and so on. As an output the query can either return a yes-or-no-answer, a 

certain number of values that match the pattern or possibly a calculation of them. A query may 

also result in the construction of new triples that were not present in the graph before, or it may 

return a description of a resource. 
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2.5. Big Data Processing 

Since the implementation approach in this paper is focused on processing large amounts of 

data, the term big data and concepts within big data processing are now explained briefly in 

this section. 

The term big data – as it is used nowadays – has first been mentioned in a published article in 

1997 by Cox & Ellsworth where the term was used to described data that is large in size and 

challenges main memory, local and remote disk size. Therefore, big data is generally defined 

as data which is of such size that it cannot be processed in an efficient manner anymore by 

databases and technologies that are typically used (Jacobs, 2009). 

Even as early as 2009 Jacobs already suggested using parallel processing when trying to work 

with large amounts of data. Whenever data is processed in parallel and a distributed way – 

meaning multiple compute nodes only process part of the whole dataset – it is important that 

communication required between the partitions or nodes is kept to a minimum. The more in-

teraction between partitions needed, the worse the application may perform according to the 

author. 

In the field of big data, often NoSQL databases are mentioned alongside parallel processing 

as discussed in a paper by Casado & Younas from 2015. As described by the authors, such 

databases are designed to offer horizontal scalability by being designed to be able to distribute 

and partition data and tasks. Some of those NoSQL concepts include for example “key–value 

stores, document databases, column-oriented databases” as well as “graph databases” 

(Casado & Younas, 2015). Concerning data processing, Casado & Younas (2015) also men-

tion different approaches including Hive, Pig, Cascading, Spark and so on. Those are specially 

designed to handle big data. 

All in all, literature around big data shows that there is a lot of research as well as implemen-

tations done in the field of distributed and parallel processing and different approaches might 

lead to favourable results. Some of those proposed frameworks and concepts are now de-

scribed briefly. 

Hadoop 

In literature when researching specific solutions and technologies working with big data, one 

often comes across Hadoop. Apache Hadoop – as described by Bhosale & Gadekar (2014) – 

is a framework that allows data to be processed in a distributed way. It was originally built upon 

the MapReduce paradigm developed by Google. The Hadoop ecosystem contains four main 

parts with the help of which parallel and distributed data processing within a Hadoop cluster 

can be achieved (IBM Cloud Education, 2016). Those four parts are the HDFS (Hadoop Dis-

tributed File System), YARN (Yet Another Resource Negotiator), the previously mentioned Ha-

doop MapReduce and Hadoop Core containing necessary libraries that are needed. 

As described by Bhosale & Gadekar (2014), HDFS is a storage system where data of large 

quantities can be stored in a fault tolerant way. As Hadoop works with distributed processes, 
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it creates clusters which the data is then allocated to after having been broken up into distinct 

parts. The data is also usually replicated among more than one node, thus ensuring fault tol-

erance. Whenever one part of the cluster fails, there are other machines within the cluster that 

still contain the lost data. Those nodes then can keep working and therefore no interruptions 

of the data processing task due to failures of other nodes in the cluster occur. 

Another core concept within the Hadoop ecosystem already mentioned is MapReduce upon 

which it originally was built. MapReduce is an engine concerned with the processing of data 

that has been distributed or split up and can therefore be worked on in parallel as illustrated 

by Bhosale & Gadekar (2014). Simply put, the Map part of MapReduce transforms key–value 

pairs of data into another set of key–value pairs. The Reduce part is a task that then merges 

the generated mapped values that belong to the same key and applies a certain function. The 

output of MapReduce can then for example again be written back into a HDFS. 

YARN, as another core component of the Hadoop ecosystem is used as a scheduler and man-

ages resources across the used Hadoop cluster as described by IBM Cloud Education (2016). 

With the help of YARN, it can be assured that CPU and memory are allocated accordingly 

within the cluster between all nodes. 

Hadoop vs. Spark 

Closely linked to Hadoop one also encounters Apache Spark quite frequently in literature. 

Spark was developed to increase performance and speed of Hadoop. The framework is there-

fore suitable to work with Hadoop data and may be run on a Hadoop cluster using YARN. 

However, it is completely independent of the Hadoop system. This independence stems from 

the fact that Spark may also use its own cluster management and does not rely on any parts 

of Hadoop’s ecosystem. Spark may use Hadoop’s HDFS as a storage mechanism – if desired. 

However, when running Spark on a cluster using a different shared file system, Spark may be 

used in complete standalone mode as described in Apache Spark FAQ (2023). 

Apache Spark was developed to be able to work with various kinds of operations and tasks 

including for example batch processing, iterative or interactive algorithms and queries or also 

real-time and streaming data or graph processing. Using Spark therefore may potentially solve 

problems that Hadoop faces with iterative and interactive processes according to Yang et al. 

(2016) since Hadoop is not optimized especially for iterative tasks. 

A key difference between the two frameworks – Hadoop and Spark – as illustrated by Hong et 

al. (2017) is that Spark uses RDDs as its data abstraction model which will be explained in 

more detail later. In short, the data stored in RDDs can be kept in memory by Spark and directly 

reused. There is no need to store intermediate results which may improve overall performance. 

Hadoop and other systems that are based on MapReduce need to store data to disk after 

every processing step thereby increasing in- and output operations and thus runtime. Espe-

cially whenever the same data is used multiple times within a process and tasks are memory-

bound, those performance advantages are prevalent according to Hong et al. (2017). 



 

  15 

Another paper by Hazarika et al. (2017) also conducted experiments to look into performance 

differences between Hadoop and Spark. They compared Spark and Hadoop on both iterative 

and normal queries (logistic regression and word count) where they observed a significant 

difference between Spark and Hadoop when looking at performance outcome. Spark seems 

to be performing better in both kinds of algorithms within their experiments. One reason that 

these results might have been observed – according to the authors – is again Spark’s in-

memory storage feature. However, since memory is of course restricted to a certain amount, 

performance might stagnate or deteriorate when the number of iterations within a process is 

increased. Then Spark’s memory-related benefits may be mitigated. All in all, the authors con-

clude that especially for a small number of iterations within an algorithm Spark outperforms 

Hadoop which, however, might vary depending on tasks and applications. 

Parallel and Distributed RDF Systems 

As it is the main goal to use a parallel, distributed system to process large amounts of data in 

general but especially for RDF data, distributed systems that are particularly concerned with 

RDF were researched in literature and are being elaborated on briefly in the following section. 

Schätzle, Przyjaciel-Zablocki, Skilevic, et al. (2016) conducted research in the field of distrib-

uted RDF systems and based their own attempt to process RDF data on their findings. They 

first listed several standalone approaches for distributed systems which include for example 

Virtuoso Cluster, 4store, YARS2 and Clustered TDB which all extend different centralized sys-

tems into distributed ones. Another system mentioned is TriAD which uses asynchronous mes-

sage passing for RDF graphs and summarisation while distributing RDF triples on different 

nodes within a cluster by horizontally partitioning them. METIS partitions input RDF data and 

similarly creates a summarized graph. However, the authors argue that such centralized par-

titioning strategies used in the stated examples are often not as scalable for large amounts of 

data. 

Additionally, the authors Schätzle, Przyjaciel-Zablocki, Skilevic, et al. (2016) analysed some 

federation attempts of distributed systems using RDF stores deployed on multiple nodes. Here, 

the main idea is that most of the data processing is performed on the specific nodes where the 

data is distributed to. Then, only if required, the complete dataset is brought back together and 

merged again, thus combining the nodes. Systems following this approach mentioned are for 

example Partout, SemStore or DREAM. 

The third part of the work by Schätzle, Przyjaciel-Zablocki, Skilevic, et al. (2016) is an analysis 

of implementations within cloud infrastructures. Cloud systems often use resources that are 

designed specifically for big data. Hadoop and especially the already described Hadoop Dis-

tributed File System is used on those cloud platforms frequently. Systems that make use of 

the scalability in the cloud are for example SHARD, PigSPARQL, Rya, H2RDF+ or Sempala. 

This short summarization regarding distributed RDF data system shows that there are many 

projects that aim to process large volumes of data and also specifically big RDF data in parallel 

using decentralized storage systems to try and increase performance. They however often 

focus primarily on storage systems. Since in this thesis the main focus is on the processing of 
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big RDF data, however, and not necessarily on storing the data, it was further aimed to look at 

processing technologies and on how they work with big RDF graphs. Therefore, the processing 

framework Apache Spark was considered and analysed in even more detail in order to find out 

whether it is suitable for the tasks included in KG-OLAP query processing. 

2.6. Apache Spark 

Apache Spark was developed at the UC Berkeley AMPLab in 2009 by Matei Zaharia (Zaharia 

et al., 2010). The research project was then open sourced in 2010 with increasing interest 

illustrated by several papers and an increasing community. Spark was then donated to the 

Apache software foundation which took place in 2013 as stated in Apache Spark History 

(2023). 

Spark is a processing engine that enables a user to perform data operations in a distributed 

manner. It is – according to Yang et al. (2016) – especially designed for iterative and interactive 

algorithms but can nevertheless be used for other use cases such as processing of graph data. 

The authors claim that Spark is often the chosen framework when distributed computing of big 

data is required in different fields. Since Spark was built upon Hadoop it also includes any 

advantages that might come with that. Further features of Spark will now be briefly illustrated 

in the next section. 

2.6.1. Spark Features 

The first feature and advantage of Spark often mentioned is its speed. IBM (IBM Cloud Edu-

cation, 2016) for example claim that Spark runs one hundred times faster than Hadoop when 

it is run in memory. The increase in speed is made possible through the reduction in read and 

write operations to and from the disk that are necessary for the job execution as already men-

tioned. The speed advantage hereby depends, however, on the task at hand. 

The described reduction of read and write operations is also linked to Spark making use of 

RDDs – Resilient Distributed Datasets – as its way of storing and also processing data. In 

short, Yang et al. (2016) describe RDDs as objects that can be viewed as a “read-only collec-

tion of data” that is partitioned in a certain way. When transforming RDDs the transformation’s 

output – also referred to as intermediate result – can be cached by Spark which leads to less 

write operations to disk. 

Another important feature of Spark is that in order to ensure fault tolerance, Spark does not 

replicate data on multiple nodes on the cluster as a lot of other frameworks might do according 

to Yang et al. (2016). Instead, Spark simply saves the complete data lineage – the steps that 

led from one RDD to another – making it possible to recompute RDDs if they get lost in the 

process or if a task fails. 

As already mentioned, Spark provides methods for different types of tasks including for exam-

ple batch or streaming data and SQL querying but even offers libraries and algorithms for 

machine learning and graph processing operations (IBM Cloud Education, 2016). This makes 

Spark a broadly usable framework that can be used in a variety of settings. 
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Another advantage of Spark is its flexibility. First, Spark code can be written in different pro-

gramming languages including Java, Scala, Python and R where APIs are provided. Second, 

Spark may be deployed as a standalone application, but may also be run on Amazon EC2 or 

even locally as described in Apache Spark FAQ (2016). 

With all those characteristics illustrated, Spark has the potential of performing well with the 

RDF data that must be processed in the KG-OLAP setting. For the prototype described within 

this thesis especially the advantage of Spark’s speed was hereby considered when choosing 

it. Moreover, the easy-to-use library that was available in Java and the fact that the setup of 

the system to run the experiments was very easy were arguments in favour of Spark for the 

tasks involved in KG-OLAP querying and transformations. 

2.6.2. Spark Architecture 

Since it has now been established that Apache Spark can be considered a promising frame-

work for implementing KG-OLAP query operations, some basic understanding of how Spark 

works is needed. The structure and certain specific Spark terminology is therefore illustrated 

briefly in the following section. The explanations are mainly based on Karau & Warren (2017). 

Every Spark program in general consists of a hierarchy of five different layers. Within this hier-

archy there is the application itself, jobs, stages, tasks and operations. The application is the 

entry point consisting of one or more jobs. Whenever there is a SparkContext that is created 

within Spark code and run in a program, the application is launched. This SparkContext can 

be thought of as several Spark configurations that determine different characteristics of the 

associated driver and executors that are involved in running the program. More details about 

drivers, executors and Spark scheduling will not be discussed here but can be found in Karau 

& Warren (2017). 

The number of jobs within an application depends on the actions that should be performed 

during the processing of data. Whenever jobs are triggered by their corresponding actions, 

Spark returns an intermediate or end result of a process to the driver. Then a subsequent job 

might be triggered by the next action. The jobs themselves may then be divided into stages. 

Those stages consist of tasks requiring a number of operations to be executed as described 

and illustrated by Zhang et al. (2018).  
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The different levels and Spark structure are shown in Figure 1 and are then explained in more 

detail in the next sections. 

Figure 1: Spark Architecture adapted from (Zhang et al., 2018) 

 

Jobs and Stages 

In Spark, every job performed relates to an action. Actions are called by the driver of an appli-

cation implemented with Spark. Karau & Warren (2017) describe a job as “something that 

brings data out of the RDD world of Spark into some other storage system”. This means a job 

ends (and another one might start) whenever data is brought back to the driver or persistently 

stored somewhere. Every Spark job might then consist of one or more stages. 

Stages within a job are parts of work performed on data, which can be done without having to 

communicate with the driver. Therefore, a stage is something that can be executed without 

having to transfer data from one data partition to another. Whenever data needs be moved 

and hence some type of communication within the network is required, a new stage is created. 

The creation of a new subsequent stage for example takes place when operations like shuffling 

are to be executed. This is why such operations are also referred to as a shuffle dependency 

or a wide transformation. All created stages are then processed sequentially and may contain 

several different narrow tasks or narrow transformations. The difference and examples for nar-

row and wide transformations and their impact on Spark’s performance will be discussed later 

in some more detail. 

Tasks 

Another component also described by Karau & Warren (2017) is the task. Tasks are the small-

est units contained in a stage within the Spark execution environment – apart from operations. 

All tasks that belong to the same stage execute the exact same code at the same time. How-

ever, each task does so with a different, independent part of the complete data set that needs 

to be transformed. Those parts of data are called partitions. 

Hereby, one task can only be performed on one executor. Every executor, however, has mul-

tiple slots where it can run tasks, thus making it possible to run multiple tasks or all at the same 

time. The number of slots of an executor is not static and changes depending on the current 
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task that needs to be executed. Here, the number of partitions of the resulting output RDD 

matches the number of tasks that can be executed at the same time in one stage – as stated 

by Karau & Warren (2017). 

A cluster might not be able to run all tasks in parallel in each stage, since there may be limita-

tion to the number of cores per executor when configuring the Spark application. It is therefore 

not possible to run more tasks as there are executor cores available for the Spark application. 

In order to calculate the number of tasks that may be run at the same time (in parallel) the 

following simple formula can be used (Karau & Warren, 2017): 

“total number of executor cores = number of cores per executor * the number of executors” 

Whenever there are more partitions and therefore more tasks than number of total executor 

slots, all additional tasks are processed only after the first ones have been finished and slots 

(resources) are free for them to be used. Usually, tasks within one stage need to be finished 

first before the next stage can be started and its tasks can be processed. 

This allocation and distribution of tasks is handled by the TaskScheduler which might use fair 

scheduling or a first-in-first-out schedule. For the scheduling and execution of the tasks a DAG 

(Directed Acyclic Graph) – as described by Yang et al. (2016) – of the stages is built which is 

based on the lineage of the RDDs creating an execution pipeline. 

2.6.3. Further Spark Terminology and Concepts 

In this section some further Spark specific concepts that were looked at and used when imple-

menting the prototype described within this thesis are briefly explained in order to generate a 

general understanding of the capabilities of Spark. 

RDD 

As already mentioned, Apache Spark uses RDDs – Resilient Distributed Datasets – as its main 

way of storing data. 

RDDs were first introduced in 2012 by Zaharia et al. describing them as a new abstraction 

which can be used to efficiently reuse data implemented within the Spark system. Those RDDs 

are also created in a way to provide capabilities to operate on data in parallel as well as to 

assure fault tolerance in Spark applications. 

As described by the authors Zaharia et al. (2012), usually in systems that use in-memory clus-

ter storage, fault tolerance can only be assured by duplicating data across multiple nodes or 

by logging every update across all of them. Either way, such methods of providing fault toler-

ance lead to increasing amounts of data that needs to be sent across the computing cluster 

and thereby generating storage overhead. By using RDDs instead, Spark on the other hand 

does not need to store the same data multiple times but it saves the operations and their 

sequence in which they were performed on the data – the lineage. In doing so, Spark makes 

sure that whenever parts of the data are lost, the system still has enough knowledge to recreate 

the state of the data that it was in before the failure. The lineage is used to recompute this 
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previous state, thus guaranteeing fault tolerance without the need to store more data than 

necessary. 

According to Zaharia et al. (2012) in short, RDDs are therefore an abstract form of read-only 

data which is partitioned across nodes. They can only be created in two ways: from other RDDs 

or from any kind of stable data source. Moreover, persisting and partitioning of the data con-

tained in RDDs can be adjusted by the user depending on their storage needs and capabilities. 

Hereby, for example a key can be defined to partition the data across machines as desired. 

When Spark uses RDDs they are usually kept in memory per default, but they can also be 

persisted onto either one disk or all machines available in the cluster. 

Transformation vs. Action 

According to Karau & Warren (2017) Spark differentiates between transformations and actions 

as already mentioned. Transformations are performed on RDDs, altering them, and returning 

RDDs as output. In contrast, actions do not return a new RDD, but rather any different kind of 

data structure as their output. Actions are either used to collect information and bring back 

data to the driver for certain processing steps that require the whole dataset or to write to a 

stable storage medium. Such actions that bring back data to the driver are for example: collect, 

collectAsMap, sample, reduce or take. Hereby actions like count or reduce bring back a cer-

tain, predetermined amount of data to the driver. In contrast, for actions like collect or sample 

the amount of data that the transformation might result in is not known beforehand. The second 

category of actions – actions that write to storage – include for example methods like: save-

AsTextFile, saveAsObejctFile and saveAsSequenceFile. There are also void functions that do 

not return any data like foreach. Those void methods are nevertheless classed and treated as 

actions which means that Spark is forced to execute a job. In other words, they more or less 

force the execution of the Spark program. 

In contrast to actions, there are transformations as described by Karau & Warren (2017). 

Transformations are used to perform certain tasks like sorting, grouping, filtering, or mapping 

the data. Contrary to actions, transformations do not force Spark programs to be executed. 

This characteristic of Spark programs not executing immediately is called lazy evaluation and 

will be explained in more detail later. 

Wide vs. Narrow Transformations 

When looking at transformations on Spark RDDs, there are two different kinds to differentiate 

as mentioned by Karau & Warren (2017). First, there are transformations with narrow depend-

encies and then second, transformations with wide dependencies. This differentiation is espe-

cially important to consider when thinking about the performance and optimization of a Spark 

application. 

Transformations with narrow dependencies are ones where the child RDD depends directly 

and finitely on the partitions of its parent RDD. This means that those dependencies can al-

ready be evaluated by Spark at the time the application and code is designed. Additionally, 

narrow transformations are only possible if each parent partition does not have more than one 
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child. As a result, the child partition depends either on just one parent partition or on a subset 

of them. This subset however also needs to be unique for this child only. Those characteristics 

makes it possible for narrow dependent transformations to be performed on a partition or set 

of partitions without having to know anything about other partitions of the RDD – therefore 

independently without the need to communicate. 

The following illustration in Figure 2 shows how narrow transformations can look like in Spark’s 

dependency graph: 

 

Figure 2: Narrow dependencies adapted from (Karau & Warren, 2017) 

 

As is can be seen from Figure 2, there are basically two possibilities for children to depend on 

their parents. On the left part of the illustration each child partition only depends on one parent 

partition which means they can be processed easily at the same time since they do not need 

any information about the other parents or other children present. On the right side it can be 

seen that children may also depend on two (or even more) parents, but then no other child 

depends on the same set of parents. Therefore again, they can be processed independently. 

Transformations with wide dependencies, on the other hand, need the data to be split and 

allocated in a certain way to have all information needed available. Such transformations can 

therefore not be performed independently on parts of the data. Specific partitioning is for ex-

ample needed when performing reduceByKey or groupByKey transformations, when execut-

ing joins or when repartitioning the data in general. Most of the time, therefore, wide transfor-

mations need to shuffle the data first in order to reach the required partitioning state. Only if 

this certain partitioning of the data is already ensured before such a wide transformation is 

executed, it might be possible to eliminate the need for Spark to shuffle data. Otherwise, Spark 

needs to do such a rather expensive repartitioning step to execute the next steps in the appli-

cation. Whenever data does need to be shuffled, Spark adds a ShuffeledDependecy to the 

dependency list of the RDD. 
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In Figure 3 it is shown how a dependency graph might look like with wide transformations in 

contrast to narrow transformations: 

 

 

Figure 3: Wide dependencies adapted from (Karau & Warren, 2017) 

 

Figure 3 shows how some children in wide dependencies may depend on just one parent 

similar to narrow transformations. However, they may also depend on more parents as it can 

be seen. The actual difference to narrow dependencies however are the child partitions that 

depend on parents that also other child partitions are dependent on. In essence, those children 

are sharing parents and therefore, there might be the need of shuffling to ensure that the data 

is partitioned in a way that children processes can be executed. 

All in all, as discussed shuffling is a performance expensive task which should be avoided. 

Therefore, using narrow transformations instead of wide transformations – if possible – should 

be preferred when trying to optimize performance of the Spark application according to Karau 

& Warren (2017). 

2.6.4. Memory Structure 

An important advantage of Spark regarding performance – as stated by Karau & Warren (2017) 

– is the way it manages memory. The framework persists data without writing to disk but in-

stead keeps the data on the executors in memory where it then is accessible when needed. 

The way data is stored can also be configured by the persist function. Here one can specify 

whether RDDs are stored in-memory for example as deserialized Java objects, as serialized 

Java objects or on disk. This might for example be necessary when RDDs are too large for 

RAM. Those ways of storage can be chosen depending on the needs of the Spark application 

and environment. 

In general, memory in Spark is separated into three parts mentioned by Zhang et al. (2018) in 

their work. Those are there to either “manage user memory, storage memory or execution 

memory” (Zhang et al., 2018). Hereby, user memory is dependent on the function that the user 

specifies. Depending on the way the code is written and what functions are used by the user, 
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the memory usage changes. Storage memory is the part of memory that Spark uses for cach-

ing and broadcasting data which helps in reusing data and sharing variables between workers. 

Execution memory is the memory that is used whenever there is a shuffling operation neces-

sary for any parts of the data processing pipeline. In Spark, there is no fixed cut between 

storage memory and execution memory. Therefore, both may use each other’s space when 

they themselves do not have enough memory available for a certain operation. Overall, deci-

sions and best practises regarding memory are difficult to generalise, since there are a lot of 

different factors that influence how memory is used and it also strongly depends on the specific 

use case, as stated by the authors Zhang et al. (2018). 

2.6.5. Lazy Evaluation 

Another key feature of Spark and its RDDs mentioned in Karau & Warren (2017) and Hong et 

al. (2017) is the lazy evaluation principle. Lazy evaluation means that whenever no wide trans-

formations (as explained in Chapter 2.6.3 Further Spark Terminology and Concepts) need to 

be performed within the Spak application, only a pipeline of RDDs is created without executing 

those tasks immediately. All the pipelined steps are then executed at the same time later when-

ever an action needs to be performed which forces the actual execution. An action is an oper-

ation that results in a data structure that is not necessarily an RDD and where data needs to 

be sent back to the driver or writes to persistent storage. 

The lazy evaluation technique helps to decrease the number of in- and output overhead and 

thereby improves performance according to Hong et al. (2017). Since hereby only a directed 

acyclic graph (DAG) is created – or in other words a pipeline to represent the lineage of RDDs 

– it makes it possible for iterative algorithms to pass a job’s result directly to the following one 

without having to persist data in between operations as described by Zheng et al. (2016). 

After the DAG containing the plan of dependencies between the RDDs has been created and 

an action was obtained by Spark, Spark basically starts at the end of the graph – at the output 

dataset – and works its way back according to the provided lineage. 

The advantage of this lazy evaluation characteristic can also be illustrated with the following 

example used by the authors Karau & Warren (2017). When a filter function and a map function 

must be performed on an RDD, usually that would mean each partition of the data needs to be 

accessed twice – once for the filtering and once for the mapping. Due to Spark’s lazy evalua-

tion, however, the executor gets the information that the steps need to be performed at the 

same time and therefore accesses each partition only once where it executes both the filtering 

and the mapping step at once. 

Another advantage according to Karau & Warren (2017) is the fault tolerance that comes along 

with lazy evaluation. Since each partition of the data in a Spark application has the information 

of exactly which dependencies there are between parent and child partitions, any data that 

might be lost can easily be recomputed using the known lineage. This diminishes the need for 

logging or duplicating data, thus making Spark faster and perform even better. 
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The only disadvantage of lazy evaluation becomes apparent when trying to debug an applica-

tion and find out exactly where Spark generates errors or fails. When there is for example an 

error already in an input step where data is read, the failing of the job will only be visible for the 

developer when an action – like for example when counting – is done in a subsequential step 

once data is sent back to the driver. This means that often the occurrence of an error in logs 

does not actually represent the moment or point in the code where it actually fails but aways 

at the same point at which an action is called. 

Since literature suggests that lazy evaluation and memory management are important for im-

proving performance of Spark, it was investigated in more detail how different settings that can 

be chosen when creating a SparkContext could have a further positive impact on the KG-OLAP 

implementation. This was done in order to find out whether there are any specific settings that 

should be used or set to a certain value. Those settings will be discussed now in the next 

section. 

2.6.6. Performance 

Since performance experiments and optimization are part of the research question and objec-

tive of this work, it was tried to find out, whether there are any advantages in changing the 

Spark configurations and settings to ensure best performance when creating the SparkContext 

used within the application. In general, there are a lot of parameters that one can set when 

executing a Spark job. In their paper, Nguyen et al. (2017) tried to identify relevant configura-

tion settings and whether or how they might influence performance of Spark. They focused on 

the subset of settings that is meant to be important for performance tuning and separated them 

into two categories:  

• application settings and  

• settings for individual parts of the Spark application 

For even more details on performance and how it was assessed it is referred to Nguyen et al. 

(2017) since only the main findings are presented within this thesis. 
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Table 1 shows the identified settings, their type, default value and what resource the setting 

may influence: 

Table 1: Spark performance settings by Nguyen et al. (2017) 

Setting Default Value Type Resource 

spark.driver.cores 1 Application CPU 

spark.driver.memory 1g Application Memory 

spark.executor.memory 1g Application Memory 

spark.executor.cores - Execution CPU 

spark.task.cpus 1 Scheduling CPU 

spark.default.parallelism - Execution CPU 

spark.memory.fraction 0.6 Memory Management Memory 

spark.reducer.maxSizeInFlight 48m Shuffle Memory 

spark.shuffle.compress True Shuffle Memory 

spark.shuffle.spill.compress True Shuffle Memory 

spark.speculation False Scheduling - 

 

In Table 1 above, the hyphen (‘-‘) in the default value column indicates that the value for this 

specific setting is set by Spark itself depending on the environment the application is run in. In 

the resource column, the hyphen suggests that the setting influences more than one resource. 

As it can be seen from Table 1, settings like spark.driver.cores, spark.driver.memory and 

spark.executor.memory are used to influence the performance of the driver and executors. All 

other settings listed can be adjusted for performance tuning at the task level. In their experi-

ments Nguyen et al. (2017) set the first three settings mentioned for drivers and executors to 

values that made their experiments finish acceptably fast and left them unchanged for all fur-

ther experiments. This decision was made since they found that leaving spark.driver.cores, 

spark.driver.memory and spark.executor.memory to their default values, made their processes 

very slow otherwise. 

After analysing different metrics with different settings, the results by the authors Nguyen et al. 

(2017) included the following conclusions about performance impact of the identified configu-

ration options: 
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Spark.executor.cores: 

This setting describes the number of cores that each executor process is able to use. Changing 

this setting’s value determines whether an executor can perform multiple tasks in a parallel 

manner. In general, executing tasks in parallel should decrease the overall time it takes to 

finish them altogether. In their experiments, the authors found that changing the executor cores 

from one to four improved performance significantly. However, when further increasing this 

number, no notable changes were observed. They also discovered that the number of tasks 

correlates with the runtime, meaning that jobs with a large number of tasks profit more from 

increasing the number of cores. 

Spark.task.cpus: 

The number of CPU cores available for executing tasks determines the number of tasks that 

can be processed in parallel within the system. The number of parallel tasks then in turn leads 

to a different number of “waves of tasks” Nguyen et al., 2017). The less waves, the faster the 

job finishes. This is why the analysis result of Nguyen et al. (2017) showed again that the 

number of tasks correlated with the time the program needs for its execution. Shuffling also 

impacts performance, meaning that the more tasks that require shuffling, the worse the per-

formance. All in all, the authors concluded that increasing the number of the CPUs might only 

be effective when there are tasks to be completed that generally take a rather long time to be 

finished in relation to others.  

Spark.default.parallelism: 

Setting and optimizing the default parallelism configuration makes it possible for the user to 

define how many partitions are created after a shuffling task was performed. The number of 

partitions in turn defines the number of tasks in all stages that may be performed at the same 

time. After conducting different experiments with different settings and Spark programs, the 

authors Nguyen et al. (2017) concluded that setting parallelism to a higher value can be effec-

tive when trying to execute steps that include a ShuffleMap task which usually takes a rather 

long time to finish. One example would be the word count algorithm. For other tasks, changing 

spark default parallelism might not have any benefit when being increased. 

Spark.memory.fraction:  

Spark memory fraction describes how much memory Spark is allowed to use for storing data 

and executing processes. According to Nguyen et al. (2017), after testing different settings, 

they found that the amount of data that is inputted and the time for shuffling are positively 

correlated with the execution performance. Again, depending on the task, the size of memory 

fraction has more or less influence on performance. Especially whenever there is only a small 

shuffle time or not a lot of data to be processed, memory fraction is not affecting performance 

as much. 

 

 



 

  27 

Spark.reducer.maxSizeInFlight:  

MaxSizeInFlight is Spark’s configuration that lets the user change the amount of data that 

Spark is able to fetch from outputs of mapping operations by each reducer. Again, shuffle time 

seems to correlate with this setting and execution duration. When setting maxSizeInFlight to a 

rather small number, this might impact a system in a positive way if there is not a lot of memory 

available and therefore a lot of transactions between the machines are necessary. With sys-

tems that have more memory available, changing the value does not improve performance in 

a notable way according to the authors’ obtained results. 

Spark.speculation:   

Speculation is related to Spark’s possibility to use speculative execution which can be allowed 

or denied by this setting. The value can therefore either be set to true or false. Per default it is 

set to false according to the specification by Yang et al. (2016). What Spark does when spec-

ulation is set to true, is restart any tasks that are considered slow and might therefore slow 

down the processing. Checking for those bottlenecks is done periodically by examining 

whether a certain task might take longer than a particular threshold. 

Even though this might sound helpful in general, in certain scenarios setting the speculation to 

true might also impact performance negatively as described by Nguyen et al. (2017). When 

the setting is set to true, it might occur that the number of tasks that need to be performed is 

increased which in turn means that the run time of the Spark application might increase as 

well. Therefore, it again depends a lot on the application and general conditions. 

Spark.shuffle.compress and Spark.shuffle.spill.compress: 

Shuffle compress and shuffle spill compress can both be used to tell Spark whether to com-

press map output data and whether to spill data after shuffle operations. These settings’ impact 

correlates with the time the executors take to de-serialize data in the processing and shuffle 

time. Nguyen et al. (2017) suggest that the configuration should be set after having weighted 

out CPU and network/disk performance. When compression takes place, data size is de-

creased meaning less network traffic. However, this might then cost CPU resources to com-

press the data in the first place. Compression might not help (and even increase runtime) when 

only small amounts of data need to be written and read by shuffle operations. 

As with all the setting parameters, it is again very much task- and application-depended and 

factors outside of Spark need to be considered. 
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All in all, as described, when starting a Spark application, the user can choose different settings 

and parameter values – some of which were already discussed relating to Spark performance 

in previous sections but also a lot more that are out of the scope of this thesis. It can therefore 

be decided on the number of cores per executor, the memory size per executor and of course 

the number of executors itself and so on. A user can also specify how many cores every task 

gets assigned. As mentioned by Zhang et al. (2018), memory size per task is determined by 

this setting. If tasks do not receive enough resources (tasks of the same executor share the 

executor’s memory) then an out-of-memory error may occur. 

Of course, there are also a lot of other performance tuning options on different levels and layers 

or components (CPU, network bandwidth, memory, storage of data) of a Spark application. 

However, they were not further investigated as part of this thesis but are briefly stated, never-

theless. According to the Apache Spark documentation (Tuning Spark, 2022) the main tuning 

capabilities are provided through serialization and memory tuning. For serialization usually 

Java serialization is used per default. Serialization can, however, also be changed to Kyro 

serialization which is said to be more compact than Java serialization. Here it needs to be 

noted that not all serializable Java types are supported out of the box. In memory tuning, one 

can tune aspects like garbage collection, access of data and how much memory is used in 

general. There are also even more options to try and improve performance by for example 

changing parallelism levels or using broadcasted variables. For more details it is referred to 

(Tuning Spark, 2022). 

Again, to summarize, those configurations and considerations need to be optimized depending 

on the problem, application, scenario, and a lot of other external factors. Therefore, it is not 

easy to say which settings are optimal in general. Thus, before conducting the actual experi-

ments on this thesis implemented query operations, some of the settings mentioned were 

trialled to try and find an optimum. However, no changes of the settings that were tried out 

improved performance drastically. Therefore, for optimizing performance the implementation 

and Spark code itself was tried to be optimized. The Spark settings when creating the used 

SparkContext for the experiments were set to fixed values and kept throughout all further tests. 

Performance tuning with the stated settings may be part of future work. 
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2.6.7. Apache Spark GraphX 

Since in this thesis not only Spark itself plays an important role but also Spark GraphX was 

used, the framework will be explained in theory in the next sections. The main reason that 

Spark GraphX was considered was that it is intended to be optimized for working with graph 

data which is the basis of the KG-OLAP concept as RDF data is used to represent knowledge. 

Apache Spark GraphX was released as a component of the Apache Spark open-source project 

in the 0.9.0 version. It was first described in 2014 by Gonzalez et al. in their paper about “Graph 

Processing in a Distributed Dataflow Framework”. The framework they proposed is an “em-

bedded graph processing framework” (Gonzalez et al., 2014) which was built on the basis of 

Apache Spark. GraphX provides a graph abstraction which makes typical graph operations 

possible. However, in GraphX, also a view of the data as a collection is retained which allows 

other intuitive and natural data manipulation in addition to iterative graph algorithms and graph-

parallel processing. To represent graph data, GraphX uses a property graph model which was 

already briefly described in Chapter 2.2: (Contextualized) Knowledge Graphs. 

The basic property graph in GraphX can be seen in the following example illustration in Figure 

4 that models different nodes and their relationships: 

 

 

Figure 4 shows a property graph where the nodes (vertices) represent people and depart-

ments. The edges between the nodes are either there to represent personal relationships such 

as Jane being the mother of John or Lisa being the sister of John or other types of relationships 

like Frank having the IT-department as his workplace. It can be seen from the graph that the 

vertices themselves are represented and identified by their ID (the numbers within the circles) 

and can have arbitrary labels or values (e.g.: “Jane”, “Department”) that contain further infor-

mation about the node. The edges are directed relationships between the nodes and can also 

have different values and labels associated with them. Here those are for example sister rep-

resenting that Lisa is the sister of John. Since edges are directed, the relationship only is valid 

Figure 4: Property graph example 
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in the specific direction indicated by the arrow, meaning that Lisa is the sister of John, but John 

is not the sister of Lisa. 

This model can also be described as a combination of two collections: first, the vertex collec-

tion, second the edge collection. The vertex collection consists of the vertices (their properties) 

as well as their identifier. In GraphX the identifiers need to be 64-bit Integer values that are 

unique within the graph (Gonzalez et al., 2014). The edge collection, on the other hand, con-

sists of edge properties as well as the two vertices that are connected through the edge. The 

two vertices are thereby only referenced via their ID in the edge collection. The vertices’ attrib-

utes are not stored with the edges directly. 

The following tables in Figure 5 and Figure 6 show how the collections could be thought of 

representing the graph from Figure 4: 

  

The vertex table here in Figure 5 does contain all the properties in one column. Those could 

also be represented as two separate columns each containing only one of the Strings (e.g.: 

“Jane” and “Person”). Both tables could also contain more than just one or two properties. 

In GraphX – according to the authors (Gonzalez et al., 2014) – a graph can be constructed by 

simply binding a vertex and edge property where the framework takes care of making sure that 

only unique vertices and edges are contained in the graph and there are no edges that refer-

ence a missing vertex. In the constructed graph one can access the data as edge triplets 

(which are edges that also contain the vertex attributes not only their IDs), as just edges or as 

just vertices. In any case, the data is then available as a collection in the form of an RDD that 

can be operated on. 

As already mentioned, in GraphX (and Spark as its base) graphs are a distributed system. The 

collections of vertices and edges are partitioned. Hereby, the vertex collection is automatically 

hash-partitioned by the vertex-IDs where the indices are stored in a hash index to make it 

possible to join all the partitioned collections at any time as described in (Gonzalez et al., 2014). 

The collection holding the edge data is partitioned horizontally in a way that can be defined by 

the user. It is also possible to partition the edges with a vertex-cut which is especially useful in 

networks and web graphs. Another possibility is the distribution based on the partitioning of 

the input collection, so for example the original placement of the data in de HDFS. Another 

Figure 5: Example vertex table Figure 6: Example edge table 
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possible approach would be 2D hash partitioning or other functions that can be selected as 

described in the work of Gonzalez et al. (2014). 

All in all, according to the authors Gonzalez et al. (2014) – who also compared GraphX to other 

graph systems – the way GraphX allows to use the stored data makes it comparably efficient 

to dedicated graph systems that only offer a “graph view” of the data. They also state that with 

the way GraphX is designed, it facilitates slicing, transforming and working with big graphs in 

general. This is especially important for the objective of this thesis which is why GraphX was 

used in the later described implementation. 
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3. Related Work 

In the next sections, already existing concepts and implementations that are concerned with 

either Spark, GraphX, knowledge graphs, RDF or OLAP in any combination are described as 

they are found in literature. It must be noted that the following list of implemented work and 

concepts is not complete and that only selected ones are described as there are many different 

variations of related implementations and contents. Nevertheless, it shows in how far the topics 

covered in this thesis are relevant and have been and still are concerns in current research. 

The following list shows the combinations of technologies and concepts that were looked at 

and are then described: 

• Graphs and Hadoop 

• RDF & SPARQL 

• RDF & OLAP 

• RDF and Spark/GraphX 

• OLAP & Spark/GraphX 

3.1. Graphs and Hadoop 

One of the widely known frameworks using Hadoop is Gradoop. Gradoop was introduced in 

the work by Junghanns et al. (2015) and is an open-source analysis system and framework 

for graph management. It is based on the Hadoop environment and uses an Extended Property 

Graph Data Model. This graph model extends the usual property graph model, does not en-

force any schemas and all graph elements can have different kinds of attributes. There are 

vertices, edges and logical graphs with various types and attributes that can be defined. It is 

noteworthy that the framework allows for more than one graph to be processed and queried 

together. HBase – which is built upon BigTable by Google and runs on HDFS – is used to store 

the graph data in a distributed form. Data processing is implemented using operators in the 

authors’ developed domain specific language which is called GrALa. Gradoop was evaluated 

on social network and business intelligence data. The developers’ proof of concept uses 

Apache Flink as the distributed execution engine. 

Another framework built upon Hadoop was described by Farhan Husain et al. (2009) where 

they used HDFS as storage for RDF data. The data is first converted into N-triples using Jena 

(Apache Jena, 2022). Then, those triples are split into files that are put into HDFS. Queries on 

the data can be written by users in SPARQL, however, they are then translated into MapRe-

duce jobs that are passed to Hadoop when being answered. The authors conclude that this 

approach was, in general, scalable for large RDF data sets according to their evaluation. 

There are also multiple other implementations using Hadoop as their base like HaLoop, Giraph 

(Ammar & Ozsu, 2018) or Hama which often perform better than Hadoop when looking at 

execution time according to Elser & Montresor (2013). 
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3.2. Using Spark for RDF Processing 

When looking at current literature on frameworks and implementations regarding querying 

RDF data with Apache Spark, most approaches that can be found are based on the query 

language SPARQL since it is the recommended standard for querying RDF data (W3C, 2013) 

as previously explained in Chapter 2.4: RDF and SPARQL. Often such SPARQL queries are 

simply translated into other languages that are then used for the actual query answering within 

the frameworks and implementations according to Ali et al. (2020). One of such implementa-

tions is called Sparklify introduced by Sejdiu (2019) where SPARQL queries are translated into 

code that can then be executed by Spark. 

There are also a number of experiments and different settings tried out for SPARQL queries 

on Apache Spark and GraphX trying to test whether distributed SPARQL query answering 

would lead to performance enhancements, for example by using the Spark SQL query engine 

as it was done by Ragab et al. (2020). 

In the next section some selected implementations that use SPARQL or Spark SQL on RDF 

data are discussed in a bit more detail. It, however, must be noted that there are possibly more 

approaches and implementations present in current literature than there are included in this 

thesis. 

HAQWA 

One implementation that uses Spark for RDF data is HAQWA (Hash-based and Query Work-

load Aware) by Curé et al. (2015) which was an attempt of a system that uses Spark for real-

ising parallelism in RDF data processing. Performance enhancements are achieved through 

two aspects: for partitioning the data a hah-based approach is used where the subject of the 

RDF-triples acts as the key for the hashing (hash-based). Another design decision was their 

allocation approach. Based on the frequency of certain queries on the graph data (query-

aware), the data is distributed accordingly and sometimes replicated depending on computed 

costs for certain operations. Furthermore, a data encoding system is used to reduce memory 

usage by storing not Strings but Integers instead. Other than that, more optimizations that 

reduce the need for materialization steps as well as the amount of query reformulation neces-

sary are implemented. For then querying the data they rely on SPARQL. 

SPARQLGX 

Another system developed by Graux et al. (2016) uses Spark and SPARQL queries on RDF 

data as well. SPARQLGX is a distributed RDF triple store where SPARQL queries are trans-

formed into Spark (Scala) code that uses different evaluation strategies depending on the se-

lected storage method and statistical information about the data. The approach is said to scale 

to large amounts of data using the distributed and parallel nature of Spark, as well as through 

choosing the right approach depending on how the data is stored and on how many subjects, 

objects and distinct predicates there are present. 
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S2RDF 

S2RDF was developed on top of Spark by Schätzle, Przyjaciel-Zablocki, Skilevic, et al. (2016), 

using its relational interface. Here again queries can be written in SPARQL code. The data is 

partitioned using ExtVP. ExtVP is an approach extending vertical partitioning based on semi-

joins to increase performance. They extend the following idea: Instead of for example storing 

the RDF triples in the form of <subject> <predicate> <object> the data is stored in a two-column 

data structure for each of the predicates that exists. For example, for the predicate p there is 

a table with all subject (s) and object (o) combinations that are connected via the specified 

predicate (p). The authors claim that this approach can make processing more efficient for 

large datasets, however, depending on the data structure it could also lead to problems since 

tables can be very different from each other in size depending on the number of triples that 

contain the same predicate. This means that for relatively large tables there could still be per-

formance issues. Therefore, to mitigate such effects, the developers use an approach that 

precomputes possible joins between the tables. 

SparkRDF 

A hybrid approach was constructed by Chen et al. (2015) called SparkRDF. The system is an 

RDF data processing concept that uses distributed memory based on the Spark framework. 

SparkRDF, however, does not use the <subject> <predicate> <object> representation of the 

RDF data to process it. Instead, they use a multi-layer Elastic Subgraph which is based on five 

different indices over class and relation subgraphs and their possible combinations (C, R, CR, 

RC, CRC; where c = class and r = resource). 

The input data is first converted to N-triples which are then split into the elastic discreted sub-

graphs. Thereby, for all triples of the RDF graph that do not contain the rdf:type predicate, their 

subjects and objects are extracted into the corresponding index file where the predicate is the 

file name, therefore grouping triples with the same relationship together. The same is done for 

the triples with the rdf:type predicate as well. Those are distributed into smaller class files with 

the object as the file name, thereby reducing storage needed since the file only contains the 

corresponding relevant subjects of a certain type or class. 

In their system indices are stored in HDFS. Depending on the index information that is needed 

for a user query, the appropriate indices and files are then loaded and joined. The joining 

results are returned after executing the query plan. The query is processed by a RDSG-based 

(Resilient Discreted SubGraph) iterative method, meaning that subgraphs are modelled as a 

resilient discrete semantic subgraph which is an abstraction that uses distributed memory as 

already mentioned. 
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RDFSpark 

Another implementation called RDFSpark by Banane & Belangour (2019) queries RDF data 

by using Spark instead of MapReduce to achieve scalability and performance wins. Thereby 

SPARQL queries are parsed, compiled, and optimized by applying different steps explained in 

more detail in their paper. Then, the queries are translated into a Spark program. In doing so, 

a layer between the original SPARQL query and Hadoop’s MapReduce is created since there 

are Spark Jobs executing the query in between. The authors found that their approach per-

formed better than their tested other implementations with Jena HBase, H2RDF or Cumu-

lusRDF. 

Spar(k)ql 

Similarly, Naacke et al. (2017) use SPARQL in combination with Spark to analyse RDF data. 

In their work “Spar(k)ql – SPARQL Graph Pattern Processing with Apache Spark” GraphX was 

not considered for their evaluation since its processing model is not applicable for their “set-

oriented pattern matching” according to the authors. In their study they instead consider four 

approaches: SPARQL SQL, SPARQL RDD, SPARQL DF and SPARQL Hybrid. 

SPARQL SQL rewrites a SPARQL query to SQL code and then lets the Spark SQL engine 

evaluated the query whereby the execution plan is performed by the Catalysts optimizer. 

SPARQL RDD uses Spark RDDs in combination with filter and join methods to evaluate 

SPARQL queries. SPARQL DF (DataFrame) uses Sparks DataFrame abstraction which can 

be considered a relational system. SPARQL Hybrid tries to combine the advantages of the 

three prior approaches. 

GraphFrames 

In contrast to approaches discussed as of now which focus mainly on Spark SQL, Spark’s 

RDDs or GraphX, a paper by Bahrami et al. (2017) explored Spark’s GraphFrame abstraction 

instead. Their decision was based on the fact that GraphX had already been used a lot more 

in literature as it was developed before the GraphFrames API. They, however, nevertheless 

also present an initial study of the system processing SPARQL queries. The authors not only 

implemented the query processing itself but also a search space pruning and query clause 

ranking to further improve performance. When creating the graph, two CSV files (one for the 

vertices and one for the edges) are created from the source RDF data. Data is again queried 

by subgraph matching similar to the discussed approaches before. Due to the reduction of 

triples through pruning as well as the efficient query clause ordering approach, the authors 

reduced the search time for query matching, thus making their method applicable for big da-

tasets according to them. 

Since now a number of concepts that use Spark and RDDs for representing and working with 

graph data were discussed, more specific use of GraphX in concepts, frameworks and imple-

mentations that can be found in literature were analysed. Some of these approaches and con-

cepts found are now presented in the next sections. 
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S2X 

In their paper Schätzle, Przyjaciel-Zablocki, Berberich, et al. (2016) introduce S2X (SPARQL 

on Spark with GraphX) which is said to “combine the graph-parallel abstraction of GraphX to 

implement the graph pattern matching part of SPARQL” and the “data-parallel computation of 

Spark to build the results of the SPARQL operators” (Schätzle, Przyjaciel-Zablocki, Berberich, 

et al., 2016). Essentially, the authors want to use SPARQL to query RDF but within a frame-

work for parallel graph processing. 

In their work, the authors define a mapping of RDF data to the representation that GraphX 

uses for vertices and edges. Therefore, subjects and objects contained in RDF structures are 

mapped to vertices in GraphX. RDF predicates then are represented as edges in between the 

vertices in the GraphX graph. The RDF IRIs may not directly be used as identifiers of the 

vertices in GraphX, since it is required that those are 64-bit Integer values as already described 

in Chapter 2.6.7: Apache Spark GraphX. This is why, in S2X, IRIs are used as labels of the 

vertices rather than identifiers. The IDs are generated by the zipWithUniqueID method of the 

Spark library. 

In S2X, it is taken advantage of the fact that GraphX is built on top of Spark and does not come 

as a standalone system. Basic Graph Pattern (BGP) matching is realized using GraphX in a 

graph-parallel way. Further SPARQL operators and modifies that may be part of a SPARQL 

query (e.g.: optional, limit, offset,.) are used in a more data-parallel way by using the basic API 

of Spark itself to implement them. This approach makes it possible to combine both ways of 

processing in a simple way. 

There are also some shortcomings of the proposed system – as described in the paper. One 

of them is for example that above a certain threshold of data size (here stated in the total 

number of vertices), the runtime grows disproportionately depending on the query that is per-

formed. Some queries also seem to be a burden on Java garbage collector which again in-

creases runtime. Another problem is that – at least in the authors’ experiments – SPARQL 

queries most of the time only use a small subgraph pattern for matching. Those small patterns 

do not seem to be ideal for the way GraphX is optimized. Usually, GraphX works with algo-

rithms that take the whole graph into account (e.g.: PageRank), which is why it may lead to 

unbalanced workloads when subgraph pattern matching is performed on a small portion of the 

graph. The authors therefore propose that partitioning the task might be a possible solution to 

mitigate the stated weaknesses. 

GraphX SPARQL Subgraph Matching 

Another approach that also tries to use subgraph matching with SPARQL as well as the 

GraphX libraries in order to process RDF data was described in a paper by Kassaie (2017). 

Kassaie also claims that GraphX is one hundred times faster than Hadoop MapReduce. More-

over, GraphX was chosen since it combines data views as collections as well as the graph 

view. In their approach, the graph view is used for all queries that require pattern matching. 

The collection view then helps to combine the results of the pattern matching algorithm. 
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In order to do so, in their work, first data is loaded into RDDs using Spark. Then, subgraph 

matching is performed with the help of GraphX methods before then results are merged again 

using Spark RDDs. For the pattern matching, different operations available in the GraphX li-

brary like sendMsg, mergeMsg, aggregateMessage and so on are used. 

The author Kassaie (2017) concludes that it is complicated to tune Spark because of the high 

number of parameters that one can adjust when setting up the application. Furthermore, it 

needs to be chosen appropriately whether and what RDDs to persist avoiding out of memory 

errors as well as simultaneously keeping performance acceptable. Moreover, decisions on 

types of variables to be used (broadcast variables or accumulators) have to be made depend-

ing on the task at hand. 

3.3. OLAP over Graphs and RDF Data 

As in this thesis the concept of KG-OLAP cubes is used and worked with, it is necessary to 

analyse whether there are already approaches, frameworks or implementations that combine 

OLAP cubes with knowledge graphs or perform typical OLAP operations on RDF data in some 

way. 

Literature shows that some work has been done on the combination of OLAP operations with 

graphs and also RDF analytics. Moreover, there are also approaches using Spark (GraphX) 

for OLAP operations. Some of those approaches will now be described briefly in the next sec-

tions. 

OLAP on Graphs 

The graph OLAP framework by Chen et al. (2008) aims to make it possible to use multi-dimen-

sional and multi-level OLAP operations on graph data and provide capabilities to analyse the 

graphs. Thereby, the framework is divided into two parts: informational OLAP and topological 

OLAP. However, it is then focused on informational OLAP. The authors’ work then also defines 

dimensions and measures specific for graph OLAP. Regarding the OLAP operations them-

selves, the system aims to materialize the graph either fully or partially by creating aggregated 

graphs at different levels. They thereby define roll-up, drill-down and slice-and-dice operations. 

Likewise, G’omez et al. (2020) constructed a multidimensional graphoid-model on graphs 

where OLAP-like operations can be performed. The difference here is that they construct their 

graph as a hypergraph meaning that there might be n-ary or even duplicated edges between 

nodes. The authors claim that this is more appropriate for OLAP-like settings. 

Another concept in addition to graph OLAP is called Graph Cube. The Graph Cube model was 

first introduced in a paper by Zhao et al. (2011) as a “new data warehousing model” that is 

designed to aid in OLAP query-processing in an efficient way. It extends the basic data cube 

by including aggregation and structure summarization of the data. Usually in OLAP systems, 

measures that are used to describe the data are expressed as numeric values that can be 

aggregated in a quite straightforward way. In Graph Cube, the measures, however, are repre-

sented as aggregated networks (aggregated from the base data graph) which are basically the 
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graph itself in an aggregated form. To implement such a graph cube, the authors mention three 

ways of doing so: fully materializing the whole graph cube (every aggregation possible is cal-

culated and stored), no materialisation (every cuboid is computed on demand) or partial ma-

terialization (a selection of aggregations is precomputed). The right choice is a trade-off be-

tween query performance and storage needs according to the authors. 

An actual implementation of a framework that was developed to analyse graph cubes using 

the multidimensional approach is called TopoGraph. The work done by Ghrab et al. (2021) 

defines three different types of graph cubes: property graph cubes, topological graph cubes 

and graph-structured cubes. The property graph cube is a combination of multiple aggregated 

graph cuboids. The authors especially mention the contained base graph cuboid where the 

graph is at its base level. Another special cuboid is the apex cuboid where the data is aggre-

gated at the highest level. Topological graph cubes are graph cubes that contain topological 

information about the graphs which are represented in numbers. Graph-structured cubes are 

graph cubes that represent the concepts of the dimension with graphs containing measures 

and/or dimensions. 

The graph cubes are used to represent the input graph – a multi-graph that is directed and 

contains attributes, nodes and relationships between them. Dimensions in the graph are pos-

sible perspectives of the content and topology. Those are structured in a certain hierarchy. The 

graph information can be aggregated by its dimensions and then the corresponding values can 

be calculated as it is known for OLAP operations. 

In their paper the authors Ghrab et al. (2021) highlight that in order to increase performance 

of their approach, a distributed graph engine would, however, have to be used. 

OLAP on RDF 

More specific work in which OLAP cubes are described as RDF graphs were for instance done 

by Colazzo et al. (2014), Azirani et al. (2015) and Ibragimov et al. (2015). 

Colazzo et al. (2014) introduce a formal framework for analytical (or warehouse) processing of 

RDF data. They define a multidimensional analytics model which is optimized to work with 

heterogenous RDF data in the form of graphs. Both the base data and the warehouse are RDF 

graphs. Their Analytical Schemas (AnS) are represented as graphs which contain facts that 

can be analysed by using dimensions and measures. In their definitions of the OLAP opera-

tions on RDF data they use a rewrite-approach on extended AnQs (Analytical Queries) since 

in their work they define cubes as being AnQs themselves. For their OLAP implementation 

they focused on two basic operations: slice-and-dice and drill-in and drill-out. Their work re-

sulted in the conclusion that there is a feasible way of constructing an RDF warehouse and 

also that data can be queried. However, future work will focus on finding methods to deploy 

AnS and AnQ more efficiently by for example using parallel MapReduce. 

Azirani et al. (2015) based their work on the model by Colazzo et al. (2014) and tried to opti-

mize it by using materialized results of queries which are represented as a cube to analyse 
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another cube. They basically created algorithms for cube operations that use intermediate or 

final results of a previous query in order to answer another, new query. 

Another paper that proposes a multidimensional RDF schema, which represents an OLAP 

cube, was written by Ibragimov et al. (2015). The schema is described in the QB4OLAP vo-

cabulary where dimensions, levels, roll-up relations and so on can be expressed. The second 

part of the vocabulary that they use is specifically designed for RDF called VoID. VoID is used 

to aid in describing RDF metadata and how RDF data may be accessed. With the help of this 

schema, data can be queried, aggregated and a cube can be built.  

OLAP with Spark/GraphX  

Since those previous examples mentioned concerning OLAP operations on graphs do not nec-

essarily make use of Spark, it was further analysed whether there are already implementations 

that include Spark and/or GraphX in the combination with OLAP cubes explicitly. 

One of such a concept is Grad introduced by Ghrab et al. (2015) which was developed as a 

framework that aids in building OLAP cubes from graph data using property graphs – or rather 

an extension of them. The framework is designed to also support heterogenous graphs that 

have various kinds of edges and vertices with different attributes. This is supposed to be more 

in line with real-life scenarios. Again, the graph (the cells of the cube) contains numeric 

measures, which is different from KG-OLAP. There are content-based measures which are 

like the usual measures in OLAP systems. Graph-specific measures capture graph topology 

like PageRank, paths between pairs of nodes, centrality of nodes or number of cycles in the 

graph. Similarly, to already discussed approaches the graph cube is again defined as a collec-

tion of aggregated graphs where the base graph is transformed into all possible levels of the 

aggregations with adjusted measures. 

Grad then is actually a graph database model which extends the property graph model. A 

prototype was developed with Neo4J acting as a graph database, HDFS for distributed pro-

cessing and the GraphX library for graph-specific calculation of measures such as the men-

tioned PageRank. Results are again stored in a Neo4j instance. 

Pagrol – as developed and described by Wang et al. (2014) – is a system enabling OLAP 

processing over attributed graphs with the help of a conceptual Hyper Graph Cube model. 

Queries and standard OLAP operations like slice-and-dice and roll-up are supported based on 

a MapReduce algorithm. The hyper graph model uses attributed graphs which means that 

attributes are added to vertices and edges. All vertices and edges are associated with respec-

tive dimensions (edge dimensions or vertex dimensions) which then can be used for aggrega-

tion. Moreover, materialisation, joining, batch processing and cost-based execution plan opti-

mizations are proposed by the authors in order to increase performance. 

There is also work on distributed graph-based OLAP cubes by Denis et al. (2013) which fo-

cuses on improving performance for cube aggregations and computations on the graph by 

using decentralized graph cubes. Through using a distributed system when for example per-

forming an aggregation function, not only one machine is responsible for doing all the work, 
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but it is split to multiple nodes. Those node then perform the operation in parallel at the same 

time. This approach aims at reducing overall compute time. Their model also is similar to a 

MapReduce model since both aim at distributed computation. 

For their implementation Denis et al. (2013) both considered Spark and Hadoop, whereby the 

authors decided on Spark for performance reasons. The operations of the cube queries are 

then executed by using HDFS and Spark together. It must be noted that the authors only con-

ducted their experiments on homogenous graphs, heterogenous graphs would be part of future 

work. Moreover, only one materialization strategy was evaluated. For an overall conclusion it 

therefore would also need to be tested whether there are more beneficial ones. 

Two other algorithms using Spark for OLAP cubes were proposed by Kang et al. (2020): 

GraphNaiive and GraphTDC. Both work with multidimensional graph tables, joint tables be-

tween vertices and edges as well as knowledge about the dimension values for the data. 

GraphNaiive computes cuboids for all dimensions of the graph in a sequential way from the 

graph data which is distributed between nodes. Aggregations are calculated by the respective 

function to create the graph cube. Because of its sequential nature, the more data needs to be 

processed, the higher the number of computations. 

To solve the problem of the computation increase, GraphTDC computes the same cuboids but 

only after having created an execution plan. The highest-order graph cuboid is computed first, 

afterwards the others are created according to the execution plan. As computation of descend-

ant graphs use the aggregated values of their ancestor – using a top-down approach – faster 

and more efficient processing can be achieved. 

The graph multidimensional tables are implemented using Spark RDDs. As a comparison, also 

the use of DataFrames was trialled by the authors Kang et al. (2020) which proved to perform 

worse than both the algorithms GraphNaiive and GraphTDC. Those findings show that RDDs 

might be more efficient than using DataFrames, at least in their specific context. 
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3.4. Summary of Current Literature 

When looking at the available literature it is apparent that there is definitely room for further 

research especially concerning the combination of representing RDF data within OLAP cubes 

and processing the data with Spark and GraphX. However, there are already implementations 

and frameworks that consider some of the similar aspects that are subject of this thesis. 

In general, when researching big data or parallel graph processing in literature, Hadoop and 

its components are often mentioned. An analysis of distributed graph systems by Ammar & 

Ozsu (2018) was done comparing Hadoop, HaLoop, Vertica, Giraph, GraphLab, Blogel, Flink, 

Gelly and GraphX. The authors concluded that all of them (apart from Vertica) read and write 

datasets from and to a distributed file system. Hadoop, HaLoop and Giraph make use of Ha-

doop’s MapReduce for processing the data. Flink uses existing libraries from Java and Scala 

whereas Blogel as well as GraphLab are implemented using different libraries in C++. GraphX 

runs on top of Spark. 

There is also work combining the concepts of graphs and OLAP, OLAP on RDF data and even 

combinations of Spark or GraphX and OLAP. Most of the approaches, however, differ on how 

either the RDF data, Spark or cubes are represented and used as they are in this thesis’ de-

scribed prototype. This makes the implementation described in this thesis relevant even 

though especially Spark is already widely used for big data (graph) processing in literature 

within concepts and implementations. 
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4. Data Model 

This section describes in detail the implemented data model that is used within the prototype 

described in this thesis. First, the data structure of the KG-OLAP source data set that is used, 

and domain-specific examples used throughout this thesis are described. With the data struc-

ture in mind, considerations about why GraphX was chosen as a framework for the KG-OLAP 

implementation are argued. Then, the general design decisions concerning data representa-

tion in Spark and GraphX are illustrated. 

4.1. Running Example 

In this part of the thesis the data that was used while developing the prototype and also in the 

SPARQL-based prototype implemented by Schuetz et al. (2021) is briefly outlined. All further 

examples that are used in this thesis as well as the performance experiments are based upon 

this specific domain and use case. The implementation can, however, also be adapted to be 

used on datasets of different fields as long as the general KG-OLAP structure is adhered to. 

In general, the data that is used for the experiments conducted within this thesis concerns the 

field of air traffic management (ATM). Within this data, messages, which are sent by air traffic 

control to inform affected people and departments about any occurrences or changes in the 

air traffic infrastructure are the main concern. The data needs to be distributed to those relevant 

people and departments to ensure safety and quality in the planning process but also for daily 

operations in air traffic management. Such messages may contain information about any 

events taking place as for example closures of runways due to contamination or any other 

problems that may affect airports, airplanes, pilots and their daily work. By merging, aggregat-

ing and abstracting this data and the contained knowledge, one can obtain different views on 

the data. There could be use cases where a more overview-like summary of the information is 

needed when for example informing pilots about the most important events more quickly. Other 

analyses might on the other hand need the data in a more detailed state. Depending on the 

information and granularity that is required to be distributed and the receiver of the message, 

the data needs to be on the appropriate level of aggregation. 

The data contained in the hereby used datasets can for example include information about in 

how far a runway is approachable for airplanes depending on contamination (e.g.: snow) or 

other factors that might have an impact on being able to start and land an airplane. For further 

details about ATM data, it is referred to the paper by Schuetz et al. (2021). 
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As the data in KG-OLAP represents a multidimensional model, there are several dimensions 

with defined hierarchies for which the information contained in the RDF statements is relevant. 

Those hierarchies that are used to construct the KG-OLAP cube are in this case: the location, 

time, the importance and also the aircraft that the information is applicable for. All those four 

dimensions have different hierarchy levels: 

• Location: segment, region 

• Time: day, month, year 

• Importance: importance, package 

• Aircraft: model, type 

Those hierarchies imply that for example the data on the most granular level of all four dimen-

sions is relevant for one specific aircraft, on one specific day, at one specific location and with 

a certain importance. Then, there is also knowledge that is for example relevant at every loca-

tion, at all times for all aircraft and concerns all importance levels. This would then be classified 

as the most general knowledge or context. The dimension value’s (for example a specific date 

like the 5th of June 2022) dependence on each other is structured in a linear manner by roll-

up-relationships represented as RDF-triples. Meaning that the 5th of June rolls up to the month 

of June. The month of June rolls up to the year 2022 and the year 2022 rolls up to the “All”-

level which contains – as its name suggests – information relevant for all dimensions and all 

their levels. The same applies to all other dimensions present. For more details it is again 

referred to Schuetz et al. (2021). 

4.2. Technology Decisions 

In general, after researching big data processing frameworks and deciding on Spark to be used 

as a big data framework, one is presented with the decision to choose either GraphX or 

GraphFrames with them both being graph-specific abstractions built on top of Spark. There-

fore, further literature was considered, to find out which of the two frameworks would be more 

appropriate for the tasks involved in KG-OLAP data processing and representation. 

In their paper, Agathangelos et al. (2018) studied current usage of Apache Spark for graph 

processing showing the different aspects to consider as well as ideas and disadvantages of 

different concepts. As already described, Spark either uses abstractions called RDDs (Resili-

ent Distributed Dataset) or DataFrames to represent data. Based on those two technologies, 

there are then the two mentioned graph-specific abstractions: GraphX and GraphFrames 

whereby GraphX builds upon RDDs and GraphFrames relies on DataFrames. 

The authors therefore argue that the decision one must make when dealing with RDF data and 

wanting to use Spark, is to decide two things. First, one needs to choose the type of data model 

and second the type of Apache Spark abstraction and abstraction level one wants to use.  

When using RDF, the possible data models are either the triple model or the graph model 

according to Agathangelos et al. (2018). In the triple model, RDF data is used in its natural 

structure – as a triple with subject, predicate and object. When deciding on the graph model, 
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RDF data, however, is stored and processed “as a directed, labelled graph” (Agathangelos et 

al., 2018). Therefore, an RDF triple is represented as an edge – which can be seen as the 

predicate – connecting two nodes: subject and object. The predicate itself is then represented 

as the label of the edge between the two nodes. This latter representation is mainly used in 

the graph API of Spark. 

The second decision that needs to be made as proposed by Agathangelos et al. (2018) is the 

kind and level of abstraction and libraries that one wants to use. Here a choice must be made 

between “RDDs, DataFrames, Spark SQL, GraphX and GraphFrames” (Agathangelos et al., 

2018). RDDs are considered to be a more low-level representation of data which enables the 

user to work in a very flexible way. They also for example provide more adjustable ways of 

partitioning the data. DataFrames on the other hand organize data in columns, similar to a 

table, which makes it easy to structure data and work with it since it is available in a familiar 

form.  

As a more high-level abstraction, Spark SQL provides functionality to query structured data in 

a SQL-similar way. GraphX on the other hand is described as combining graph-parallel and 

data-parallel processing which increases performance and makes it even more flexible to work 

with. Moreover, widely used graph processing algorithms like PageRank or triangle counting 

can easily be implemented. GraphFrames puts another abstraction layer on top of the Data-

Frames abstraction which supports querying the data. Therefore, the decision here is two-

folded. First, it needs to be decided whether to work with solely the more low-level structures 

like RDDs and DataFrames or whether to use the abstractions on top of either one of them. 

The second choice then becomes whether data should be represented in a table-like form or 

in a more graph and collection-based form. 

With all the information gathered it was decided to use GraphX for the prototype described 

within this thesis since it combines a graph-view and a view on the data in the form of collec-

tions which are easy to use. Both views offer flexibility since they are a low-level representation 

of the data. Furthermore, the possibility of being able to analyse data with graph-specific algo-

rithms in the future was thought of when making the decision. Since the main focus of the 

abstraction, pivot and reification implementations described within this thesis is transforming 

data rather than making ad-hoc queries, also GraphFrames advantage of making it possible 

to query the data easily did not change the decision for GraphX. 

Another reason for not choosing GraphFrames (GraphFrames Overview, 2022) as of yet was 

that it is currently not part of the Apache Spark core. The developers list the following reasons: 

There are still changes to be made to the API of GraphFrames, some features that GraphX 

offers like partitioning are not implemented and also for development-cycle reasons. Especially 

the partitioning aspect was a consideration when choosing GraphX over GraphFrames. 

This is not to say that GraphFrames could not also be used in future work. It would have to be 

determined whether GraphFrames could lead to further performance improvements or simpler 

transformations of the data but this was not tested for in the scope of this thesis. 
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Another decision that was made was not to use SPARQL querying. Even though when ana-

lysing already implemented similar approaches that use Spark to process RDF data, it was 

obvious that SPARQL queries are widely used in the implementations as the preferred query 

language. This possibly stems from the fact that SPARQL is the recommended way of querying 

RDF data. However, since in the KG-OLAP prototype implementation by Schuetz et al. (2021) 

SPARQL was used already and did not lead to sufficient performance, it was decided to try 

and only use low-level Spark methods for transforming the data. The decision was made in 

order to better be able to reap the benefits of Spark without having to rely on performance of 

SPARQL queries and without having to implement specific distributed querying either. Moreo-

ver, using RDDs can assure overall flexibility within the application for future additional aspects. 
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4.3. RDF and GraphX Mapping 

In this section it is described how the GraphX specific data model was constructed out of the 

RDF source data. It was studied how to best represent RDF data in accordance with the way 

that Spark and GraphX work with data. Therefore, it was first analysed whether there were 

already any mappings from RDF to GraphX in literature that could be used. Then, a mapping 

was defined keeping the KG-OLAP query operations that should be implemented and per-

formed in mind. All decisions were made based upon the objective of gaining performance 

advantages. 

First, a decision needed to be made on how the mapping between the RDF data – in this case 

not only triples but quadruples – should be done in general. A similar mapping to the work from 

Schätzle, Przyjaciel-Zablocki, Berberich, et al. (2016) was chosen, which they use in their im-

plementation of S2X. In short, this choice led to a model in which RDF objects and subjects 

are mapped to GraphX vertices and predicates are represented as edges between those ver-

tices. 

The following sections describe the decisions made for subjects, objects, relationships, named 

graphs and certain further information of the RDF-quads used within this thesis’ described 

prototype in more detail. 

4.3.1. Subjects and Objects 

Per definition, subjects in RDF can only be resources and not literals, which means they are 

usually represented as IRIs. In this thesis’ described prototype, RDF subjects are therefore 

read and stored as vertices, using the IRI as the property (data type String) and a 64-bit long 

Integer as the identifier, since those IDs are required when using GraphX. The identifier is 

created using a simple hash function which will be described later. 

With RDF objects, there are two types that need to be handled differently: resources and liter-

als. As with subjects, when an RDF statement’s object is a resource, in GraphX the IRI is 

simply stored as the property of the vertex and again a generated ID is added. However, when-

ever there is a literal in the source data, its value is retrieved as a String and stored as the 

vertex property. For example, the literal “hello world^^String” is stored with the property “hello 

world”. Again, an ID (64-bit long Integer) is added to uniquely identify the literal vertex. In order 

not to lose knowledge about the data type of the literal value, this information is stored in the 

edge as a property whenever this literal (object) is the destination vertex of the edge. This 

concept will be explained in the next sections about predicates in more detail. 

4.3.2. Predicates 

In GraphX, edges represent the relationship between two vertices. Therefore, every RDF pred-

icate is mapped to a GraphX edge. This edge contains the predicate as a property, as well as 

the datatype of the destination vertex which can either be “resource” if the destination vertex 

is a resource or the specific datatype if it is a literal (for example: “Integer”, “String”, “Boolean” 

etc.). In doing so, information about datatypes is not lost. Whenever literal values stored as the 
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edge property must be parsed to be used for calculations or analyses, its datatype can there-

fore easily be retrieved. The edge then also references the vertices that it connects. Edges 

hereby do not contain the vertices themselves or their attributes, only their IDs are stored di-

rectly with the edge referencing the vertices. 

4.3.3. Identifiers 

Since – as already mentioned – GraphX demands all vertices to be identified by a 64-bit long 

ID, it was decided to use a hashing algorithm (in this case MD5) to generate this ID. Hereby, 

the actual value of the RDF literal (the value) or resource (the IRI) is used and hashed into a 

64-bit long ID by using the following function call in Java: 

UUID.nameUUIDFromBytes(vertexObject.toString().get-

Bytes()).getMostSignificantBits() 

This way the nodes are identified uniquely within the dataset. When creating IDs in this kind of 

way it also facilitates the process of generating and adding new vertices to the graph since 

their ID does only depend on the vertex value and can therefore be created independently of 

other vertices that are already present in the graph. It does not require storing information 

about already used vertex IDs or having to query the data when adding new vertices. Hashing 

also makes sure that vertices are not duplicated in the graph. 

4.3.4. Context 

Another important consideration regarding the mapping of RDF to GraphX is how to deal with 

named graphs, which in KG-OLAP represent the context of the RDF triples they are valid for. 

Since the source data consists of quadruples (<subject> <object> <predicate> <graph>) and 

not just triples (<subject> <predicate> <object>) and GraphX does not support operations on 

multiple graphs, another way of dealing with the contexts had to be found so that the infor-

mation is not lost. Therefore, it was decided to store the context information – the name of the 

graph for which the RDF statement is valid – as a property of all edges that are contained 

within the specified cell. It was decided that the context should be stored with the edges and 

not the vertices, since in KG-OLAP RDF statements (combining an edge and two vertices) are 

only valid in a specific context, however, the vertices themselves may be used across multiple 

contexts. Therefore, it made sense to store context information with the edges rather than as 

a vertex property. This also potentially saves the number of vertices that need to be stored, 

since it reduces the total number of distinct vertices when the context is ignored while hashing 

the vertex values. In the data model, the resulting edge then therefore consists of the relation-

ship predicate, the target datatype, and the context for which it is relevant. In terms of actual 

code, those three properties are stored as fields within a Java class called Relation. This will 

be explained in Chapter 5.3: Implementation Details. 
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4.3.5. Type Property 

In RDF there can be numerous different types of predicates that describe a relationship be-

tween nodes. One of them is the special predicate rdf:type which associates a subject with a 

certain type. Even though statements containing the type property can also be regarded as a 

simple relationship and therefore mapped to a GraphX edge, it might also be interpreted as a 

direct property of the subject vertex since its type is described. Therefore, when constructing 

the GraphX data model there were two options to work with this specific predicate: 

• Option 1: <Subject-IRI> <rdf:type> <Object-IRI> 

o The subject becomes a vertex with the IRI as its property 

o The object becomes a vertex with the IRI as its property 

o The predicate rdf:type is represented as an edge between subject and object 

with the relationship rdf:type 

• Option 2: <Subject-IRI, type=Object-IRI> 

o The subject becomes a vertex with its IRI as its property and the object-IRI (the 

type of the subject) becomes an additional property of the subject itself 

o The object (denoting the subject’s type) is not represented as an additional ver-

tex 

o The predicate rdf:type is not represented as an additional edge 

The reason why it was decided to go for option 2 in the case of this thesis has two components. 

First, some of the query operations and transformations that are performed on the data in KG-

OLAP include a filter step which filters the data for certain types of vertices. Therefore, with 

option 2 when filtering the graph, only the vertices (and not all edges) need to be iterated 

through since the type-information needed is directly stored with them. The second reason 

was that by storing the type directly with the vertices the size of the data was reduced overall 

since less edges and vertices are created. This might lead to performance improvements since 

there is a smaller number of edge triplets in the graph to be processed and the type-objects 

are not present as vertices either. Nevertheless, it could be argued that also option 1 would be 

feasible and for other use cases might even be the better option especially since this would 

mean that the same type-object would only be present once (as a vertex) and not duplicated 

for multiple vertices as their property. However, in this specific case it was still decided on the 

second option. 
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4.3.6. Resulting RDF and GraphX Mapping 

After the considerations illustrated in the sections before, the ultimate way of mapping RDF 

data to the Spark GraphX structure for this thesis’ described prototype can be seen in Figure 

7:  

 

The table in Figure 7 shows again that when mapping elements from RDF to GraphX, subjects 

and objects become vertices and predicates become edges. The graph name becomes the 

edge property context and the object of any type-relation becomes a direct property of the 

subject of the RDF statement (and therefore of the GraphX vertex). 

  

Figure 7: RDF – GraphX Mapping 
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4.3.7. Example Graph Construction 

With the defined mapping the following example shows with a concrete small dataset how the 

intial base graph is constructed when transforming RDF triples into a GraphX graph. This 

constructed graph then constitutes the initial graph that KG-OLAP query operations may be 

performed on using Spark.  

The example RDF data constists of quadruples indicating that the triples are context-

dependend. Therefore, for example Jane is of type Person within context 1 and Frank works 

at the IT department within context 2: 

<Jane > <rdf:type> <Person> <context1>  

<Jane> <hasMother> <Lisa> <context1> 

<Jane> <hasAge> <24> <context1> 

<Frank> <rdf:type> <Person> <context2> 

<Frank> <hasWorkplace> <IT Department> <context2> 

 

Now when the mapping as described above is applied to the dataset, the following collections 

are constructed which can be seen in Figure 8 and 9: 

 

The collection – represented as a table – on the right in Figure 9 represents all objects and 

subjects that are present in the RDF quadruples adding their IRI (here those are concrete 

Strings) as the value property and every rdf:type statement is added directly as a second 

property: type. The edge collection in Figure 8 contains only the IDs of subjects and objects 

pointing to the vertex collection, the data type of the destination vertex, the actual predicate in 

the relationship column and also the context for which the edge is valid. 

It has to be noted here again that theoretically there would be the possibility for both the vertex 

and also the edge table to include multiple more columns with different additional properties. 

However, for the data and concept used within this thesis implementation, this was not included 

in the illustrations. 

  

Figure 8: Resulting vertex collection 

Figure 9: Resulting edge collection 
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5. Data Processing 

The following section first shows how the GraphX graph object representing the KG-OLAP 

cube is constructed in the prototype described within this thesis. Then, the query operations 

that can be executed on the graph are described as they are defined by Schuetz et al. (2021). 

Afterwards the underlying algorithms are broken down into steps and mapped to Spark-specific 

methods. 

5.1. GraphX Graph Construction 

For this thesis’ described prototype to be able to process RDF source data, first it needs to be 

transformed into an initial base graph representing the KG-OLAP cube without any transfor-

mations performed on the data. Therefore, a generator for this graph object was implemented 

using Spark additionally to the query operations. This creation of the graph is not included in 

the later performance experiments as it is regarded to be a data preparation task and not an 

actual transformation or query within the KG-OLAP context, which is the main focus of this 

thesis. Nevertheless, it is briefly outlined how the graph construction works. 

In this thesis it is assumed that the RDF source data is present as an N-Quad file. Simply 

speaking, in such files every line contains one RDF quadruple. There is also the possibility to 

easily transform other RDF formats like TriG and so on into N-Quads before then creating the 

actual GraphX graph. 

The generator of the GraphX graph then uses this N-Quad file as an input and reads it line by 

line before applying the mapping definitions from Chapter 4.3: RDF and GraphX Mapping using 

a variety of Spark and Java methods. Figure 10 illustrates the steps of this process: 

 

Figure 10: Base graph construction 

 

As it can be seen from the simplified illustration in Figure 10, the steps in the blue box are part 

of this thesis and implemented in the described prototype using Spark. The steps before could 

vary and are out of the scope of this thesis. Therefore, data sources might be sliced and diced 

or merged beforehand. They may be stored for example in a Data Lake, Lakehouse or Data 

Warehouse. Then, the data is assumed to be present in any form of RDF notation or serialized 

format which can be transformed to N-Quads and read by the Spark application of this thesis. 
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After the data is loaded, a GraphX graph object is created and all RDF statements with their 

subjects, objects, predicates and names graphs are mapped accordingly. The constructed 

graph is stored as object files in persistent storage and forms the basis for all KG-OLAP query 

operations. Object files here are a serialized form of the data within the GraphX graph object. 

Those files can then easily – and very fast – be read and loaded again using Spark whenever 

transformations should be performed on the data which will be explained in the further sections. 
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5.2. KG-OLAP Operations 

After the initial graph construction, transformations and query operations can be performed on 

the data contained in the base GraphX graph. Hereby in general the graph is first loaded from 

the object files that were created with the GraphGenerator using Spark methods. Then, the 

transformations and operation are executed, a new graph object is created and again persisted 

to storage as object files. This process is illustrated in Figure 11 in a simplified way: 

Figure 11: Graph transformation 

 

The following KG-OLAP operations are implemented in this thesis’ described prototype as de-

fined by Schuetz et al. (2021): 

• roll-up 

• pivot 

• reification 

For the roll-up operation, usually two steps are needed: a merge operation and a type of an 

abstraction. The abstraction can be of three different kinds: triple-generating abstraction, indi-

vidual-generating abstraction, or value-generating abstraction as defined by Schuetz et al. 

(2021). In this thesis’ described prototype, it is assumed that merge and/or slice-and-dice op-

erations have already taken place beforehand and therefore only the three categories of ab-

straction are implemented without the merging step. Moreover, reification and pivot operations 

are realized within this thesis’ described prototype. All query operations are then executed on 

the before constructed graph object with the help of Spark and GraphX libraries. 

To be able to use Spark and its parallelism optimally, first the algorithms needed in the KG-

OLAP context were analysed in detail and described in a theoretical way step by step in the 

following sections. Hereby the concepts of Schuetz et al.(2021) are briefly summarized to un-

derstand what the different operations do and how they work in general. Then, those steps are 

translated into more technical terms and algorithmic structure in order to then match the steps 

needed for the operations to Spark functions and methods. This was done to also determine 

which of the steps could be optimized through Spark regarding performance by focussing on 

the use of narrow transformations whenever possible as described in Chapter 2.6.3: Further 

Spark Terminology and Concepts. 

Even though the slice-and-dice and the merge operation were not included in the implemen-

tation in this thesis and are therefore not evaluated for their performance in the experiments, 
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their theoretical functionality and the steps involved were nevertheless described briefly in the 

following sections as well. In future work those operations could therefore also be implemented 

in Spark. For all other implemented operations that are the main focus of this thesis, a more 

detailed description and illustrations were constructed to better demonstrate how they work. 

Use of Broadcast Variables 

In terms of data processing there was also a decision on using broadcasted variables which 

are used within most of the operations and aim at improving Spark performance. 

In KG-OLAP some of the operations require the graph’s edge triplets to be filtered depending 

on a list of values or IDs of certain vertices. In the algorithms, those vertices are first extracted 

by filtering the graph on vertices or edges that fulfil a certain requirement. Such conditions may 

for example by a certain type-property of a vertex or a value of a relationship. The filtered 

vertices are then stored in a collection that is then later to be used as a lookup collection for 

the further steps in the algorithms. 

In order to now efficiently use this generated list of vertices for further filtering of the graph, one 

needs to iterate through the list checking whether a certain vertex is contained. Using those 

collections, however, require them to be present as lists (and not RDDs anymore) which means 

that the data has to be collected with the Spark method collect(). This function may be quite 

expensive to use as it brings all the data from partitioned RDDs back to the driver. Therefore, 

if the list is rather long this might lead to performance issues. 

This is why using broadcast variables that are available within Spark was considered. Broad-

cast variables are designed so that their content (their value, which in this case is the list of 

vertices) is wrapped up by Spark and then sent and copied to all parallel-working nodes once. 

Since it is read-only, it therefore does not need to be done multiple times but only distributed 

to all workers once and thus decreasing data distribution across partitions and nodes. 
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5.2.1. Triple-Generating Abstraction 

The triple-generating abstraction defined by Schuetz et al. (2021) transforms the graph by 

replacing certain individuals by their grouping object which is an abstraction of multiple individ-

uals grouped together. The grouping-instance is specified through a triple’s predicate value – 

a relationship between two nodes – where the triple’s subject should be replaced by the triple’s 

object. Then, all those subjects that are connected to the same object are grouped together 

since they are all replaced by the same grouping object. Therefore, the individuals are essen-

tially merged together into a group which is a more abstract individual than the individuals each 

on their own. 

This grouping is performed within a specific context or multiple contexts that may be defined. 

The data including the grouped structure again is then returned as a new graph. Thereby all 

triples with the predicate that is used for grouping at the beginning is retained in order to keep 

this information about the original – later replaced – individuals. 

Figure 12 containing an illustration of the algorithmic steps of the triple-generating abstraction 

shows in a simplified way how the algorithm works when looking at specific triples or rather 

quadruples directly. Here the rectangles represent RDF quadruples or RDD collections con-

taining edges or vertices. The arrows between the collections represent transformations per-

formed on the data leading to intermediate and eventually the end result. 

In this case, first the quadruples are filtered for ones that contain predicate1 and a subject that 

is of type1 which can be looked up in the vertex collection on the right of Figure 12. Then, in 

the filtered quadruples the subjects are replaced with their corresponding object. Therefore, at 

the end in all statements that contain subject1 or subject2, those subjects are replaced by 

object1. This leads to a grouping of subject1 and subject2 together. The original edges con-

taining predicate1, however, stay the same. 

  

Figure 12: Triple-generating abstraction execution steps 
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The next illustration in Figure 13 shows a part of the initial KG-OLAP graph and the result after 

the triple-generating abstraction in a graph-oriented way. Here not all intermediate steps are 

shown but instead more specific ATM data is used to show the algorithm in a graph view as 

well. All circles therefore represent nodes or vertices in the graph, all arrows represent edges 

with a relationship attribute between them. The dotted arrows indicate that here the relationship 

is not represented as an edge but rather a direct attribute of the vertex that it is connected to, 

which in the case of this thesis is the type property. The type itself is therefore also not illus-

trated as a node (not a circle in the illustration) but an oval. 

 

It can be seen that in this example graph, the nodes A, B, C and D are the filtered vertices that 

should be replaced by the nodes that they are connected to via the <usageType> predicate. 

This means that nodes A and B should be replaced with vertex E and nodes C and D should 

be replaced with vertex F. After the replacement is done, all other nodes that were connected 

to A, B, C or D are now connected to their replacements (E and F) instead. The only relation-

ship remaining the same is the type-relation as well as the original <usageType> relationship 

that was used for the filtering at the beginning. 

  

Figure 13: Triple-generating abstraction example graph 
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The following table shows the steps and which functions are used in the implementation of the 

triple-generating abstraction in this thesis with Spark. It is also stated whether those functions 

or methods can be categorized as a wide or a narrow transformation. 

Table 2: Triple-generating abstraction steps 

Spark 

Method 
Description 

Categoriza-

tion 

 

The algorithm takes the following parameters as input: 

- graph 

- replacementObject 

- groupingValue 

- (optional: list of contexts) 

 

Triplets.toJa-

vaRDD 
Get the triplet view of the graph data as a RDD Narrow 

Filter 

Go through all those edge triplets within the graph and fil-

ter them for 

- edges where the subject is of a certain type that 

has been specified as the replacementObject  

- edges where the relationship (edge property) con-

tains the supplied groupingValue 

- (and optionally edges of a certain context within the 

supplied list of contexts) 

Narrow 

Map 

Map the filtered edge triplets to edges of the form:  

- <sourceID> < Relationship property>  

<destinationID> 

This results in edges where the source vertex is the indi-

vidual that should be replaced, and the destination vertex 

is the individual that it should be replaced with 

Narrow 

Collect 

Collect the mapped edges (bring them back to the driver) 

so that they can be put into a HashMap.  

The HashMap for those pairs acts as a lookup or mapping 

table. 

Action 

ForEach 

Put all the collected edges into a HashMap with the follow-

ing structure: 

- key: sourceID, value: destinationID  

Not Spark 
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or they can also be imagined in the following way: 

-  (<vertexToBeReplaced>, <replacementVertex>) 

Triplets.toJa-

vaRDD 
Get the triplet view of the graph data as a RDD again Narrow 

Map 

Go through the edge triplets again and filter all edges 

where either the subject or the object (or both) is con-

tained in the mapping table as the <vertexToBeRe-

placed>, so the key of the key–value pairs  

Map all the triplets either to edges while replacing the sub-

ject and/or the object with their corresponding value within 

the HashMap (<replacementVertex>). All others are 

mapped to edges without changing any values. This leads 

to a complete RDD of all changed and old edges. 

Keep the original edges containing the groupingValue re-

lationship the same in order to not lose information about 

their origin 

Narrow 

Graph.apply 
Use graph apply to generate the new graph object with all 

changed and kept edges and vertices  
 

 
The output of the algorithm is then again a new GraphX 

graph object. 
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5.2.2. Individual-Generating Abstraction 

The individual-generating abstraction (Schuetz et al., 2021) is similar to the triple-generating 

abstraction since individuals (subjects and objects) are also replaced by a grouping-object. 

However, here the grouping-object is explicitly generated by adding a new individual that re-

places all the vertices of a specific type. Then, a reference is created (an edge) from the original 

individuals to the grouping object so that the information which individuals belong to which 

group is not lost. This might increase the number of triples since the grouping edges are added. 

Again, the operation uses the grouping property and type of individual as well as the context(s) 

that the operation should be done on as input parameters. The data is returned as a new 

transformed graph. 

Figure 14 shows in a simplified way that in the individual-generating abstraction first the data 

is filtered for predicate1 and the objects are mapped to new object-groups stored as new ver-

tices. Then, the grouping edges are generated with the object-groups as destination vertex. 

Next, all relevant subjects and objects are replaced by their object-groups and the new edges 

are combined with the old ones. Here again the rectangles represent RDF quadruples or RDD 

collections containing edges or vertices. The arrows between the collections represent trans-

formations performed on the data leading to intermediate and eventually the end result. 

  

Figure 14: Individual-generating abstraction execution steps 
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The next illustration in Figure 15 shows a part of the initial KG-OLAP graph and the result after 

the individual-generating abstraction in a graph-oriented way. Here not all intermediate steps 

are shown but instead more specific ATM data is used to show the algorithm in a graph view 

as well. All circles therefore represent nodes or vertices in the graph, all arrows represent 

edges with a relationship attribute between them. The dotted arrows indicate that here the 

relationship is not represented as an edge but rather a direct attribute of the vertex that it is 

connected to, which in the case of this thesis is the type property. The type itself is therefore 

also not illustrated as a node (not a circle in the illustration) but an oval. 

 

It can be seen that in this example graph the nodes A, B, C, D, E and F are the filtered vertices 

that should be replaced by new group vertices. Hereby for example A and D have to be re-

placed by the same object-group since they have the same <opStatus> which was defined as 

the groupingProperty. The same goes for B and E and C and F. This means that now new 

vertices G, H and I are constructed. The grouping relations <grouping> are added between the 

new grouping-vertices and the identified vertices to be replaced from before. Then, those ver-

tices are replaced in all other edges by their groups. After the replacement was done, all re-

maining nodes that were connected to A, B, C, D, E, or F are now connected to their replace-

ment. The only relationship remaining the same is again the type-relation as well as the original 

<opStatus> relationship that was used for the filtering at the beginning. 

  

Figure 15: Individual-generating abstraction graph example 
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The following table shows the steps and which functions are used in the implementation of the 

individual-generating abstraction in this thesis with Spark. It is also stated whether those func-

tions or methods can be categorized as a wide or a narrow transformation. 

Table 3: Individual-generating abstraction steps 

Spark 

Method 
Description 

Categoriza-

tion 

 

The algorithm takes the following parameters as input: 

- graph 

- groupingProperty  

- groupingPredicate 

- (optional: list of contexts) 

 

Triplets.toJa-
vaRDD 

Get the triplet view of the graph data as an RDD Narrow 

Filter 

Go through of those edge triplets within the graph and fil-

ter them for 

- edges where the relationship (edge property) con-

tains the supplied groupingProperty 

- (and optionally edges of a certain context within 
the supplied list of contexts) 

Narrow 

Map 

Map the filtered edges to a Tuple2 class type object of the 
following structure by adding the String “group” to the 
original subject attribute and generating a new identifier 
for this new object: 

- (<SubjectGroupID> <SubjectAttribute + ’group’>) 

Those represent the grouping vertices that are later used 
to replace other subjects and therefore grouping the 
statements. 

Narrow 

Collect 
Collect the tuples (bring them back to the driver) so that 
they can be put into a HashMap 

Action 

ForEach 

Put all the tuples into a HashMap with the following struc-
ture: 

- (key: sourceID, value: group vertex ID) 

Not Spark 

Map 

Map the filtered triplets from before to the form: 

- (sourceID, group vertex attribute, context) 

creating Tuple3 objects within an RDD 

Narrow 
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Map 

Map the generated Tuple3 to edges of the form: 

- (sourceID, group Vertex ID, relation) 

 by generating the ID of the group vertex attribute and us-
ing the supplied groupingPredicate for the creation of the 
Relation. 

The Relation (edge attribute) then has the following struc-
ture:  

- Source Vertex: sourceID 
- Destination Vertex: Group vertex ID 
- Relationship: groupingPredicate  
- Context: context 
- Destination datatype: Resource 

This creates new statements that represent the link be-
tween the original subject and their grouping vertex which 
can be interpreted as: <Subject><belongsTo><Group>. 
So, the information about the original Subject and which 
group it belongs to does not get lost. 

Narrow 

Triplets.toJa-
vaRDD 

Get the triplet view of the graph data as a RDD again. Narrow 

Map 

Go through the edge triplets again and filter all edges 

where either the subject or the object (or both) is con-

tained in the mapping table as the <sourceVertex>, so the 

key of the key–value pairs  

Map all the triplets either to edges while replacing the 

subject and/or the object with their corresponding value 

within the HashMap (<subjectGroup>). All others are 

mapped to edges without changing any values. This 

leads to a complete RDD of all new and old edges. 

Narrow 

Union 

Combine the edges where subject and or object were re-

placed or stayed the same with the new grouping edges. Narrow 

Union Combine all old vertices with the new grouping vertices Narrow 

Graph.apply 
Use graph apply to generate the new graph object with all 
changed and kept edges and vertices 

 

 
The output of the algorithm is then again a new GraphX 
graph object. 
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5.2.3. Value-Generating Abstraction 

The value-generating abstraction as defined by Schuetz et al. (2021) uses the graph and a 

predicate – for which the destination attributes (objects) should be aggregated – as its input. 

Then, an aggregation method needs to be chosen that should be performed on the data. The 

options here are SUM (sum), COUNT (number of items), AVG (average), MIN (minimum value) 

and MAX (maximum value). The data is first filtered for triples with the specified predicate, then 

for each individual that has for example two relationships of the specified predicate-type, the 

objects of those statements are used and the aggregation operation is performed. The aggre-

gated data is again returned as a graph. 

The following illustration in Figure 16 of the algorithmic steps of the value-generating abstrac-

tion shows in a simplified way that first the data is filtered for predicate1 and the triples are 

mapped to pairs containing the values that should be aggregated, the RDF subject and the 

context for which the data is relevant. Then, for each subject all its values (for subject1 this 

would be 123 and 2) are aggregated (in this example they are summed up) and new vertices 

are created for the aggregated values (here 125 for subject1). New edges between the new 

calculated values and the original subjects are created containing the same predicate that was 

used for the aggregation. Then, the old edges are combined with the newly generated ones.  

The notation in Figure 16 again is the same with rectangles representing RDF quadruples or 

RDDs containing edge triplets or edges or vertices. The arrows show transformations that lead 

to intermediate and eventually the end results. 

  

Figure 16: Value-generating abstraction execution steps 
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Figure 17 shows a part of the initial KG-OLAP graph and the result after the value-generating 

abstraction in a graph-oriented way. Here not all intermediate steps are shown but instead 

more specific ATM data is used to show the algorithm in a graph view as well. All circles there-

fore represent nodes or vertices in the graph, all arrows represent edges with a relationship 

attribute between them. The dotted arrows indicate that here the relationship is not represented 

as an edge but rather a direct attribute of the vertex that it is connected to, which in the case 

of this thesis is the type property. The type itself is therefore also not illustrated as a node (not 

a circle in the illustration) but an oval. Literals are here also represented as oval since they are 

in fact vertices but different in their type. All other nodes are considered to be resources iden-

tified by a IRI. 

 

In Figure 17 it has to be noted that prior to the value-generating abstraction, a triple- or indi-

vidual-generating abstraction step was already performed which can be seen by the connec-

tion between the nodes D and B to their replacements F and C and A to their replacement E. 

Then, the value-generating abstraction can aggregate the <wingspans> of the groups E and 

F. 

The illustration shows that in this example graph the nodes E and F are the filtered vertices 

that should be used to aggregate a certain value they are connected to by a certain edge 

property. In this case this is the <wingspan> predicate. This means that for each filtered indi-

vidual, all their found wingspans are summed up, creating an aggregated wingspan sum as a 

new value. 

Therefore, the wingspan values for each node (E and F) are summed up and added as a new 

node which can be seen in the transformed graph. All other edges between the original nodes 

stay the same. Also the <type> property remains the same as well. 

  

Figure 17: Value-generating abstraction graph example 
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The following table shows the steps and which functions are used in the implementation of the 

value-generating abstraction in this thesis with Spark. It is also stated whether those functions 

or methods can be categorized as a wide or a narrow transformation. 

Table 4: Value-generating abstraction steps 

  

Spark 

Method 
Description 

Categoriza-

tion 

 

The algorithm takes the following parameters as input: 

- graph 

- aggregateProperty 

- aggregateType 

- (optional: list of contexts) 

 

Triplets.toJa-

vaRDD 
Get the edge triplet view of the graph data as an RDD Narrow 

Filter 

Go through all those edge triplets and filter them for: 

- edges that have the aggregateProperty as predi-

cate (as edge property relationship) 

- (and optionally only the edges with a certain con-

text within the list of contexts) 

Narrow 

MapToPair 

For all those filtered edges, create key–value pairs con-

taining the source vertex of the edge (plus the context of 

the edge) and the destination vertex attribute. Hereby the 

combination of the vertex and the edge context acts as a 

key and the destination vertex as the value of the key–

value pair in the following form: 

-  ((sourceID, context), destinationAttribute) 

Narrow 

 The next steps are dependent on the aggregation type  
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 AVG  

MapValues 

For both edges and vertices map the values of the pairs 

to new tuples leading to the following structure: 

- ((sourceID, context), (destinationAttribute, 1)) 

This represents two tuples within a tuple, the first one be-

ing the source vertex and its context from before and the 

second representing the values that should be aggre-

gated and a “count” which is 1 for each value. The coun-

ter is then later used to calculate the average. 

Narrow 

Reduce-

ByKey 

For both the new edges and vertices reduce the pairs by 

the key (source vertex + context) to bring the values for 

each key into the form  

- (destinationValue + destinationValue, 1 + 1) 

This step aggregates for each distinct pair the sums of the 

destination values and the sums of the counts. 

Wide 

MapVaules 

Map the values of the pair again by dividing the sums by 

the counts for each key (source vertex + context) to get 

the average per key 

Narrow 

Map 

Map the pairs to new edges containing the aggregated 

values as destination vertex, the source vertex as source 

vertex and the aggregateProperty as relationship attrib-

ute. 

Also map them to new vertices containing the aggregated 

value as vertex value and a generated ID. 

Narrow 
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 COUNT  

MapValues Map the values to 1 to count each occurrence of the pair Narrow 

Reduce-

ByKey 

Reduce the key–value pairs to new pairs containing the 

key (source vertex + context) and the number of the val-

ues (counts) to generate the new aggregated values for 

each key. 

Wide 

Map 

Map the pairs to new edges containing the aggregated 

values as destination vertex, the source vertex as source 

vertex and the aggregateProperty as relationship attrib-

ute. 

Also map them to new vertices containing the aggregated 

value as vertex value and a generated ID. 

Narrow 

SUM: 

Reduce-

ByKey 

Directly reduce the pairs by key to sum up the destination 

values to generate new aggregated values for each key 

(source vertex + context) 

Wide 

 

Map Map the pairs to new edges containing the aggregated 

values as destination vertex, the source vertex as source 

vertex and the aggregateProperty as relationship attrib-

ute. 

Also map them to new vertices containing the aggregated 

value as vertex value and a generated ID. 

Narrow 
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MAX: 

Reduce-

ByKey 

Directly reduce the pairs by key to find the maximum of the 

destination values for each pair with a mathematical Java 

function and generate new values from the found minimum 

for each key. 

Wide 

Map Map the pairs to new edges containing the aggregated 

values as destination vertex, the source vertex as source 

vertex and the aggregateProperty as relationship attrib-

ute. 

Also map them to new vertices containing the aggregated 

value as vertex value and a generated ID. 

Narrow 

MIN: 

Reduce-

ByKey 

Directly reduce the pairs by key to find the minimum of the 

destination values for each pair with a mathematical Java 

function and generate new values from the found minimum 

for each key. 

Wide 

Map Map the pairs to new edges containing the aggregated 

values as destination vertex, the source vertex as source 

vertex and the aggregateProperty as relationship attrib-

ute. 

Also map them to new vertices containing the aggregated 

value as vertex value and a generated ID. 

Narrow 
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 The next steps apply to all aggregation types  

Triplets.toJa-

vaRDD 

Get the edge triplet view of the graph data as a RDD again.  Narrow 

Filter Filter the triplets that do need have to be changed which 

are: 

- all edges that have to be kept as they are i.e., the 

ones that do not contain the aggregateProperty as 

edge property (and optionally that are not within the 

list of contexts), all others received new destination 

vertices in the aggregation steps before 

Narrow 

Map Map the triples to edges where nothing was changed 

(keeping all their attributes and source and destination val-

ues the same) 

Narrow 

Union Combine the newly generated edges with the edges that 

were kept the same 

Narrow 

Union Combine the newly generated new vertices with the al-

ready existing vertices 

Narrow 

Graph.apply Use graph apply to generate the new graph object with all 

changed and kept edges and vertices 

 

 The output of the algorithm is then again a new GraphX 

graph object. 
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5.2.4. Reification 

The reification operation (Schuetz et al., 2021) transforms the graph by creating a new vertex 

that represents a whole triple. The new vertex then gets connected to the original subject, the 

original object and a new type vertex via supplied predicates. In order to specify the statements 

that should be reified, a predicate used to find them needs to be provided. Then, for each edge 

that contains this predicate, a new generated individual, a new type-individual and three edges 

from this new statement-vertex connecting it to the original subject, the object of the statement 

and the type are added. The result is again a new graph. 

The following illustration in Figure 18 of the algorithmic steps of the reification shows in a sim-

plified way that first the data is filtered for predicate1 and a new vertex is created to represent 

the whole RDF statement as one. Furthermore, a vertex for the new type individual is created. 

Then, three edges are created referencing the original subject1, object1 and the type of the 

statement and connecting them to the new statement vertex via supplied predicates which are 

in this case <hasSubject>, <hasObject> and <hasType>. Next, all old and new edges are 

merged. Again, in this illustration the rectangles represent RDF statements or RDDs with edge 

triplets or vertices and the arrows between them show transformations leading to intermediate 

or eventually the end result. 

  

Figure 18: Reification execution steps 
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The next illustration shows a part of the initial KG-OLAP graph and the result after the reifica-

tion operation in a graph-oriented way. Here not all intermediate steps are shown but instead 

more specific ATM data is used to show the algorithm in a graph view as well. All circles there-

fore represent nodes or vertices in the graph, all arrows represent edges with a relationship 

attribute between them. The dotted arrows indicate that here the relationship is not represented 

as an edge but rather a direct attribute of the vertex that it is connected to, which in the case 

of this thesis is the type property. The type itself is therefore also not a node (not a circle in the 

illustration) but an oval. 

 

From Figure 19 above it can be seen that in this example graph, the statements <A><us-

age><F> and <B><usage><H> are chosen to be reified by filtering them through the <usage> 

predicate. Then, for both of those statements a new vertex representing the whole statement 

(including the relationship, subject and object) is created, which in this example is node C 

representing the statement <A><usage><F> and D representing <B><usage><H>. 

Then, the subjects of the original statements (A and B) are referenced and connected to the 

new statement vertices (C and D) via the <subject> relation indicating that A and B are the 

subjects of the statements C and D. The objects of the original statements (F and H) are ref-

erenced and connected to the statement vertices with the <object> relation. Also, a new vertex 

– the type vertex – is created and connected to the statements via the <type> relation (not to 

be confused with the dotted line saying <type> as well; this is the vertex property and not an 

actual edge). The relation that the original statements were filtered by (<usage>) and also the 

type-property stay the same in the transformed graph. 

  

Figure 19: Reification graph example 
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The following table shows the steps and which functions are used in the implementation of the 

reification operation in this thesis with Spark. It is also stated whether those functions or meth-

ods can be categorized as a wide or a narrow transformation. 

Table 5: Reification steps 

Spark 

Method 
Description 

Categoriza-

tion 

 

The algorithm takes the following parameters as input: 

- graph 

- reificationPredicate 

- type vertex IRI 

- objectRelation 

- subjectRelation 

- (optional: list of contexts) 

 

Triplets.toJa-

vaRDD 
Get the edge triplet view of the graph data as a RDD Narrow 

Filter 

Go through all those triplets and filter them for: 

- edges that contain the reificationPredicate as the 

predicate (relation property) 

- (and optionally that are contained within the speci-

fied contexts) 

Narrow 

New Vertex 
Create a vertex object with the supplied type vertex IRI as 

attribute and generated ID to identify the vertex 
Not Spark 

Parallelize 

Use parallelize to create an RDD from the type vertex ob-

ject to be able to union it later with the already existing 

vertices in another RDD 

Narrow 

Map 

Map the filtered triples from before to instances of the type 

Tuple4 of the form: within an RDD: 

- sourceID 

- destinationID 

- new statement-vertex attribute (IRI) 

- context 

Narrow 
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Map 

Map the Tuple4 objects to Tuple5 objects within the RDD 

to generate the ID from the new statement vertex leading 

to the form:  

- sourceID 

- destinationID 

- new statement-vertex attribute (IRI) 

- new statement-vertex ID 

- context 

Narrow 

Map 

Map the Tuple5 RDD to new vertices in the form of to rep-

resent the new statement vertices by themselves: 

- new statement-vertex ID 

- new statement-vertex attribute (IRI) 

Narrow 

Map 

From the Tuple5 RDD also map the RDD to edges of the 

form: to represent the link from the new statement vertex 

to the original subject:  

- statement vertex ID 

- sourceID 

- subjectRelation (“hasSubject”) 

Narrow 

Map 

From the Tuple5 RDD also map the RDD to edges of the 

form: to represent the link from the new statement vertex 

to the original object:  

- statement vertex ID 

- destinationID 

- objectRelation („hasObject“) 

Narrow 

Map 

From the Tuple5 RDD also map the RDD to edges of the 

form: to represent the link from the new statement vertex 

to the new type vertex:  

- statement vertex ID 

- type vertex ID 

- type-relation (“type”) 

Narrow 

Union Combine the old edges with the newly generated edges Narrow 

Union Combine the old vertices with the new vertices Narrow 

Graph.apply 
Use graph apply to generate the new graph object with all 

changed and kept edges and vertices 
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The output of the algorithm is then again a new GraphX 

graph object. 
 

 

5.2.5. Pivot 

The pivot operation (Schuetz et al., 2021) adds dimensional values – that define a KG-OLAP 

cell or context – to certain individuals within that context. Therefore, the dimension that should 

be used for the pivot operation and which of the individuals should receive the connection to 

this dimension value needs to be specified. Furthermore, the context(s) for which the operation 

should be performed may be defined. Then, the graph is filtered for the specified dimension 

predicate (for example <hasLocation>) in the global named graph. Then, for the specified in-

dividuals (for example vertices that are of the type <ManouevringAreaUsage>) a new edge 

with the specified predicate and the same object referenced via the original predicate (the 

<hasLocation> relationship) is added to the graph. The result of the operation is a new graph. 

The following illustration in Figure 20 of the algorithmic steps of the pivot operation shows in a 

simplified way that first the data is filtered for predicate1 which represents the dimension pred-

icate in the global context. The data is also filtered for predicate2 which contains the individuals 

for pivoting. It is then checked whether the individuals found are within the correct modules 

corresponding to the supplied context. If that is the case, they are mapped to a new edge with 

the pivotPredicate (predicate4). New and old edges are combined. Hereby again rectangles 

illustrate RDF statements or RDDs containing edges or vertices, the arrows connecting them 

show the transformational steps leading to intermediate or end results. 

Figure 20: Pivot execution steps 
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The next illustration in Figure 21 shows a part of the initial KG-OLAP graph and the result after 

the pivot operation in a graph-oriented way. Here not all intermediate steps are shown but 

instead more specific ATM data is used to show the algorithm in a graph view as well. All 

circles therefore represent nodes or vertices in the graph, all arrows represent edges with a 

relationship attribute between them. The dotted arrows indicate that here the relationship is 

not represented as an edge but rather a direct attribute of the vertex that it is connected to, 

which in the case of this thesis is the type property. The type itself is therefore also not a node 

(not a circle in the illustration) but an oval. Literals are represented as ovals even though there 

are technically also normal nodes in the graph. Contexts are represented as dotted boxes 

indicating that the data the box contains is valid for this specific context. 

 

It can be seen that in this example graph in Figure 21, first the modules that have the correct 

value at their <hasLocation> relationship (here node D) are filtered within the global context 

which results in the vertex A. Then, the corresponding modules of cell A (here <module-1>) 

are used for the pivoting. Within the <module-1> context, triplets with the predicate <warning> 

– supplied as the selectionCondition – are filtered. The subjects of those statements (here 

nodes B and C) are the ones that should receive the pivoting relation to the dimension value 

vertex D. Those required edges are then created within module-1 by using the pivot predicate 

<hasLocation> which results in the edges <B><hasLocation><D> and <C><hasLocation><D>. 

The data of the global context stays the same as well as all other edges that were present 

before and the type properties are kept in module1. 

  

Figure 21: Pivot graph example 
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The following table shows the steps and which functions are used in the implementation of the 

pivot operation in this thesis with Spark. It is also stated whether those functions or methods 

can be categorized as a wide or a narrow transformation. 

Table 6: Pivot steps 

Spark 

Method 
Description 

Categoriza-

tion 

 

The algorithm takes the following parameters as input: 

- graph 

- dimensionPropert 

- pivotProperty 

- type 

- selectionCondition 

- (optional: list of contexts) 

 

Triplets.toJa-

vaRDD 
Get the edge triplet view of the graph data as a RDD Narrow 

Filter 

Go through all those edge triplets and filter them for: 

- edges that contain the dimensionProperty as rela-

tion attribute 

- this could for example be the “hasLocation” prop-

erty 

Narrow 

Map 

Map the filtered edges to new tuples and adding the 

String “mod” leading to tuples of the form: 

- (<sourceAttribute + “mod”>, <destinationID>) 

By adding “mod” automatically the correct contexts are 

referenced as by the definition of the KG-OLAP data. 

Narrow 

Collect 
Collect the created tuples (bring them back to the driver) 

so that they can be put into a HashMap 
Action 

forEach 

Put all the tuples in a HashMap with the following struc-

ture: 

-  key: sourceAttribute + “mod” 

- value: destinationID 

Not Spark 

Triplets.toJa-

vaRDD 
Get the triplet view of the graph data as a RDD again. Narrow 
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Filter 

Go through the whole graph again and filter all triples that 

contain a subject of the type specified as the selection-

Condition (and optionally that are contained within the 

specified contexts) 

Narrow 

Map 

Map filtered triples to new tuples of the form: 

-  (sourceID, context) 

Narrow 

Map 

Map the tuples to new edges using the lookup HashMap 

of the form: 

- sourceID, as sourceID 

- looked up ID as destinationID 

- pivotProperty as relationship attribute 

Narrow 

Union Combine all the old edges with the new edges Narrow 

Graph.apply 
Use graph apply to generate the new graph object with all 

changed and kept edges and vertices 
 

 
The output of the algorithm is then again a new GraphX 

graph object. 
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Since also the operations slice-and-dice and merging are part of the KG-OLAP concept, those 

two operations are described now in more detail. However, the steps included in the algorithm 

were not mapped to specific Spark methods and functions, since the operations are not part 

of the practical implementation described within this thesis. 

5.2.6. Slice-and-Dice 

As described by Schuetz et al. (2021) the slice-and-dice operation simply creates a sub-cube 

of the original knowledge graph cube by defining dimension attribute values that should be 

included in the subset of knowledge. Thereby the needed cells and their modules are cut out 

of the initial cube as well as their covered cells as defined through the dimension hierarchies. 

In terms of programming, this means that the slice-and-dice operation takes the whole graph 

object as an input and reduces it to a certain slice or dice. In a graph-oriented view, the oper-

ation leads to only certain vertices and edges with certain contexts being included in the re-

sulting subgraph. 

Therefore, values for each dimension of the cube need to be specified that should be extracted 

which can for example be a certain location, a certain importance and a certain date in the 

ATM setting. Then, all cells (contexts) within the cube with those values as their dimensions 

are filtered. In the GraphX KG-OLAP data model that would mean that first all contexts defined 

through the specifies dimension values must be extracted. Then, all edges with one of those 

certain filtered contexts are included in the subgraph, as well as all the vertices that are con-

nected by those edges. 

For the selected cells or modules, all other cells that are covered by them (due to their roll-up 

relationships) are also included in the subgraph using the <coverage> RDF predicate. The 

data of those cells – that is contained in their corresponding modules – is returned as a new 

graph which may contain equally or less triples than the original graph object. 
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The basic steps in this operation are the following: 

Input variables: graph, values for all dimensions at which should be sliced or diced 

1. For each dimension 

1.1. Go through the whole graph and filter the edge triplets that have an edge with the 

property <hasDimension> for the specific dimension (for example <hasLocation>) and 

the specific value as destination vertex (for example <Cell> <hasLocation> <Austria> 

where <Austria> is the specified dimension value that should be used for the slice-

and-dice operation) 

1.2. Also include all edges that have dimension values that are covered by the specified 

value (for example <Linz> is also covered by <Austria>) which are represented as a 

rollup/coverage relationship in the graph. 

1.3. Create a list of those subjects (which are the cells with the specified hierarchy values) 

with the correct dimension values, those are the contexts that should be included in 

the sliced or diced subgraph. 

2. Intersect those resulting lists of those subjects (cells) to find the ones that satisfy all values 

of all four dimensions. 

3. Create a list of all those subjects (contexts) 

4. Go through the whole graph again and now filter all the edges which’s context is contained 

in the list or that belong to the <global> context since this data should also be included as 

the contained knowledge is applicable for all contexts and therefore always part of any 

subgraph. 

5. Create a new subgraph with the filtered edges and vertices. 

Output: new GraphX Graph object 
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5.2.7. Merge 

The merge operation as defined by Schuetz et al. (2021) takes the graph and merges 

knowledge of certain cells at particular levels of dimensions with their covered, “lower” level 

cell knowledge. Therefore, one needs to specify the hierarchy level – for each dimension that 

exist in the KG-OLAP cube – that the cells should be merged to. Then, for each of those cells 

at the particular dimension levels, all covered cells and their modules are retrieved. The context 

of all edges within those modules is then overwritten, thus merging them to the cell in the 

specified dimension hierarchy. This leads to all the knowledge from dimension hierarchies from 

the lower levels now being contained within the same, higher context and essentially merging 

them together into one. 

The basic steps in this operation are the following: 

Input variables: graph, level of all dimensions at which should be merged 

1. For each dimension: 

1.1. Go through the whole graph and filter the edge triplets that have an edge with the 

property <atLevel> and the specified level as destination vertex (for example if the 

value “Level_Date_Month” is specified for the date dimension, all edges that are of the 

structure <subject> <atLevel> <Level_Date_Month> are retrieved) 

1.2. Create a list of those subjects (those represent all the members of the specified di-

mension hierarchy level, for example <October> <atLevel> <Level_Date_Month> then 

the subject <October> is put into the list) 

1.3. Go through the whole graph again and find edges that have one of those values from 

the list as destination vertex in the form of for example <Cell> <hasDate> <October> 

2. Intersect those resulting lists of the found subjects (cells) to find the ones that satisfy all 

levels of all four dimensions 

3. For the resulting cells, get all the other cells that are covered by them as well (for example 

the Month of October also covers the date 4th of October) 

4. Create a list of all those covered subjects (contexts) 

5. Go through the whole graph again and find all statements with a context present in this list 

6. Replace their context with their corresponding covering context (which is from a hierarchy 

level above) which merges lower hierarchy level data to contexts at levels above 

7. Create a new graph with the merged data 



 

  81 

8. Output: new GraphX graph object 

 

When looking at the description and the details on the tables of each of the operations that 

were implemented, it can be seen that it was tried to stick to as many narrow transformations 

as possible. This was done in order to make sure that performance is as optimal as possible 

regarding Spark. Whenever a list needed to be created to be iterated through, this list was 

converted to a broadcast variable to make sure that every node can use the list in parallel and 

the list is sent to the workers only once. 
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5.3. Implementation Details 

The following section contains detailed information about the actual Java program that was 

written when implementing the prototype for KG-OLAP using Spark (GraphX). The code in-

cludes both the construction of the base graph from N-Quads as well as the specific KG-OLAP 

operations on the cube, generating a new transformed graph as an output. 

5.3.1. Class Relation 

In the technical data model established within this thesis’ described prototype, edges between 

vertices in the GraphX graph are of the type Relation which is a Java class that represents the 

relation between two vertices with certain attributes describing this relationship. 

The Relation type therefore consists of the multiple fields. The field relationship is used to store 

the original predicate value of the RDF triple that the edge is created from. Here simply the 

String value of the predicate is used. The field context contains the name of the graph of the 

original dataset that was supplied to the GraphGenerator when creating the initial GraphX 

graph. The field targetDatatype stores either the type of the literal (for example String, Integer, 

Boolean) of the original RDF object (the destination vertex of the GraphX edge) as a String or 

the String “Resource” when the destination vertex is a RDF resource and not a literal. 

5.3.2. Classes Vertex, Resource and Literal 

The Vertex interface is required in order to be able to create the initial graph object (which is 

done with the help of the GraphGenerator class) where there is a function accepting Resources 

and Literals and storing them in the same collection. Therefore, an interface was created to be 

able to abstract from the more specific classes Resource and Literal. 

The classes Resource and Literal therefore then implement the Interface. A Resource is used 

to represent any RDF resource (object or subject) that is not a literal and has the fields value 

and type to store the IRI of the RDF subject or object and the rdf:type property if there is one 

present in the source data. The Literal class can be used for any RDF literal as representation 

where only the value of the RDF literal is stored in the field value. 

5.3.3. Class GraphGenerator 

The GraphGenerator class represents functionality for creating a new initial base graph directly 

from the RDF data source. Therefore – in the case of this thesis – a N-Quad file is supplied as 

input which is a serialized form of RDF triples. Each row contained in the source file is iterated 

through and analysed for its contents. The class then creates vertices from all subjects and 

objects in the RDF statements as described in Chapter 4.3: RDF and GraphX Mapping. After-

wards, the class creates edges connecting the already created vertices. Hereby, the RDF-

predicate is stored as a field value of the edge which is of class type Relation describing the 

relationship between the two vertices. Moreover, the graph name within the RDF statements 

is stored in the edge as an additional field which serves as the context described in 4.3.4 

Context. 
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It is important to note that in general every single distinct RDF statement is translated into one 

edge in the GraphX graph. However, all RDF statements that describe a rdf:type-relation (pred-

icate = <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>) are not converted into edges in 

the graph. In this case the type-property is directly stored with the subject-vertex as an addi-

tional field. 

The following methods contained in the class are involved in this process: 

getJavaRDD 

This method loads the N-Quad file from a specified path and reads every line of it separately 

It thereby also needs a supplied JavaSparkContext that must be created as parameter in order 

to do so. 

The base data might look like this within the N-Quad File: 

<A> <type> <x> <Graph1> . 

<A> <hasParent> <B> <Graph1> . 

<A> <hasChild> <C> <Graph1> . 

<B> <hasParent> <D> <Graph2> . 

<D> <hasAge> <5> <Graph2> . 

Then, the method creates a quadruple (stored as instance of the class Quad which is gener-

ated with the help of the RDFManager of the Jena library) for each found valid line. A line is 

valid when it is not empty, not a comment and has length > 1. 

Those quadruples are directly stored in a JavaRDD<Quad> which is then returned as the result 

of the method. A JavaRDD is the specific Java version of a Spark RDD. 

generateGraph 

This method first calls the getJavaRDD method to generate the JavaRDD containing the quad-

ruples. Then, all RDF statements (each represented as a Quad) are filtered for ones that do 

not contain the type-relation as predicate. For each of those statements, an edge is created 

and put into a RDD of the form JavaRDD<Edge<Relation>>. The Edge class is part of Spark 

and represents edges with a specified type which in this case is the Relation-type. The Rela-

tion-class then contains fields that describe the edge which in the case of this implementation 

is the context, predicate and also the destination vertex datatype as already described. 

All subjects of such statements are mapped to new vertices of type Resource since there can 

only be resources and no literals in the subject of an RDF statement. Resource again is a 

custom created class that contains a field for the vertex value and the type field. 
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All objects of those statements are also mapped to vertices, but it is first checked whether they 

are in fact literals or if they are also resources. In the example from above, subjects A, B and 

D are all resources. Object C is also a resource and object 5 is a literal: 

A = resource 

B = resource 

C = resource 

D = resource 

5 = literal 

In case of literals, the literal value is used as the vertex value. For resources, again their URI 

is stored as its value. A list of statements without type-relation is now generated that might look 

like this in an abstract way: 

[A(no type), B(no type), C(no type), D(no type), 5(no type)] 

Then, all statements that contain the type-relation are filtered and mapped to tuples with an ID 

and the vertex itself which again contains the URI of the subject and also the object of the 

statement which describes the subject’s type. 

In this example, subject A is the only subject where there is a type-relation present in the whole 

graph. All other statements and therefore all other subjects do not have a type. 

<A> <type> <x> <Graph 1> . 

<A> <hasParent> <B> <Graph 1> . 

<A> <hasChild> <C> <Graph 1> . 

<B> <hasParent> <D> <Graph 2> . 

<D> <hasAge> <5> <Graph2> . 

Therefore, only the vertex A is stored in the list of vertices with a type. 

[A (type x)] 

Then, the list of vertices without a type are compared with the list of vertices containing a type 

since both may contain the same vertices as all RDF statements are considered here. All ver-

tices that are already contained in the list of vertices with a type are removed from the list of 

vertices without a type to remove duplicates.  

[A(no type), B(no type), C(no type), D(no type), 5(no type)]  

MINUS [A(type x)]  

= [B(no type), C(no type), D(no type), 5(no type)] 
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Then, the rest of the vertices without a type that remained after the subtraction is combined 

with the vertices that do have a type to generate a distinct list of subject-vertices with as much 

(type) information as possible: 

[B(no type), C(no type), D(no type), 5(no type)] + [A(type x)] 

= [B(no type), C(no type), D(no type), 5(no type), A(type x)] 

Each of those vertices is then mapped to a new instance of type Tuple2 of with the structure 

<Object, Object>. Hereby the first object donates the ID of the vertex and the second one the 

actual instance of class Resource or class Literal. Depending on whether there is any type 

information about the vertex or not the type is stored in the type field of the Resource class. All 

other Resources receive the default value “no type” as type value. Now the graph is generated 

out of the edges and vertices and returned by the used method. Hereby the method Graph.ap-

ply() provided by GraphX is used. 

The reason for this way of creating the vertices was to ensure that Spark can – as long as 

possible – work with RDDs in parallel without having to collect the data to the driver in between. 

5.3.4. Interface Transformation 

The Transformation interface contains the transform-method and is implemented by classes 

that represent KG-OLAP operations (pivot, reification, types of abstraction). 

For each KG-OLAP operation there are two different transform-methods (which are included 

in the interface). One of them uses a list of String values (ArrayList <String> contexts) as an 

input parameter in addition to all other parameters that both use. Therefore, the transform 

operation is in this case only performed on all the contexts that are defined in this list. This 

means that before performing the transformations, the dataset is basically filtered by looking 

whether the edge belongs to a context that is contained in the list. 

The second implementation of the transform-method ignores those contexts and executes the 

operation on the whole dataset without filtering it before doing so. Whenever the context list is 

used, it is transformed into a broadcast variable so that it can be used by all tasks at the same 

time when needed. The purpose of broadcasting information is described in Chapter 5.2 KG-

OLAP Operations. 

Generally, all the transformations follow a similar logic which will be explained later in the clas-

ses’ descriptions. In simple terms the steps are the following: 

First, triplets are filtered for a certain relationship or subject type. The found triples are mapped 

to new vertices and/or new edges. This can be done by generating new values or replacing 

individuals with others. Then, edges or vertices are replaced with new ones, or newly gener-

ated ones are added to the graph. Lastly, a new graph is generated and returned. 

The following classes implement the Transformation interface and follow the described pro-

cess in some way. 
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5.3.5. Class Reification 

This method reifies RDF statements that contain a certain predicate. First, a new vertex which 

is a tuple is created to represent the statement to be reified itself. Another vertex is created to 

represent the type of the statement. Three edges are created to describe the statement-vertex: 

a connection to the original subject-vertex, one to the original object-vertex and one to the 

generated type-vertex. 

The steps in the code are therefore as follows. All triplets in the supplied graph that contain a 

certain relationship (value of the relationship field of the edge of class Relation) are filtered and 

then those found statements are mapped to a new Tuple4 instance which contains: 

o the ID of the subject-vertex of the statement 

o the ID of the object-vertex of the statement 

o a new resource-vertex that represents the statement as an individual (stored as 

the vertex field value) 

o the context for which the statement is valid (field context of class Relation) 

Then, the creation of a new type-vertex (the type-vertex value has to be specified by the user 

and the identifier is then generated with the getIDOfObject method) takes place. Next, the type-

vertex is put into a list which is parallelized to transform it into a RDD (since it later has to be 

joined with the other vertices present as RDDs by a union operation).  

Afterwards, the statements from before in the form of a list of type Tuple4 are then further 

processed by adding a 5th attribute (making them a Tuple5 type) which is an ID of the newly 

generated statement generated by the getIDOfObject method. 

From the list of Tuple5 objects, the new vertices are created which then results in objects of 

the following form: (ID, Vertex (Statement-value)) for each of the individuals contained in the 

list of Tuple5 objects. 

Furthermore, three edges for each of the Tuple5-vertices are needed: 

• New edge with the statement as the source vertex (subject), the subject-relation as the 

predicate (field value of the Relation class) as well as the context (field context of the 

Relation class), and the original subject as the destination vertex of the Relation 

• New edge with the statement as the source vertex (subject), the object-relation as the 

predicate (field value of the Relation class) as well as the context (field context of the 

Relation class), and the original object as the destination vertex of the Relation 

• New edge with the statement as the source vertex (subject), the type-relation as the 

predicate (field value of the Relation class) as well as the context (field context of the 

Relation class), and the generated type-vertex as the destination vertex of the Relation 

Then, all the already existing edges and vertices are joined with the new ones by using the 

Spark method union() which creates a new RDD for both edges and vertices. Eventually, again 

a new graph is created from the two RDDs. 
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5.3.6. Class Pivot 

The class Pivot also implements the transformation interface. The steps in the code are as 

follows: 

First of all, all the edge triplets of the graph that contain the dimensionProperty as a predicate 

(e.g.: hasLocation, hasDate, etc.) are filtered and mapped to new tuples which contain: 

• The source attribute of the filtered triplets (this is the identifier of a cell in the KG-OLAP 

cube since statements with dimensionProperties contain subjects that represent cells) 

with the added String -mod (by adding ‘-mod’ automatically the identifier for the cell’s 

module is retrieved since modules in KG-OLAP are named like their corresponding 

cells plus the added String ‘mod’) 

• The ID of the destination vertex (which is the dimension value e.g.: Linz or a date) 

Those tuples are put into a HashMap since they will later be used to find the correct dimension 

value depending on the context for which it is applicable. The HashMap serves as a mapping 

and lookup table. 

Then, the triples are filtered again by finding statements in which the subject is of a certain 

type (Resource field type) which is defined by the user’s chosen selectionCondition. In the 

ATM data set one of those could for example be ManoeuvringAreaAvailability. 

Those filtered statements are then mapped to tuples containing the ID of the subject as well 

as the relevant context extracted from the Relation (edge) individual. Then, Spark’s distinct 

method is used since those subjects might be present more than once in the data set which 

would lead to duplicate edges being created later. 

Then, the found tuples are mapped to new edges of type Relation with the subject as the 

source vertex, the applicable destination objects (e.g.: Linz) as destination vertex depending 

on the context of the subject (looked up in the HashMap) and a new Relation containing the 

pivotProperty which is also be supplied to the method. This can for example be object-

model#hasLocation. Then, the new edges are combined with the RDD containing the old ones 

and a new transformed graph is created from edge and vertex RDDs. 

In the graph all edges basically stay the same. The only change is that the subject-vertices 

that are of the type specified in the selectionCondition receive a new edge (within their context 

which is the KG-OLAP module) that points to the dimension value (e.g.: Linz). This is the same 

value that the cell the edges are contained in points to via the dimensionProperty. 
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5.3.7. Class ValuegeneratingAbstraction – aggregate property values 

The next class implementing the Transformation interface it the ValuegeneratingAbstraction. 

Here all edge triplets that contain the aggregateProperty as Relation field relationship of the 

edge are filtered and mapped to a pairRDD. A pairRDD is a special RDD containing tuples 

with key and value and offers some additional functionality to simple RDDs containing tuples. 

Those key–value pairs consist of a tuple as the key which contains the source-vertex of the 

before filtered triple as well as the context of the triple. The value of the key–value pair is the 

destination-vertex value which here is assumed to be a numeric value, for example the wing-

span as an Integer value. 

The next steps in the algorithm are dependent on the type of aggregation that should be per-

formed. Available aggregation types are sum, count, average, max and min which can be sup-

plied to the transform method. The basic steps are, however, the same for each of them. 

First, new edges are created by mapping the tuples of the previously generated pairRDD (that 

are of the form: (Tuple2(Vertex(subject), “context”), Literal(numeric value)) to edges where the 

source (subject) of the tuple within the tuple stays the subject and the numeric value is aggre-

gated depending on the type (e.g. when counting, the numeric value is mapped to 1 and then 

summed up, when summing the actual values are summed up, etc.) 

New vertices are then created by doing the same aggregation and calculation and then storing 

the calculated result as the value of the new Vertex instance. Additionally, a new ID is gener-

ated using the getIDOfObject method to identify the new numeric value contained in the vertex. 

Last, the new edges and vertices are combined with to the original RDDs and the statements 

that were aggregated are removed from the graph. A new transformed graph is created and 

returned by the method. 

5.3.8. Class IndividualGeneratingAbstraction – group by property 

The next class implementing the Transformation interface is the IndividualGeneratingAbstrac-

tion. Here all edge triplets that contain the groupingProperty as relationship field value of the 

Relation are filtered. In such statements, the object is the individual by which the subjects of 

the triplets should later be grouped. Those are mapped to new tuples of the form: (Vertex(sub-

ject), Vertex(group)). The group is generated by simply adding the String -group to the already 

existing attribute value of the objects. Those are put into a HashMap to serve as a lookup and 

mapping table where the subjects with their corresponding groups can be found later. 

For each filtered pair (subject and group), a new edge that represents the link between the 

subjects and their newly generated grouping vertex they belong to is created.  

Then, all triplets of the graph are gone through again and statements are filtered that contain 

one of the vertices stored in the HashMap. Those are then replaced by the corresponding 

group individual according to the lookup HashMap and new edges are created using them. 

Here the source vertex, the destination vertex or both may be replaced, or stay the same. 
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At the end, a new graph from the union of new and old edges and vertices is created and 

returned by the method. 

5.3.9. Class TripleGeneratingAbstraction – replace by grouping 

The last class implementing the Transformation interface is the TripleGeneratingAbstraction. 

Here all edge triplets that contain the groupingValue as the predicate (edge Relation field re-

lationship) and where the source vertex is of a certain type (Vertex field type) which is supplied 

to the method as the replacementObject are filtered and mapped to edges. Hereby, the sub-

jects represent the vertices that should be replaced, and the destination vertices are the ones 

that should be used to replace them. Those pairs are then all put into a HashMap to be used 

as a lookup and mapping table later. 

Then, the graph is searched again for all the statements that contain source or destination 

vertices that should be replaced according to the lookup table by checking whether they are 

contained in the HashMap. If so, those are replaced by their corresponding individual accord-

ing to the HashMap and new edges are created accordingly. Here the source vertex, the des-

tination vertex or both may be replaced, or stay the same. 

Again, afterwards a new graph from the union of new edges and old and new vertices is cre-

ated and returned by the method. 

5.3.10. Class Utils 

The class Utils contains different methods to be used in either the generation of graph objects, 

using Spark in general or when transforming data with the implemented KG-OLAP query op-

erations. 

Configs 

This method loads the properties from the config.properties file and returns them. 

sparkConf 

This method creates a sparkConf (Spark Configuration) from the properties loaded by the con-

figs method. 

JavaSparkContex 

This method creates a JavaSparkContext from the sparkConf created by the corresponding 

Spark method. 
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getIDOfObject 

This method creates a UUID which is a hash of a vertex value. It is required since GraphX 

vertices must have a unique identifier additionally to the actual vertex value. 

Therefore, a vertex basically is a tuple consisting of the value (the objects or subject IRI or 

literal value that is contained in the base dataset) and then the MD5 hash of this value as the 

identifier to be able to create vertices for subjects and objects of the following form: 

(MD5(value), value) 

5.3.11. Properties Files 

The Java program of the prototype currently also includes two property files that are used 

throughout the code: config.properties (graphx-kg-olap\src\main\resources\config.properties) 

and params.properies (graphx-kg-olap\src\main\resources\params.properties).  

Both files contain hard-coded information that would have to be adapted before building the 

jar files and executing them by the user if changes are desired. Further work would include 

making it possible for the user to change the values that are contained in both of those files in 

an actual graphical interface or pass certain values as arguments when calling the jar-files. 

This is, however, not implemented in the scope of this prototype but would be possible due to 

the architecture of the code. 

The config.properties file contains information about different performance related configura-

tions and settings for the SparkContext that is used when executing any type of Spark task. 

They were already described in Chapter 2.6.6 about Performance. Those settings were kept 

the same for the whole performance experiments described in Chapter 6: Performance Expe-

riments. 

For the purpose of the performance experiments, all the parameters that are passed especially 

for the transformation methods (e.g.: groupingProperty, groupingPredicate, etc.) are also hard-

coded in the properties file (params.properies) and the ones that are needed for each trans-

formation are loaded at the beginning in the corresponding transform method. This would have 

to be adapted in future work to make it possible for the user to choose their own properties 

more dynamically. With the current implementation as already mentioned, they would have, 

however, the possibility to change the properties file before building and executing the jar file. 

This makes the program usable for other use cases apart from ATM as well. 
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5.4. Use of Program 

The program is written in Java and set up as a Maven project. In order to build the GraphGen-

erator jar-file and also the jar-file for the transformations, the following command has to be 

executed: 

mvn clean package  

 

The GraphGenerator then can then be used in the following way: 

usage: graphx-kgolap-graphgenerator 

 -d,--destinationPath <arg>  the destination path for the output files 

 -f,--fileName <arg>     the name of the source nq-file 

 -h,--help           

 -s,--sourcePath <arg>    the source path to the nq-file 

For the GraphGenerator to work, a destination path has to be added to specify where the 

output object files should be stored. The fileName determines the name of the source N-Quad 

file and the sourcePath specifies where this file is to be found. The following shows an example 

usage of the graphGenerator-jar-file:  

Example: 

 

java -jar target\graphx-kg-olap-1.0-graphGenerator.jar -d src\main\data\ -s 

src\main\data\bd108186-5adb-4f00-b5fe-b24a8993560b.nq 

 

 

All transformations can be executed in the following way 

usage: graphx-kgolap-transformations 

 -d,--destinationPath <arg>  the destination path for the output files 

 -e,--edgesFolder <arg>    the folder containing the edges as spark 

               object files 

 -h,--help          print this message 

 -t,--transformation <arg>  the kind of transformation that should be 

               performed (reification, pivot, vga – value 

               generating abstraction, tga – triple 

               generating abstraction, iga – individual 

               generating abstraction 

 -v,--verticesFolder <arg>  the folder containing the vertices as spark 

               object files 
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For the transformation jar-file to work, a destination path indicating where the output files 

should be stored has to be supplied. Then, the path to the folder where the edges (from the 

GraphGenerator output) files can be found as well as the vertices folder where the vertices are 

located need to be stated. The transformation option determines which transformation should 

be performed on the base graph. The user can decide between reification, pivot, vga (value-

generating abstraction), iga (individual-generating abstraction) and tga (triple-generating ab-

straction). 

The following shows an example usage of the transformations.jar-file where reification is per-

formed on data located in scr\main\data with an output destination and two folders that will be 

called result_vertices and result_edges. 

Example: 

Java-jar target\graphx-kg-olap-1.0-transformations.jar  

-e src\main\data\edges -v src\main\data\vertices -t reification  

-d src\main\data\result_ 

 

java -jar target\graphx-kg-olap-1.0-transformations.jar  

-e src\main\data\edges -v src\main\data\vertices -t iga  

-d src\main\data\result2_ 
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6. Performance Experiments 

To be able to determine the applicability of the implemented KG-OLAP query operations with 

Apache Spark, several experiments were conducted. Hereby the runtime for executing the 

query operations on a provided dataset was measured and analysed. 

Prior to the actual experiments, the data set supplied in TriG format was first transformed into 

an N-Quad file which is a serialized form of RDF data. Using the implemented GraphGenera-

tor, the resulting N-Quad file was then further transformed into a Spark GraphX graph object. 

All edges and vertices of the graph were stored as objects file which are a Java serialisation 

form for data within RDDs. Spark hereby transforms objects contained in an RDD in a way that 

makes it possible to easily store and load them again using Spark as described in (RDD Pro-

gramming Guide, 2022). 

From then on, the experiments were conducted whereby the duration of the query operations 

was measured. This measuring included the following parts of the processing pipeline: 

• the duration of loading the created base object files into a GraphX graph object 

• the duration of transforming the GraphX graph by applying one KG-OLAP query oper-

ation 

• the duration of writing the transformed graph object back to storage in the form of object 

files (here one folder for edges and one folder for vertices is created) 

6.1. Experiment Setup and Data 

The used environment for the performance experiments was a virtual CentOS 6.8 machine 

with 128 gigabytes main memory. The machine used four cores of an Intel Xeon CPU E5-2640 

v4 machine with 2.4 GHz as also used for the experiments conducted in Schuetz et al. (2021). 

The query operations were run on the Java Virtual Machine granting 80GB of heap space. 

With the aim of measuring runtime, Spark event logging was enabled, and the duration of the 

query operations was calculated using the first and last timestamp of the generated log-files 

for all runs of each type of operation. The tests were run five times per query operation. Then, 

average and median run time was calculated and used to illustrate the achievable performance 

of the proposed implementation. 

The data chosen for the experiments was a KG-OLAP dataset containing knowledge regarding 

air traffic management also used by Schuetz et al. (2021). The data is concerned with infor-

mation about airports, runways, different warnings and events like closure of runways or taxi-

ways. Included is also information about the aircraft themselves like their wingspan or infor-

mation about runways like contamination of different types and severity. The KG-OLAP cube 

in this case therefore contains knowledge of different granularities with four dimensions (air-

craft, location, date and importance). The contexts are hereby ordered into five different levels 

including the additionally root context which contains general knowledge relevant for all con-

texts. 



 

  94 

For the experiments, one of the largest benchmark datasets from the datasets provided by 

Schuetz et al. (2021) was used. This dataset was chosen in order to determine the applicability 

of the Spark program to operate on large data sets and still perform in an acceptably fast way. 

The data used within the experiments then consisted of 33 916 567 N-Quads (about 7 giga-

bytes file size for the N-Quad file). After being transformed into a GraphX graph object with the 

described structure of this paper, there were 20 498 972 edges and 14 992 159 vertices in the 

dataset the query operations were performed on. Hereby all contexts (cells of the KG-OLAP 

cube) within the dataset were used. 
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6.2. Experiment Results 

Table 7 shows the runtimes for the different KG-OLAP query operations that were implemented 

within this thesis’ described prototype. Additionally, the runtime was measured for only reading 

and writing the GraphX graph object from and to storage without transforming the data in be-

tween. This was done to generate an understanding about the duration that in- and output 

takes up from the total runtime of a transformation. 

Table 7: Experiment results 
 

Transformation No Duration Mean Median 
SD  

(seconds) 
SE 

(seconds) 

Pivot 

1 05:48 

05:35 05:34 7.32 3.27 

2 05:26 

3 05:34 

4 05:34 

5 05:31 

Reification 

1 05:23 

05:27 05:29 5.21 2.33 

2 05:31 

3 05:29 

4 05:19 

5 05:33 

Individual- 
generating 
abstraction 

1 05:20 

05:27 05:24 6.51 2.91 

2 05:37 

3 05:24 

4 05:24 

5 05:30 

Triple- 
generating  
abstraction 

1 05:15 

05:14 05:14 3.41 1.52 

2 05:10 

3 05:10 

4 05:19 

5 05:14 

Value- 
generating 
abstraction 

(SUM) 

1 04:59 

04:58 05:14 3.74 1.67 

2 05:05 

3 04:54 

4 04:56 

5 04:58 

Input/Output only 

1 02:00 

01:59 01:59 0.77 0.35 

2 01:58 

3 01:59 

4 02:00 

5 01:59 
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As it can be seen from the results in Table 7, all operations included in the implementation 

described in this thesis were executed five times on the same dataset with the same Spark 

settings and on the same environment. Then, the start and the end timestamps were extracted 

from the log files for each run to then calculate the duration between them. From those five 

runs for each operation, the average, median, standard deviation, and standard error were 

calculated which can be seen in the table. 

A further experiment was done on simply loading and reading the object files into a GraphX 

graph and then – without performing any transformations – writing them back to new folders. 

The reason for including this test was to show how much time it approximately takes for Spark 

within this thesis’ described setting to read and write the data. This way it can also be estimated 

how long the operations themselves might have really taken excluding the read and write 

times. It must be noted, however, that those results are just to provide a rough idea for the 

read and write times as well as the isolated query operation runtimes, since with the way Spark 

handles tasks, it cannot be determined exactly how long each part takes individually. It never-

theless serves as a good estimate of performance. 

Generally, the resulting average and median runtimes show that the operations were finished 

in between five and six minutes. Those run times are considered acceptable for the amount of 

data that was processed in the KG-OLAP setting described within this thesis. The results ob-

tained in the experiments show the general suitability of Apache Spark and the proposed im-

plementation approach for the data structure of KG-OLAP. Further optimizations could possibly 

be achieved by experimenting with different Spark configurations, partitioning strategies for the 

data or even by adding more nodes to a computing cluster. However, those experiments are 

out of the scope of this thesis and would be part of future work. 

When comparing the experiment results of this implementation with the performance results 

obtained with the SPARQL-based implementation by Schuetz et al. (2021), it has to be noted 

that a comparison between the two implementations cannot be made fairly. This is because 

there are slight differences in the setup and also the scope of the implementation and the steps 

included in the runtime measurement. In the prototype described within this thesis, for exam-

ple, the runtime was calculated including input and output operations which was not done in 

the paper by Schuetz et al. (2021). Furthermore, the SPARQL-based implementation only con-

structs delta tables at first when applying query operations. Those tables represent the RDF 

statements that would need to be added or deleted from the original dataset first, in order to 

actually complete the operation to then obtain the final, transformed graph. Those insertions 

and deletions were not considered since they are not specific for the KG-OLAP concept 

(Schuetz et al., 2021). In the implementation described in this thesis, on the other hand, the 

result of the operations is always a full graph with all statements in place since Spark allows 

to do so easily. Therefore, a fair comparison cannot directly be made. 

Nevertheless, still, the generated resulting run times of this thesis’ experiments can be consid-

ered to be an indicator of good performance of the Spark code when using large datasets of 

KG-OLAP. 
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7. Conclusion 

This thesis was aimed at constructing a prototype implementing the concept of KG-OLAP 

query operations with the help of a framework that is suitable for handling large amounts of 

data. Apache Spark was chosen as the preferred processing framework since it was developed 

to provide speed and scalability for handling big quantities of data. Therefore, Apache Spark’s 

in-memory parallel processing capabilities were leveraged in the implementation of the KG-

OLAP query operations which was shown in an experiment of the implemented operations. 

First, key concepts concerning the implementation described in this thesis and the KG-OLAP 

framework itself were explained and illustrated to create a basis for the technologies used in 

the prototype. Then, current state of the art in literature regarding concepts and dealing with 

RDF data, big data frameworks and OLAP cube processing were analysed to argue the rele-

vance of this thesis’ work. Based on the findings, an appropriate data model including mapping 

from RDF data to the used Apache Spark GraphX graph representation was developed, as 

well as a strategy to implement graph operations needed for KG-OLAP. Hereby, performance 

was the main focus trying to reap the benefits of different characteristics and features of Spark. 

Lastly, several experiments were conducted using the implemented query operations of this 

thesis’ described prototype and performing them on a provided KG-OLAP dataset. Hereby, a 

benchmark dataset supplied by Schuetz et al. (2021) was chosen for the experimental setup, 

previously also used in the evaluation of the SPARQL-based KG-OLAP implementation. The 

dataset was chosen in order to foster a better understanding of possible performance ad-

vantages when using Spark instead of SPARQL. 

The successfully implemented prototype and analyses described within this thesis answer the 

research question on whether Apache Spark (GraphX) can be used to process RDF data and 

perform KG-OLAP query operations. Since Spark and RDDs are able to work at a low level 

with any kind of data through different methods provided by the libraries, there was no issue 

in implementing the desired operations resulting in aggregated and transformed graph data in 

the air traffic management setting where the resulting graphs can be used to provide a sum-

marized view on data about aircraft, runways and so on. This aggregated data produced may 

then again be used by Spark or other systems for even further analysis. The prototype was 

implemented in a way that also makes it possible to be used for different domains other than 

ATM if the base data structure of KG-OLAP is adhered to in the source data. 

The second research question regarding performance when using the stated KG-OLAP oper-

ations on the data used in this prototype can also be answered when looking at the experiment 

results. Since the implementation was tested on an RDF dataset containing 34 million of quad-

ruples available from the KG-OLAP SPARQL implementation, it can be said that for such sizes 

of data, the prototype performs well, leveraging the benefits of Spark in-memory parallel pro-

cessing capabilities. This can be said considering the used technical environment and data 

structure. For different setups or datasets, more experiments would be necessary. Further-

more, the comparison with the SPARQL-based implementation can only be done fairly if there 

were more experiments with a completely identical setup. 
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All in all, the work described within this thesis shows that Apache Spark is a promising ap-

proach for RDF data processing within the KG-OLAP framework. The work can therefore be 

used as a basis for further implementations with Apache Spark (GraphX) or other big data 

processing frameworks for the KG-OLAP concept.  

As stated throughout the thesis, the prototype developed has limitations and only looked at a 

defined scope out of the whole KG-OLAP concept. Regarding additional operations like merge 

and slice-and-dice as well as RDF reasoning and knowledge propagation, there would have 

to be further development of the prototype implementing those as well using Apache Spark 

and GraphX. In general, it should be possible to also realize those additional components of 

the concepts with the help of the established data model and data processing pipelines as they 

all follow a similar pattern. 

Furthermore, experiments with even larger amounts of data would have to be done in order to 

possibly find a maximum capacity at which Apache Spark is still able to handle the KG-OLAP 

operations or still performs better in comparison to other implementations using different tech-

nologies. Here especially all Spark configurations and optimization techniques should be used 

and selected for the tasks involved. For example, configurations for parallelization, partitioning 

strategies and possibly using a cluster computing approach could lead to further performance 

gains, especially when experimenting with larger datasets and doing more complex analysis 

or aggregations. 

Another variation of the implementations and experiments would be to build similar processing 

pipelines and query operations with the help of Spark GraphFrames instead of the GraphX 

framework. It could then be found out whether a tabular representation of the data in Spark’s 

DataFrames instead of RDDs would increase performance or bring other additional benefits. 

For this implementation there would also be the need to rethink the data model and if it can 

still be applied when using GraphFrames to represent the RDF knowledge graphs. 

Since GraphX was also especially designed for graph-specific algorithms like PageRank, there 

would also be the possibility to implement further transformations and query operations even 

beyond the KG-OLAP operations. Additional analysis could be interesting in the ATM field but 

also other use cases that rely on a multidimensional model. Using graph-specific algorithms 

then would leverage the advantages of using GraphX on top of Spark even more and open up 

more opportunities to analyse big amounts of RDF data with adequate performance. 
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