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Kurzfassung

Indexstrukturen sind  eine  der  effizientesten und verbreitesten Methoden um Abfragen auf 

großen Datenmengen zu ermöglichen. Dadurch stehen sie stets in einem engen Zusammen-

hang  mit  Datenbanksystemen.  Es  existieren  zahlreiche  Indexstrukturen,  die  mit  speziellen 

Daten  verwendet  werden  können,  beziehungsweise  in  gewissen  Anwendungsfällen  den 

gezielten und schnellen Datenzugriff ermöglichen.

Das SemCrypt Forschungsprojekt befasst sich mit der Verwaltung und Speicherung von XML 

Daten  in  einem  Outsourcing  Umfeld  und  mit  verschlüsselten  Daten.  Diese  Umgebung 

beeinträchtigt die Verfügbarkeit der Daten und erfordert Indexstrukturen, um einen effizienten 

Zugriff zu ermöglichen.

Bisher  existieren  keine  Ansätze,  um  Indexsstrukturen  in  einem  XML  Datenbanksystem 

einheitlich zu verwalten und zu verwenden. Um dies, sowie das Erweitern und Hinzufügen von 

Indexstrukturen im SemCrypt Datenbanksystem zu ermöglichen, wird ein Indexverwaltungs-

system  vorgestellt  und  entwickelt.  Durch  die  Abstraktion  von  konkreten  Indexstrukturen 

erlaubt dieses eine einfache Verwaltung und eine einheitliche Verarbeitung von verschiedenen 

Indexstrukturen. Durch Abstraktion von der Speicherstruktur wird weiters Unabhängigkeit von 

der Art der Speicherung erreicht.

Diese Arbeit beschreibt, wie bekannte Indexstrukturen adaptiert und erweitert werden können, 

um sie im SemCrypt Datenbanksstem einzusetzen, ohne die Sicherheit des Gesamtsystems zu 

gefährden. Des weiteren wird ein neuer Index vorgestellt, der die Indizierung von dynamischen 

Hierarchien  erlaubt.  Um  beliebige  Indexstrukturen  verschachteln  zu  können,  werden 

Konzepten aus dem Umfeld der Indizierung von XML und objektorientierten Daten erweitert. 

Das  ermöglicht  die  Kombination  der  Fähigkeiten  vorgestellter  Indexstukturen  und  eine 

Vereinigung der Suche nach Werten und struktureller Information.

Diese Arbeit stellt nicht nur Konzepte zur Indizierung von verschlüsselten XML Dokumenten 

vor,  sondern  erläutert  auch  ihre  prototypische  Implementierung.  Abschließend  werden  die 

implementierten Indexstrukturen anhand von qualitativen Kriterien  und quantitativ,  mittels 

durchgeführter Performancetests, evaluiert.
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Abstract

Index structures are one of the most efficient and most common methods to gain access to 

large  amounts  of  data.  Consequently  they  are  closely  interconnected  with  database 

management systems. Several index structures exist, which are optimized for special data or 

specific applications and which enable a targeted and fast access to data.

The  SemCrypt  research  project  addresses  the  database  oriented  management  of  XML 

documents in an outsourcing environment with encrypted data. The reduced availability of this 

data requires index structures to speed up the access.

So far no frameworks exist which speeds up accesses to the encrypted data and enables the 

integrative management and use of different index structures in XML database management 

systems (DBMS). This thesis proposes an extensible and flexible indexing framework for the 

SemCrypt  DBMS.  By  abstracting  from specific  index  structures,  it  is  possible  to  manage 

different index structures in a uniform way, as well as to extend existing or to implement new 

index structures. Independence from the kind of data storage is reached by abstracting from 

the storage structure, which is important to meet the security requirements of SemCrypt.

This thesis describes how well known index structures can be adapted and extended, so that 

they  can  be  used  in  the  SemCrypt  DBMS environment,  without  threatening  the  system's 

overall  security.  Furthermore  a  new  approach  to  index  data  in  dynamic  hierarchies  is 

presented. By extending the concepts of XML and object oriented indexing it is possible to 

arbitrarily nest index structures. This facilitates the combination of different capabilities of the 

presented index structures and unites the search for values and structural information.

The remaining part of the thesis describes how the presented concepts and index structures 

are implemented. Finally the implemented index structures are evaluated using qualitative 

criteria and performance tests.
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This chapter introduces the topic of this thesis. First the motivation and the context are 

outlined,  followed  by  a  brief  overview  on  the  SemCrypt  concepts  and  general 

architecture. Then a running example is presented, which is going to be used throughout 

the thesis to apply and demonstrate concepts and algorithms. Thereafter the objectives 

of the thesis are explained in more detail. Finally the further structure of the thesis is 

outlined.

 1.1 Motivation

Indexing has been a key methodology to retrieve information effectively and efficiently, 

since huge amounts of data have been collected and organized. In the past, libraries 

employed complex, manually maintained indices, to sustain a structure and overview 

over the fast growing domain of written work.

With computers, data management and retrieval  reached a new level  of  volume and 

complexity.  The  creation,  management  and  traversal  of  indices  was  automated. 

Especially  the  first  relational  database  applications  required  new  ways  of  efficient, 

targeted data access, which lead to the creation of various index structures. New tasks, 

like the search in full text, in hierarchical data or in multidimensional data posed different 

requirements to indices and lead to further, often more complex index structures.

Today,  distributed DBMS and applications again call  for  new approaches of  indexing. 

Simultaneously  the  need  for  annotated,  structured  data  lead  to  the  creation  of  the 

Extensible Mark-up Language (XML)  [XML06]. The resulting requirement to store XML 

documents persistently and to provide them to multiple users guided the development of 

XML DBMS.
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While technology still  becomes more complex, companies start to focus on their core 

business and outsource “non-core” tasks. This lead to the idea of providing databases as 

a service [HIM02], so that an outsourcing-provider can focus on administration, recovery 

and backup of the database and is able to profit from economies of scale. On the other 

hand this approach creates various new challenges, especially related to privacy, security 

and performance.

The  SemCrypt  research  project  [SemCrypt] aims  at  creating  such  an  outsourced 

database service, enabling access to encrypted XML data, stored at an untrustworthy 

storage provider. Index structures are an important necessity to provide this access and 

to allow data to be retrieved and updated efficiently  [SchGD05]. Therefore this work is 

motivated in finding, adapting and implementing index structures that can be used in the 

SemCrypt setting to enable the search for values and in full text, while regarding the 

hierarchical structure of the XML data. To allow the integration of these index structures 

in SemCrypt, an adequate index management architecture needs to be designed and 

implemented.

 1.2 SemCrypt

Due to the need to represent semi structured data for purposes of data storage and 

exchange,  XML  is  becoming  increasingly  popular.  The  requirement  to  store  XML 

documents consistently and to query them effectively calls for the use and adoption of 

database technology. There have been different approaches, either by adapting relational 

or  object-relational  databases  to  accommodate XML data,  or  by  creating native  XML 

databases, which use XML as the logical data model [KlMe03].

The SemCrypt research project goes one step further by realizing the database as a 

service model proposed by [HIM02], extending it for XML and therefore allowing secure 

outsourcing of XML data. However, data encryption and the requirement not to reveal 

any structural information to the untrustworthy storage provider, makes it difficult to 

access data and to process queries in an efficient way. Therefore the use of the labelling 

scheme described in  [GKSch05], combined with the use of specific index structures is 

essential to facilitate navigation and targeted access to data.

As depicted in Figure 1, SemCrypt is based on the client-server concept, where part of 

the data and application reside in a not trusted environment. The encrypted data at the 

untrustworthy storage provider is accessed by the SemCrypt DBMS, which provides XML 

database  functionality  to  end  user  applications.  A  more  detailed  description  of 

SemCrypt's architectural design can be found in the system specification [GrKa06a].
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SemCrypt aims at  processing queries  and updates on encrypted XML documents,  by 

exploiting structural semantics of XML data, while using standard encryption techniques 

[SchGD05].  Whereas  other  approaches  like  [HILM02] and  [Jamm04] fragment  the 

encrypted  data  on  the  storage  provider,  SemCrypt  does  not  expose  any  structural 

information to the storage provider. All data is represented as encrypted key-value pairs 

at the storage provider. Consequently only the trusted client knows the fragmentation 

structure and is able to perform queries and updates. However, this requires the client to 

perform tasks that  are usually delegated to the server,  like query processing or the 

management of index structures.

 1.3 Problem Definition

The SemCrypt setting creates some challenges that need to be considered and overcome 

by the SemCrypt indexing framework and the embedded index structures:

1. Distributed Environment: Primary data and data required by index structures are 

persisted at an remote storage provider. Therefore the access to data is more 

costly and index structures need to be able to traverse their data remotely.

2. Encryption: Data residing at the untrustworthy storage provider are encrypted, 

and are only encrypted and decrypted at the client.  Consequently the storage 

provider is only able to use primary indices on the encrypted data and cannot 

create and use secondary indices. Therefore the index management and traversal 

needs to be performed at the client. Due to encryption, access to data is slower 

and less efficient.

3. Performance: Being an XML DBMS, SemCrypt needs to provide adequate query 

Figure 1: SemCrypt System Setting
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performance.  Consequently  index structures  become even more  important,  as 

they  can  greatly  influence  the  systems  overall  performance  by  enhancing 

expected and reoccurring queries.

4. Extensibility: The SemCrypt DBMS needs  to be adaptable and must be easily 

extendible to fit the specific requirements of the user.  This is also relevant to 

index  structures,  as  existing  index  structures  can  be  extended  or  new index 

structures  can  be  implemented.  Besides  that  it  is  desirable  to  abstract  index 

structures  from  the  storage  structure,  so  that  security  mechanisms  can  be 

performed transparently.

5. Security: The major target  of  the SemCrypt project  is  to provide privacy and 

security of the stored XML data. Index structures need to consider security risks 

and to adopt adequate mechanisms to avoid any leakage of information.

The index framework and the index structures to be developed and presented in this 

thesis  must  regard  these  challenges.  A  balanced  solution  needs  to  be  found,  which 

enable the efficient access to data through indices in the SemCrypt DBMS.

 1.4 Running Example

In order to explain and demonstrate the developed concepts and algorithms, a running 

example will be used, which is going to act as a line of thought throughout the whole 

thesis. In order to represent a use case scenario of SemCrypt, we chose the setting of an 

outsourced  Email  provider.  The  idea  is  similar  to  the  services  that  are  provided  by 

companies like Google (http://mail.google.com), GMX (http://www.gmx.net) or Microsoft 

(http://www.hotmail.com).

However, the proposed approach is quite different, as the main objective is to provide a 

secure email store that can only be accessed by authorized users. Therefore users are 

able to read and answer their email independent from their location, while ensuring that 

nobody else is able to access and to read their emails. Furthermore users do not have to 

care about maintaining backups and gain the advantages of a sophisticated database for 

searches.

By using the SemCrypt DBMS, it is possible to provide this kind of service to a wide range 

of customers. In a technical perspective email processing is a suitable application for the 

use of XML, as emails do contain both structured information (header information like 

email addresses or time stamps) and unstructured information (the subject line, the text 

of the message or optional file attachments).

http://mail.google.com/
http://www.hotmail.com/
http://www.gmx.net/
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For reasons of clarity we focus on a simple data model (with reduced header information, 

lacking file attachments or additional meta-information), described by the XML-schema 

that is depicted in Figure 2 (see appendix B, page 114).

The  sample  mailbox  consists  of  different  folders,  which  group  the  email  messages 

according to the user's preferences.

An email message consists of header and body information. The header contains the 

subject  of  the  email,  the  date  when  the  email  was  sent  or  received,  and  a  set  of 

addressees. These addressees consist of an email address and a modifier telling whether 

the email was sent, sent as a copy or received from this address. The body contains the 

actual text transmitted with the email.

There  are  two  types  of  emails,  sent  emails  (SentEmailType)  and  received  emails 

(ReceivedEmail  Type).  Received  emails  contain  an  additional  status  attribute,  telling 

whether the email has been read, answered or forwarded. These two email types are 

generalized by an abstract email type that includes the information contained in both 

 1  2 

 3 

 9 

 4 

 5 

 6 

 7 

 8 

 A 

 to  from  cc 

Figure 2: Email Store - Schema
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sent and received emails.

For the running example three emails are used as exemplary data. The first email (A) 

was sent to three people in total, whereas the second email (B) is an answer to the first 

one. The third email (C) was sent to just one person. Their representation in XML can be 

found in the Appendix B, page 115, and a tree based representation is depicted in Figure

3.

For the running example the date information will be simplified by using a number that 

represents the time order of the three emails. So email A is assigned date 1, email B 

date 2 and email C date 3.

Email A Test 1 2006-05-08 | 9:30 (1)

From michael@maier.de

To peter@lasinger.at
Copy

franz@mitterer.de

julia@schnell.de

Text This is a little test message.

Table 1: Running Example – Test Email A

Email B Re: Test 1 2006-05-08 | 17:00 (2)

From peter@lasinger.at

To michael@maier.de
Copy

julia@schnell.de

Text Thanks for the email. This is my answer.

Table 2: Running Example – Test Email B

Email C Test 2 2006-05-09 | 14:00 (3)

From julia@schnell.de

To peter@lasinger.at
Copy

Text This is a second test message.

Table 3: Running Example – Test Email C

In Figure 3 the XML nodes are depicted as rectangles, containing the name of the node 

(according to the schema) and attributes. XML text nodes are visualized as ellipses. The 

email identifier (A, B, C), which is not contained in the date itself, but is used for easier 

referencing the nodes is written to the right of the according email node.
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We now define a set of typical, simple queries on this test data to show how different 

index  structures  can  enable  and  speed  up  the  retrieval  of  data.  These  queries  are 

structured using five different categories, which specify common types of requests on 

XML data. The queries are outlined in XPath 2.0 syntax as specified by  [XPath05]. For 

each query the expected result, based on the test data, is defined.

Exact-Match Queries:

Exact match queries look for data that satisfies (equals) a specific value constraint. We 

define  two  according  queries  on  the  Address  attribute,  which  are  looking  for  the 

according Emails containing this Address attribute.

1. //Email[.//@Address="michael@maier.de"]

Retrieve  all  emails  that  contain  the  addressee  with  the  email  address 

“michael@maier.de”, to determine the emails that where sent and received from 

this email address. The expected result is email A and B.

Figure 3: Email Store Test Data

A BC

mailto:michael@maier.de
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2. //Email[.//@Address=”franz@schnell.de”]

Retrieve  all  emails  that  contain  the  addressee  with  the  email  address 

“franz@schnell.de”.  The  expected  result  is  empty,  as  no  email  contains  this 

addressee.

Range Queries:

Range queries extend the concept of exact match queries as they do not look for a single 

value but for a whole range of values. This implies that the queried data needs to follow 

a linear order. We define two example queries on the Date node.

3. //Email[Header/Date<3]

Retrieve all  emails that where sent or received before 2006-05-08 18:00 (the 

order 3 is used here). The expected result is email A and B.

4. //Email[Header/Date>1 and Header/Date<3]                                 

Retrieve  all  emails  that  have  been  sent  or  received  on  the  2006-05-08  (1) 

between 16:00 and 18:00 (3).  The expected result is email B.

Text Queries:

Sometimes it is necessary to determine the occurrences of keywords or pattern in text. 

These kind of queries are called text queries. As an email contains textual information in 

its text field and subject line we define one query on the Text node and one on the 

Subject.

5. //Email[contains(Body/Text,"message")]

Retrieve  all  emails  that  contain  the  word  “message”  in  their  text  field.  The 

expected result is email A and email C.

6. //Email[.//Subject[starts-with(.,"RE:")]]

Retrieve all  emails  that  were follow-ups to other emails  and therefore have a 

subject  line  that  starts  with  “RE:”  (this  prefix  might  be  different  in  other 

languages). The expected return is email B.

Hierarchic Queries:

Until  now  we  only  considered  queries  restricting  the  value.  However,  as  XML  data 

contains structural information also queries regarding a structure can be posed. As the 

structures created by XML documents can be interpreted as hierarchies, we name these 

kind of queries hierarchic queries. In the following examples we query a type hierarchy 

mailto:franz@schnell.de
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(kind of email) and a document hierarchy, created by the different Folders.

7. //element(Email,SentEmailType)  

Retrieve all emails that have been sent. The expected result is email B.

8. //Folder[@name="InBox"]//Addressee/@Address

Retrieve all  Addresses that  are  contained in  the folder “InBox”.  The expected 

result is the four email addresses from email A and the two email addresses from 

Email C.

Complex Query:

Queries regarding structure and value restrictions can be combined in one query. We 

define  these  kind  of  queries  as  complex  queries  and  demonstrate  such  a  query  by 

combining the hierarchic query for an Email type with an exact match query for the date.

9. //element(Email,ReceivedEmailType)[Header/Date=1]

Retrieve all emails that have been received on the 2006-05-08 at 09:30 (1). The 

expected result is email A.

 1.5 Objectives

The goal of this thesis is to provide efficient access to encrypted XML data in the context 

of the SemCrypt project with the use of index structures. Indices need to be created, 

managed and traversed efficiently at the client side, while no information about the data 

or the index structures must be disclosed at the storage provider.

While a framework for index management and index traversal in SemCrypt is developed, 

the areas of index update and index selection are beyond the focus of this thesis. Index 

update  describes  the  task  of  keeping  primary  data  and  index  structures  consistent, 

through rebuilding or incrementally changing the index. Index selection denotes the task 

of selecting an appropriate index out of a set of indices, to optimally support a specific 

query.  Though these tasks will  not  be particularly  regarded,  the indexing framework 

provides  an  abstraction  that  simplifies  performing  theses  tasks  and  unifies  various 

different index structures.

Index structures in SemCrypt must support a set of different query types [Grün06a]:

● Value centric queries, which search for a specific value (exact match query) or in 

a range of values (range query).

● Information  retrieval  centric  queries,  which search for  keywords or  parts  of  a 
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keyword in full text (text query).

● Queries regarding structural information that is embedded in XML documents, like 

type hierarchies or the document structure (hierarchic queries).

● Queries combining the search for values or keywords with the search regarding 

structural information (complex queries).

Hence  relevant  index  structures  need  to  be  analysed  and  adopted  to  the  specific 

requirements of the SemCrypt DBMS. The SemCrypt indexing framework and selected 

index structures providing these capabilities need to be implemented and integrated into 

the SemCrypt prototype.

 1.6 Outline

The thesis is set up as follows. Chapter two presents related work on the topic of index 

structures and indexing methodologies and analyses relevant index structures. Chapter 

three describes the requirements of index structures in SemCrypt and develops specific 

index structures for different query types, while fitting into the encrypted environment. 

The general set-up of index structures and algorithms to be used are discussed as well. 

Thereafter chapter four introduces the general SemCrypt architecture and develops the 

architectural concepts used for index management and processing. Chapter five deals 

with implementation details and outlines how the concepts presented in chapter three 

and four have been implemented in the reference prototype. Finally chapter six evaluates 

the  implemented  index  structures,  concludes  the  thesis  and  provides  an  outlook  on 

future work.
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Chapter 2 describes work related to index structures. Relevant literature is presented, 

analysed and compared and the state of the art is outlined. The chapter is the foundation 

for  further  concepts  and  acts  as  a  guidepost  for  algorithms  and  implementation 

considerations.

At first a general framework for index structures are presented. Thereafter specific index 

structures are described and categorized according to what type of queries they support 

[KlMe03]. An emphasis is laid upon indices that can be used in the setting of SemCrypt. 

As  primary  indices  are  defined  and  used  only  by  the  storage  provider,  only  index 

structures that can be used as secondary indices are examined. This implies that the data 

associated with the secondary index need not to be sorted on the indexing key and may 

contain multiple values to be indexed [CoBe05].
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 2.1 Index Specification

In an environment where direct access to data is costly, as in SemCrypt, index structures 

enable fast, targeted access to specific data. According to Ramakrishnan and Gehrke “..., 

an index is an auxiliary structure designed to speed up operations that are not efficiently 

supported by the basic organization of records...” [RaGe00]. Elmasri and Navathe state 

that  indices are  access  structures,  “...,  which are  used to  speed up the retrieval  of 

records in response to certain search conditions” [ElNa00]. Zobel et al. describe indices 

more specifically as “data structures that identify the locations at which indexed values 

occur”  [ZMR95]. Therefore indices can be defined as access structures, which act as a 

kind of abbreviation to specific data, considering certain constraints.

Before  analysing  specific  index  structures  in  detail,  it  makes  sense  to  extract  some 

general concepts and attributes that every index structure has in common. This results in 

an index specification that can be used to generalize, compare, and categorize index 

structures.

 2.1.1 Lookup Domains

An index structure is always linked with the task of searching and locating appropriate 

information,  thus  comparing  certain  keys  for  selecting  the  right  data  [Knuth73]. 

Consequently  an  index  is  a  mapping  from  a  specific  domain K (key)  to  a  set  of 

occurrences R (return)  [MeSt99].  These  domains  can have  different  types  that  are 

outlined in Table 4:

domain type description

Nodes Elements, associated with a location in a certain structure 
and an optional value.

+ Values Atomic values that can be linearly ordered.

   + Keywords Keywords (specific string values)

      - Patterns Character patterns (like prefixes) of keywords.

+ Structures Composition  of  an  element  space  with  quantifiable 
locations.

   - Paths Locations of a set of elements in a hierarchy.

   - Types Common characteristics of elements, projected in a type 
hierarchy.

   - Identifiers Pointers to specific locations (nodes) in an element space.

Table 4: Lookup Domain Types (adopted to the SemCrypt setting)
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Lookup domain types describe what an index can take as input and what it  returns 

(power set  of  R) KP R ,  thus defining the index and expressing the supported 

mappings.

Lookup functions are used to determine if an element a (which can consist of multiple 

attributes) is contained in a set X (which is the indexed set in the domain of K ). 

Thereby a comparison operator  ○ is used f xa °x∣x∈X ⇒ true∨ false . Together with 

the  lookup  domain  types  of K and R ,  the  lookup  functions  define  the  index 

specification.

 2.1.2 Lookup Functions

There are a variety of different functions that can be used to determine if an attribute 

a satisfies any existing attribute in a set X , while making use of certain operators ○ 

[MWA+98]. Knuth outlines three basic types of lookups, which can be supported by index 

structures [Knuth73]:

a. simple lookups, which check for equality of a certain attribute.

f simple a° x∣x∈X  , °∈{=}

b. range lookups, which query an attribute in a certain range. This requires that the 

attribute's lookup domain is linearly ordered.

f range  x1°a °x 2∣x1, x2∈X  , °∈{<, ≤, >, ≥ }

c. boolean lookups, which combine simple and range queries with boolean operators. 

The total number of occurring attributes to be checked is often called dimension.

Querying structured, semi structured and unstructured (text) data leads to further types 

of lookups:

d. structural lookups consider certain structural information, like paths or types (in 

object oriented or XML data). This structural information can also be represented 

as a hierarchy. The lookup function determines if a hierarchy a is contained in

X . The hierarchy can be directly contained (=) or it can be part of another 

hierarchy contained in X (isA). f structural a °x∣x∈X  , °∈{= , isA}

e. Text and pattern lookups, which query for strings or patterns (expressions ). 

Strings can be searched and compared regarding various comparators. Clarke et 

al. [CCB94] present an algebra for text search and also define a set of comparison 

operators, like contains or startsWith. These operators can be used in the lookup 

function definition: f text a ° x∣x∈X  , °∈{= ,contains , startsWith , ...}
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It can be necessary to perform queries regarding multiple attributes of an element at the 

same time. Ahn et al.  [AMW01] presents some of these cases, like queries for nearest 

neighbours, distance or contains queries. Therefore an additional look-up type is needed, 

which makes it possible to compare vectors of attributes and which extends the boolean 

look-up described before:

f. Multidimensional look-ups

f multidima1

an°x1

xn∣x1∈X 1 .. xn∈X n , °∈{=, <, ≤, >, ≥ }

The different lookup types, their associated comparison operators and a short cut for the 

lookup  type  are  depicted  in  Table  5.  The  complex  look-ups  (boolean  and  multi-

dimensional) are not shown, as they can dissected in multiple simple lookup functions.

Short cut Lookup type Comparison Operators

simple Simple lookup =

range Range lookup =, <, >, ≤, ≥

keyword Keyword lookup contains, startsWith

pattern Pattern lookup matches

structure Structural lookup =, isA

Table 5: Lookup Function Types and Comparison Operators

 2.2 Value Centric Indexing

Value centric index structures map from atomic values to the place of their occurrences. 

This type of indices is most commonly used in RDBMS (relational database management 

systems)  [ElNa00],  [CoBe05],  but  also highly  important  for  object  oriented and XML 

database  systems  [KlMe03].  Representatives  for  one  dimensional  (one  attribute  set) 

value centric indices are balanced search trees and hash indices. Partitioned hash indices, 

grid  files,  bitmap  indices  and  special  multidimensional  search  trees  represent 

multidimensional value centric indices.

 2.2.1 Hash Index

In a hash index the location (address) of a page is calculated using a hash function, 

which is chosen in such a way that records are evenly distributed throughout the file 

[CoBe05]. Consequently retrieving a specific record is usually possible with one access. 

However,  depending  on  the  index  size  and  the  hash  function,  collisions  may  occur, 

leading to overflows and slowing down the index. An extensive analysis of hashing and 
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according algorithms is given by Knuth [Knuth73].

ValuesP  Identifiers 
f simple , °∈{=}

Figure 4: Hash index interface

As depicted in  Figure 4 a hash index maps a specific  value to a set  of  occurrences 

(identifiers). Although hash indices have excellent update and retrieval characteristics, 

there exist several limitations. For example, hash indices are only able to perform simple 

look-ups (checking for equality). Other restrictions can be overcome by extended hash 

techniques, like dynamic hashing (letting the hash index (hash function range) grow and 

shrink dynamically) or partitioned hashing (to allow hashing of multiple attributes, see 

[KlMe03]).

 2.2.2 Balanced Search Trees

Balanced Search Trees (B-trees), first presented by Bayer and McCreight [BaMc72], have 

become a broadly used, standard access method in various database systems. Due to 

their good performance characteristics, their dynamic grow and shrink behaviour and the 

ability to be used in multi-user environments, most database systems use B-trees as a 

secondary access structure [Com79].

There exist many variants of B-trees, the most prominent being the B+tree and B*-tree 

[HeSt78].  These variants  mainly  differ  in  how compact  they store  entries,  how they 

perform splits and merges and the structure of link- and leaf-nodes. Consequently these 

differences result in various retrieval, update and storage characteristics. For example 

the leaves in a B+tree are linked together forming a “sequence set”  [Com79], which 

facilitates very efficient range queries.

A detailed explanation of several B-tree variants and according algorithms can be found 

in [Com79] and [RaGe00]. Variations of B-trees can also be used in information retrieval, 

for example the Prefix-B-tree, which will be discussed in more detail in Chapter 2.3.2.

The advantage of a B-tree structure lies in its balanced structure, which is achieved by 

using algorithms for insertion and deletion that keep the tree balanced. Therefore B-trees 

can  be  updated  incrementally.  Furthermore  the  retrieval  costs  stay  low  and  can  be 

predicted (logarithmic to the total node count and equalling the current height of the 

tree).
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ValuesP  Identifiers
f simple∨ f range , °∈{=, <, ≤, >, ≥}

Figure 5: B-Tree index interface

As depicted in Figure 5 the look-up pattern of B-trees is a mapping from a set of values 

to  a  power  set  of  attached  locations.  A  B-tree  supports  simple  and  range  look-up 

functions.

Due  to  their  dynamic  update  behaviour  and  balanced  structure,  B-trees  are  a  good 

candidate to enhance range and exact match queries in SemCrypt. However, as they 

cannot be used in their original form in encrypted environments, an approach to traverse 

tree-like structures at the client side, while preventing the leakage of information, is 

presented in Chapter 2.6.

 2.2.3 Multidimensional Index Structures

Multidimensional  index  structured  can  be  classified  by  how  many  dimensions  they 

support, while providing adequate performance, the internal structure they use and what 

look-up functions they support. According to Böhm et al. [BBK+00] index structures like 

the Grid File [NHS84], the KdB-tree [Rob81] or the R*-tree [BKS+90] are only suitable 

for  low dimensional  data.  For  high dimensional  data  X-trees  [BKK96],  Pyramid-trees 

[BKK98] or  UB-trees  [Baye96] can  be  used.  Another  index  structure  suitable  for 

multidimensional data, especially when the domains contain a low number of possible 

values, is the bitmap index [CoBe05].

Regarding the tree-structured index structures, one can distinguish two approaches, the 

first one tries to accommodate multidimensionality by relying on a special tree structure 

(KdB-tree, R*-tree, X-trees), whereas the second one maps multiple dimensions to one 

dimension and relies on standard B-trees (Pyramid-tree, UB-tree).

The supported look-up functions depend on the specific index structures. For example a 

bitmap index does only support exact match look-ups, while  the tree-structured also 

supports range queries.

A further discussion of range queries in multidimensional data can be found in [BeFr79] 

and Gaede and Günter analyse the various multidimensional access methods extensively 

in [GaGü98]. Another classification of multidimensional access methods together with an 

overview on different index structures and their performance characteristics is given by 

Ahn et al. [AMW01].
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 2.2.4 Generalized Search Trees

An interesting approach to unify different tree structured indices in a general framework 

was  made by  Hellerstein  et  al.  [HNP95].  They  introduced  a  generalized  search  tree 

(GiST),  which  is  extensible  regarding query  types  (lookup functions)  and data  types 

(lookup pattern  domain types).  The authors  outline  that  the essential  nature  of  any 

database search tree is the explicit partitioning of a dataset.

Therefore the GiST provides an abstraction of the search key, which is defined as “any 

arbitrary  predicate  that  holds  for  each  datum  below  the  key”  [HNP95].  Also  the 

comparison function (named key methods by the authors) on these keys and the split 

functionality is abstracted and exposed to the user. This ensures that various different 

tree  structured  indices  can  be  handled  in  the  same  way,  an  approach  that  is  very 

interesting for SemCrypt, to ensure extensibility and a meta-view on index structures.

 2.3 Information Retrieval

Unlike  in  value  centric  indexing,  in  information  retrieval  text  is  accessed  by  using 

keyword search, pattern matching and ranking techniques. As information retrieval is a 

very complex area on itself and is not a primary focus of this thesis, only some basic 

underlying index structures will be discussed.

There are many different approaches mentioned in the literature, like Tries and Patricia 

Trees  [Knuth73],  Suffix  Trees  [Ukko95],  Inverted  Files  or  Signature  Files  [ZMR98]. 

Exemplary  two  index  structures,  which  provide  keyword  matching  (inverted  files 

[KlMe03]) and prefix matching (prefix B-trees [BaUn77]) functionality, are presented.

 2.3.1 Inverted Files

One straightforward and commonly used approach to index large amounts of full text 

data are inverted files  [KlMe03].  These consist  of  a dictionary containing all  indexed 

keywords and inverted lists, containing references to the occurrences of these keywords 

(including word or character positions).

The index interface of  an inverted file  resembles the one of  a  hash index,  which  is 

depicted in  Figure 4. Therefore a hash index can be used for the implementation of an 

inverted  file,  by  calculating  hash  addresses  from  the  keywords  and  by  storing  the 

relevant location information. A detailed analyses of inverted files and its variations and a 

comparison with signature files can be found in [ZMR98].
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 2.3.2 Prefix B-trees

Another possibility to enable text search is by the use of B-trees that use keywords or 

patterns as index keys. Bayer and Unterauer present such a tree structure, called prefix 

B-tree  [BaUn77].  They  index  keywords,  however  do  not  store  the  whole  key,  but 

compress it, maintaining the linear order between keywords. This is possible due to a 

prefix based compression.

The algorithms for insertion, deletion and retrieval equal the ones for regular B-trees, 

however for the creation of branch pages, not the full indexed string is used but the 

smallest prefix that can be used to separate two strings. For example if the two words 

“toast” and “tree” are indexed, the algorithm looks for a minimal prefix separating the 

two words, which in this case is “tr”. In the best case one letter is sufficient to distinguish 

two words, in the worst case the whole second word needs to be taken.

While this key-compression saves memory space, the authors do not explicitly mention 

the positive side-effect regarding text-queries, namely to enable the search for prefixes. 

Therefore a prefix B-tree combines the advantages of a Patrica Tree  [Knuth73] (prefix 

search, key compression) with the one of a B-tree [Com79] (balanced behaviour).

 2.4 Indexing in OODB

Data can not only be queried for values, but also regarding an underlying structure. The 

problem of  indexing data  embedded in a  hierarchic  structure  first  occurred with the 

creation  of  object  oriented  databases  (OODB).  Hierarchic  data  follows  an  IS-A 

relationship that can be found in class- (object orientation) or  type hierarchies (XML 

types). Bertino et al distinguish three approaches that can be taken to index hierarchic 

data [BCC98]:

1. Firstly, index structures can be adopted to accommodate values and hierarchic 

information, by segmenting parts of the index according to hierarchies. Most index 

structures that follow this approach (like the hierarchy class chain index (HCC-

index)  [SrSe94]) have been defined as extensions of the class hierarchy index 

(CH-index) proposed by Kim et al. [KDD89].

2. Secondly, index structures can be nested to represent hierarchic information. This 

approach has been chosen by Low et al.  [LOL92], with the hierarchical tree (H-

tree). They suggest maintaining a tree for every class that are then interlinked to 

capture the inheritance relationships.

3. The third approach is to use a multidimensional index structure, while regarding 
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hierarchic  information  as  an additional  dimension.  Ramaswamy and Kanellakis 

[RaKa95] follow this approach by transforming the search in a class hierarchy and 

a value domain into a range search regarding two dimensions. Therefore they 

map  classes  to  ranges  and  represent  subclass  relationships  with  contains 

dependencies.

Values×HierarchyP  Identifiers 
f simple av°1 xv∧a h°2 xh ∣ xv∈Values∧xh∈Hierarchy , °1∈{=} , °2∈{isA ,=}
f range  xv1°3 av °3 xv2∧ah°2 xh ∣ xv1 , x v2∈Values∧xh∈Hierarchy , °3∈{<, ≤, >, ≥}

Figure 6: Hierarchic index interface

The index interface of a hierarchic index structures is depicted in Figure 6 and shows the 

combination of a value with a hierarchic domain. A hierarchic relationship can either be 

determined by an equal comparison (=) or by a sub-hierarchy comparison (isA).

In the following two chapters the first two approaches will  be presented as approach 

three makes use of multidimensional index structures that have already been described 

in Chapter 2.2.3.

 2.4.1 Class Hierarchy Indices

Kim et al. were the first to propose a single index on an attribute in a class hierarchy, 

called CH-index, replacing many indices maintained for each single class  [KDD89]. The 

authors adopt a standard B-tree to accommodate the structural information contained in 

a class hierarchy. While the branch nodes are identical to usual B-trees, the leaf nodes 

are  segmented  into  the  according  classes.  This  allows  efficient  queries  on  a  single 

attribute over a class hierarchy, however is less efficient for queries on a single class.

The authors also present an overflow mechanism, which splits records regarding to which 

class they belong. This ensures that in case a single class is queried, a minimum amount 

of pages needs to be loaded. It  has been shown that the efficiency of the CH-index 

increases with the number of classes, compared to many indices maintained for single 

classes. This is true for both exact match and range queries. However, as mentioned 

before, a single index outperforms the CH-index when single classes are queried.

A slightly different  approach (HCC-index) has been taken by Sreenath. and Seshadri 

[SrSe94], who adopts a standard B-tree similar to the CH-index. However, the class 

structure is not represented in the leaf nodes, but in a separate, underlying layer called 

oid nodes. Also the branch pages are extended in a way that they store an additional 

bitmap vector, which allows determining on branch level if records exist for a certain 

class. The authors show that the HCC-index outperforms the HC-index in case a single 
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class, or few classes in a hierarchy are queried, while performing equally well on many 

classes.

 2.4.2 Nested Indices

A straightforward approach to index class hierarchies is to maintain a separate index for 

every class and to search some or all of these index structures when evaluating a query. 

Although this approach is ideal to answer queries on a single class, the performance 

decreases when querying multiple classes or the whole hierarchy, as all indices need to 

be traversed.

To overcome this limitation, Low et al.  [LOL92] presented an index structure called H-

tree. The main idea is to maintain an H-tree for each class, “allowing efficient search on a 

single class. These H-trees are appropriately linked to capture the superclass-subclass 

relationships,  thus  allowing  efficient  retrievals  of  instances  from  a  class  hierarchy” 

[Ooi+96]. Due to the nesting of the single H-trees queries on multiple classes can be 

evaluated efficiently. While the performance of nested H-trees is roughly equal to HCC-

indices,  Sreenath  and  Seshadri  outline  that  the  maintenance  of  an  H-tree  is  more 

complex and difficult [SrSe94].

 2.5 XML Indexing

Semi-structured data, like XML data, contains additional structural information. However, 

this structure is often more flexible than the one found in class hierarchies and contain 

larger text junks, which need to be indexed using information retrieval techniques. An 

extensive survey on XML indexing and searching was done by Kuk et al. [LLD+02] and 

several XML index structures are described by [CMV05].

Regarding indexing techniques for XML, they can be segmented into two categories:

● Content Centric XML Indexing

● Structure Centric XML Indexing

Content centric approaches first segment the indexed data regarding the content of the 

XML file, like text or values, whereas structure centric approaches first model the content 

structure and then index the content. These approaches either combine a regular index 

on content with a specific index on structural information (as implemented by McHugh et 

al. [MWA+98] in the Lore DBMS), or use specific index structures suitable for this task.
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A special case is regarding both content and structural information at the same time, 

which can by achieved with a multidimensional approach  [Krat04]. An example of this 

proceeding has been presented by Kratky et al. [KPS02], who use the multidimensional 

UB-tree [Baye96] for indexing XML data.

 2.5.1 Structure Centric XML Indexing

The structure of XML data often is not known, or it changes dynamically, so that it is not 

possible  to  define  a  static  schema  which  encodes  structural  information.  Therefore 

Goldman and Widom present a dynamic schema, which they call data guide [GoWi97]. A 

data guide can be created on any XML document and represents the current structure of 

this document in an unbalanced tree structure. Every document can have several valid 

data guides, which can be reduced to a minimal data guide. Besides their use for queries 

on  structural  information,  data  guides  can  be  used  for  query  formulation  and 

-optimization.

Another structure centric approach is the T-index proposed by Milo and Suciu [MiSu99]. 

A T-index is a path index, which makes use of path templates defining a set of paths that 

can be indexed and evaluated.  The  advantage compared with the data  guide is  the 

capability of a T-index to evaluate multiple paths at the same time (as long as they fit to 

the specified path template).  Like the data guide, the T-index only indexes the XML 

document structure.

Cooper et al.  [CSF+01] follow a different strategy and suggest to interpret paths as 

character-chains and then use nested Patrica Trees [Knuth73] to index these paths. The 

created  Index  Fabric is  a  balanced  structure  capable  of  supporting  complex  and 

branching queries.

 2.5.2 Content Centric XML Indexing

There exist several examples for content centric XML indexing. As mentioned before one 

approach is to used regular value based index structures (hash table, B-tree,...) and to 

combine  them  with  a  structural  index  [MWA+98].  This  approach  is  often  found  in 

combination  with  information  retrieval  tasks,  when  keyword  and  pattern  matching 

queries shall be supported on XML documents. Poola and Haritsa [PoHa01] propose an 

index structure (SphinX) that combines a tree, representing the document structure, with 

multiple balanced trees on values, one for each path.

Another possibility is the use of bitmap indices, mapping values to bitmaps. This is done 

by Yoon et al. [YRC01], who also encode structural information in bitmaps and create a 
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three-dimensional “bitcube” for indexing content and structure in XML documents.

An interesting approach has been presented by Weigel et al. [WMB+04] that extend the 

date  guide  to  make  it  content  aware  and  suitable  for  information  retrieval,  while 

preserving the structural information. They distinguish two approaches, a content- and a 

structure-centric one, depending on what information will be used first for segmentation. 

The authors prefer the second one, as the content-centric approach would replicate the 

document structure for every indexed keyword. A content aware data guide is enriched 

with  content  information to  exclude non relevant  sub-trees  (that  do not  contain the 

desired content) early. One way to achieve this is adding inverted files to every node in 

the data guide, another one is to represent the content of sub-trees by signatures in the 

data guide.

 2.6 Secure Indexing

A consequence of the database as a service paradigm is the importance of data security 

and information hiding. Until recently there were no approaches to support queries over 

data, which cannot be read by the server with index structures. This setting requires the 

client to create, maintain and traverse indices. Additionally indices must not reveal their 

structure or the data they contain to the storage provider.

In the following chapters two approaches for secure indexing with hash based and tree 

based index structures are presented.

 2.6.1 Encrypted Hash Tables

According  to  Damiani  et  al.  [DVJ+03],  Dang  [Dang04] and  Ceselli  et  al.  [CDV+05] 

security and efficiency are always in a trade-off relationship. They propose to store data 

required by index structures (index pages) in an encrypted hash table. The hash index 

allows direct access for exact match queries. For B-trees the authors suggest to traverse 

the tree on the client, therefore accessing encrypted entries at the storage provider and 

decrypting them for further traversal.

A sample B-tree and the according hash tables in a decrypted and an encrypted version 

is depicted in Figure 7. Each row of the hash table represents one index page which is 

fetched from the storage provider.
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 2.6.2 Secure Trees

Although the approach using encrypted hash tables looks secure at first, Lin and Candan 

[LiCa04] argue  that  the  different  frequency  of  accessing  nodes  may  lead  to  a 

reconstruction of the tree structure, breaching the overall security. For example the root 

node is accessed most often and therefore can be easily identified.

The authors propose two techniques, access redundancy (depicted in Figure 8) and node 

swapping (depicted in  Figure 9),  which prevent the leakage of  structural  information 

when used in combination Access redundancy means that if certain data needs to be 

retrieved from the storage provider, additional random data is requested, disguising the 

request from the storage provider.

Figure 7: Encrypted B-tree using hash tables, example from [DVJ+03]
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While access redundancy hides which node of a tree is accessed, information can still be 

revealed in case multiple queries target the same node (as shown in Figure 8). Therefore 

the authors propose to move the accessed node after every access. The retrieved data 

needs to contain at least one empty that is used for the swapping.

As depicted in  Figure 9, when combining node swapping with access redundancy the 

accessed information can be concealed. However, these two techniques require a lot of 

additional processing and generate transaction overhead. Furthermore, due to the node 

swapping, every read access results in a write access which slows down performance.

Figure 8: Access redundancy for hiding tree structure, [LiCa04]

Figure 9: Node swapping for hiding tree structure, [LiCa04]
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This chapter describes the index structures that are implemented in this thesis. At first 

the  requirements  posed  at  the  specific  indices  are  outlined.  Then  the  concepts  and 

algorithms  of  the  index  structures  are  presented  and  the  required  meta-data  is 

explained. Finally the concept of nesting index structures in SemCrypt is outlined. No 
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implementation details will be given, as these are presented in Chapter 5.

 3.1 Requirements and Strategies

Being  an  outsourced  database  service,  SemCrypt  has  high  requirements  regarding 

performance and security. These requirements result in limitations and constraints for 

index  structures  that  need  to  be  regarded  and  which  require  new  strategies.  As 

mentioned before index structures help to speed up certain types of queries. However, in 

SemCrypt they must not hazard the system's overall security.

Several  requirements  need  to  be  fulfilled  by  these  index  structures  to  fit  into  the 

SemCrypt architecture and to satisfy the SemCrypt requirements:

 3.1.1 Applicability

The index structures need to support certain queries, that can be described as lookup 

functions as outlined in Chapter 2.1.2. The kind of typical queries that are executed on 

XML data have already been outlined in Chapter  1.4 and 1.5. By mapping these query 

types to lookup types, the index structures which are required to index XML documents 

can be deduced. The according mapping is shown in Table 6.

Query Type Index Lookup Type Proposed Index Structure

Exact match queries Simple lookup
Exact Match Index,
Range Index

Range queries Range lookup Range Index

Text queries
Keyword lookup

Pattern lookup
Text Index

Hierarchic Queries Structural lookup Hierarchic Index

Complex Queries
Boolean lookup

Multidimensional lookup

Combination of Indices,
Multidimensional Index

Table 6: Query Types, Lookup Types and Associated Index Structures

The proposed index structures are selected and explained in [Grün06a]. Simple lookups 

are  supported  by  an  exact  match  index  or  a  range  index  and  range  lookups  are 

supported  by  the  range  index.  Keyword  lookups  can  be  supported  by  a  text  index 

(pattern lookups will not be supported). The hierarchic index supports structural lookups. 

Regarding the boolean and multidimensional lookups, a combination of structural with 

simple, range or keyword lookup can be supported by nested indices. Multidimensional 

indices,  which  are  able  to  support  boolean  and  multidimensional  lookups  are  not 

considered in this thesis.
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 3.1.2 Extensibility

Extensibility means the capability of adding new index structures at a later point of time, 

to adopt and extend existing indices (new data types) and to combine the capabilities of 

different  index  structures.  Consequently  extensibility  results  from  the  performed 

abstraction from the storage structure (independence from underlying concepts) and the 

index structures (abstraction provided to overlying concepts).

This quality attribute is provided by the proposed representation of indices on a logical 

and internal layer, which generalizes index structures and provides common interfaces 

for managing and traversing indices (details will be given in Chapter 4).

 3.1.3 Performance

Performance  of  index  structures  can  be  measured  regarding  the  amount  of  storage 

accesses  and  amount  of  data  they  transfer,  the  memory  and  processing  time  they 

consume and the amount of meta-data they require. Performance can be differentiated 

into  the performance of  retrieval  and the performance of  maintaining (updating and 

creating) an index.

The reason for these performance requirements lies in the expensive communication with 

the storage provider. Encryption and decryption create an additional overhead. Therefore 

the number of accesses and the total amount of transferred data needs to be reduced.

Primary target  is  to minimize the transferred data and to provide adequate retrieval 

performance. This can be achieved by the use of a dynamic bucketing mechanism that 

ensures that similar sized pages are transferred and that reduces the total amount of 

data  transferred  to  answer  a  query.  Memory  and  processing  time  consumption  and 

maintenance performance is second important.

 3.1.4 Security

Generally speaking indices must not reveal any information about the data they index or 

the structure of the index at the storage provider. Index structures potentially threaten 

the  system's  security,  as  they duplicate  the data they index.  Furthermore  structural 

information that can be retrieved by analyzing indices may be used to reconstruct the 

structure of the primary data (this is because indices always segment similar data in 

some way).

Security issues arise when querying and updating an index. The redundancy created by 

index structures is an advantage when querying data, as not only the primary data are 

accessed. Consequently it becomes more difficult to map a certain query to a certain set 
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of data. On the other hand updates are more problematic, as a change of the primary 

data is always reflected by according changes in the index data. 

Security  is  primarily  ensured by  making indexed data  indistinguishable  from primary 

data, using secure encryption techniques and caching frequent accesses.

 3.2 Index Structure Concepts

As  outlined  in  Chapter  2.1 index  structures  share  some  common  characteristics. 

Concepts relevant to all presented index structures are presented in this subsection and 

the created structure is re-used in the chapters describing the specific index structures.

An index is an access structure that realizes a mapping between certain data and its 

occurrences. According to Chapter 2.1, we call every domain that is indexed and that can 

be queried a  key and the domain of data that is returned the return. Consequently an 

index maps keys to a return. In the SemCrypt DBMS the return of index structures are 

always nodes, the core element of any XML document in SemCrypt.

 3.2.1 Index Definition

The kind of mapping of keys to a return for a certain index is described by an index 

definition,  in  a  way  that  is  independent  from  a  specific  index  structure.  The  index 

definition  defines  what  the  index is  based  on (keys),  what  is  returned (return)  and 

dictates the structure of the lookup function, which is used to query the index. When 

querying the index, the keys can be regarded as variables, which when set to a specific 

value will lead to an according return.

For example if we want an index that returns every email that was sent at a 

specific  date,  the  index  needs  to  map  Date  -->  Email(s).  This  can  be 

expressed more formally by the modified XPath statement:

//Email[Header/Date=$var]

Hereby Date means the value of the Date node, which is the key of the 

index. Email  is the return, in this case a set of Email nodes. If the key 

variable ($var) is set to a specific value the index returns the according 

emails.

We require additional information to determine what kind of queries we can pose at the 

index. In Chapter  2.1.2 according lookup types and comparison operators that can be 

used to indicate this information have been presented.
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In the example we define that the index supports match queries on the 

Date.  We encode this  information (the kind of  comparisons that  can be 

performed) in a meta-type of the variable. Therefore a  “simple” indicator 

(short cut for the simple look up type in Table 5) is added to the variable:

//Email[Header/Date=$varsimple]

 3.2.2 Search Configuration

In order to query an index we create variables for every key of the index and set these 

variables to specific values, ranges, keywords or hierarchies. We call this set of variables 

passed to an index the search configuration, as it defines what an index is looking for. A 

search configuration can also be used to specify the keys, where to insert, update or 

delete nodes.

We set the variable to the value we want to search for:  $varsimple := 1. In 

this case the search configuration only consists of one variable. The index 

returns all emails that satisfy the specified condition (Date = 1).

 3.2.3 Data Structure

Every index structures its data in a certain way, which ensures that a specific mapping 

and  an  according  lookup  function  are  best  supported.  However,  the  SemCrypt 

environment  poses certain limitations  to  this  structure,  as  the SemCrypt  DBMS only 

supports storing of a mapping of identifiers to data. Consequently index structures need 

to access and to write structured packages of data, which we call pages.

Pages are the persistent representation of the mapping imposed by the index. The sum 

of pages belonging to an index contains all the indexed information of this index. As an 

index makes use of  multiple pages,  these pages contain both  the indexed data and 

additional data that is required for the traversal of the index, like references to other 

pages.

A sample page might contain a date and all the email nodes belonging to 

this date: [ 1 --> A ]

Every index must make use of pages. Each page consists of an identifier that can be used 

to access the page and content. The structure of the content is not compulsory and can 

be defined by every index structure. Therefore pages might even contain other pages.
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 3.2.4 Index Configuration

Often  an  index  requires  additional  meta-data  that  determine  its  structure  and 

characteristics.  The  sum  of  these  parameters  is  called  the  index  configuration.  A 

configuration  contains  information  that  is  required  for  initializing  an  index,  but  also 

information that is needed for the operation of the index.

Every configuration needs to contain meta-data that expresses the relationship of the key 

indexed by  the  index structure  and the variable  defined in  an index definition.  This 

information enables the index to identify its affected keys in case of a query.

 3.2.5 Algorithms

Every index has a certain way of handling indexed data, which we call the algorithms of 

an index. These algorithms are required to create, update, delete and query the index. 

They  are  independent  from  the  indexed  data.  Then  again  there  are  algorithmic 

components  that  are  data-specific  and  which  are  used  for  the  comparison  and 

manipulation of this data. We are going to call these data-specific algorithms operators.

A sample insertion algorithm is: load page --> check equals key --> insert 

value --> save page. In case of a page [ 1 --> A ] and the insertion of [ 1 --

> B ] this leads to [ 1 --> A, B ].

The required operator is the equals (=), as the algorithm needs to compare 

the key of the existing page to the key of the data to be inserted. In this 

case the equals operator compares two numeric values (1 = 1).

 3.3 Exact Match Index

The  exact  match  index  provides  the  value  centric  indexing  capabilities  that  were 

discussed in Chapter  2.2, for simple (exact match) queries. Considering the encrypted 

SemCrypt storage approach and the performance characteristics we chose an inverted 

file approach, which is capable of emulating a hash based approach [SchGD05].

 3.3.1 Definition

An exact match index supports simple lookup functions, which means it is able to retrieve 

nodes belonging to a specific key. This can be expressed by passing an index variable, 

which contains the specific key that shall be retrieved, or that defines the key of the node 

to be inserted or to be deleted.
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Index 1

We define a sample exact match index on the Address that retrieves the 

according Email(s). $key1 indicates that the index can be used to search for 

Addresses,  using  a  exact  match  comparison  (simple  lookup  type).  The 

return (Email) is determined by the XPath expression.

//Email[.//Addressee/@Address=$var1simple ]

The simple nature of an exact match index does not require any specific configuration 

parameters. Therefore an exact match index configuration only contains the identification 

of the exact match variable (compare with Chapter 3.2.4).

 3.3.2 Data Structure

In  an  exact  match  index  essentially  identifier  and  value  of  the  primary  data  are 

interchanged, which allows querying for certain values, discovering whether they exist 

and where (in an XML document) they can be found. This means that the primary data 

directly becomes the key of the exact match index, which resembles the structure of an 

inverted file. A page of the exact match index therefore contains the return belonging to 

a specific key. The key is used as a page identifier.

An example page for index 1 and the key michael@maier.de contains Email 

A and B. The whole index for the example data is depicted in Table 7.

Page Identifier Page Content

michael@maier.de Email A, B

peter@lasinger.at Email A, B, C

franz@mitterer.de Email A

julia@schnell.de Email A, B, C

Table 7: Index 1 – Exact Match Index Data Structure

 3.3.3 Algorithms

An exact match index uses three basic algorithms that provide the indexing functionality 

(insert, delete and retrieve) and a page identifier function to transfer the passed keys 

into  page  identifiers.  The  page  identifier  function  takes  a  passed  key  as  input  and 

transforms it into a unique identifier for the associated page. In case a specific key is 

requested it can be transformed into a page identifier, which is then used to retrieve the 

required page.
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The insertion algorithm (depicted in Figure 10) gets a specific key and nodes belonging to 

that key as input.  At first the passed search configuration needs to be processed to 

determine  the  key,  where  to  insert  the  passed  nodes.  Then  the  page  identifier  is 

calculates from the passed key and the page belonging to that id is retrieved from the 

storage. In case the page does not exist, a new page is created. The nodes are added to 

the page and finally the changed page is saved. This algorithm assumes that the page 

size is not limited, so all data belonging to a specific key is always stored in one page.

The  deletion algorithm (visualized in  Figure 11) removes nodes belonging to a certain 

key. After the search configuration is processed and the page id has been calculated, the 

relevant page is loaded. Then the nodes are removed from this page. In case all data 

contained in the page is removed and the page is empty, it is deleted. Otherwise the 

changed  page  is  saved.  Therefore  when  deleting  an  exact  match  index,  it  must  be 

provided with all the values that are used as page identifiers. The exact match index 

itself does not know, which pages it contains. This implies that if a hash index needs to 

be removed, it cannot delete its associated pages by itself. It needs to execute page 

requests and to evaluate if the corresponding page exists or not.

The retrieval algorithm, shown in Figure 12, is similar to the other two algorithms. At first 

the search configuration is processed and the page id of the requested key is calculated. 

Then the page is retrieved from the storage. In case no page exists an empty result set 

is  returned,  otherwise  relevant  nodes  are  selected  from the  page  and  the  result  is 

returned.

Figure 11: Exact Match Index - Deletion Algorithm

Figure 10: Exact Match Index - Insertion Algorithm
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The exact match index 1 as defined earlier is depicted in Table 7. To every 

existing email address (the key that is used as a page identifier) references 

to the according emails are stored.

In case query 1 is executed on that index, it is straightforward to see that 

email A and B are returned, as this is the page content stored to the key 

and page identifier michael@maier.de. Query 2 leads to an empty result, as 

franz@schnell.de does not exist as a key.

 3.3.4 Security

By definition an exact match index is a reverted view on the primary data. Therefore 

changes in the primary data automatically lead to changes of the affected index page 

(index update). Consequently it may be possible to associate different occurrences of the 

same value, as same values lead to a change of the same index page. If an intruder is 

monitoring  the  storage  provider  and  is  able  to  execute  insert,  update  or  delete 

statements  they  might  gather  structural  information  (like  the  occurrences  of  certain 

values). However, due to the encrypted data no content information is exposed.

 3.4 Range Index

Like the exact match index, the range index provides value centric indexing, with the 

difference that it can also be used to execute range queries efficiently. We chose to adopt 

the B+Tree variant as described by Held and Stonebreaker [HeSt78], so that it can be 

used in the distributed SemCrypt environment. Therefore the range index uses the pages 

described in Chapter  3.3.2. The algorithms are adapted in a way to work with these 

pages and to abstract from the indexed data by using generic operators to manipulate 

and compare the indexed data.

Figure 12: Exact Match Index - Retrieval Algorithm
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 3.4.1 Definition

A range index supports simple and range queries based on the index key. Therefore the 

search configuration of a range index contains a range match variable, fitting to the key 

defined in the according index definition. This range match variable needs to be able to 

express a range, which can be defined by a lower and upper bound, both times with a 

modifier expressing if these bounds are included. This is analogous to the mathematical 

syntax of a range definition:  [Lower Bound .. Upper Bound[, where a bracket showing 

inward signalizes the inclusion of the bound, one showing outward the exclusion.

A simple query can be expressed by letting the lower bound equal the upper bound and 

by including both bounds. In case a bound is not set, the meaning is that this bound 

needs not be regarded. A special case is the setting of no bounds, which returns the 

whole content of the range index.

Index 2

The sample queries can be supported with a range index on the date-field of 

emails. A possible definition that indices the date-field and returns relevant 

emails is:

//Email[ Header/Date =$var1range ]

In case we want to query the index for a range, we need to pass a relevant 

range match variable.  The variable for  query 3,  which is  looking for  all 

emails with a date smaller than three, is set to no lower bound and an 

upper bound of 3, which is excluded:

$var1range := ] .. 3 [

For query 4 the variable is set to:

$var1range := ] 1 .. 3 [

In case an exact match query for 2 is performed the bounds are [ 2 .. 2 ] 

and with [ .. ] everything contained in the range index is returned (if there 

is no bound set, it does not matter if the bound is included or not).

 3.4.2 Data Structure

A range index separates pages that contain data (leaf pages) from pages, which are built 

on top of the leaf pages and that create the tree structure (branch pages). As the leaf 

pages are linked together in a sequence set, very efficient range queries are possible. 

Furthermore this minimizes the required amount of storage accesses, because as soon as 
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the first leaf page has been found, every following leaf page can be retrieved with one 

additional access.

Another  advantage  of  separating  leaf  pages  from branch  pages  is  the  possibility  to 

provide more efficient splitting algorithms and a better update behaviour when deleting 

nodes. So branch pages only need to be updated when there are splits or merges on the 

leaf-level. The page concept for the range index is shown in Figure 13 by using an UML 

class diagram. As a leaf page is part of the sequence set, it provides a next reference to 

the following leaf page. A branch page holds the references to its children in the tree 

structure, which can either be other branch pages or leaf pages.

 3.4.3 Configuration

The inner structure of a range index, its retrieval, update and storage characteristics 

(page  sizes)  are  dependent  on  three  core  parameters.  A  fanout  parameter  that  is 

relevant for the branch pages and that defines the maximum amount of references of a 

branch page to other BTreePages. The fanout determines the flatness of a range index, 

the higher the fanout the larger the branch pages and the flatter the tree. Therefore the 

fanout is a critical parameter for the expected retrieval time, as the height of a tree 

equals the amount of pages to be accessed to retain a certain leaf page. The fanout 

parameter also dictates when a branch page splits and merges.

Two other parameters define the size of leaf pages and their split behaviour. A maximum 

size defines the maximum possible size of a leaf page, while a minimum size defines the 

minimum size of a leaf page. In case a leaf page grows larger, it splits, in case it grows 

smaller it is merged, or data is redistributed with a neighbouring leaf page.

Consequently these three parameters can be used to specify the average and maximum 

page sizes and to optimize a tree for the data to be indexed and the retrieval and update 

characteristics in a specific setting.

Figure 13: Range Index Pages
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In case a fanout of 2, a maximum leaf page size of 1 and a minimum leaf 

page size of 1 are chosen, the resulting tree resembles the one depicted in 

Figure 14. In a running environment these parameters will be a lot higher, 

but for the example these minimum parameters are chosen to create a tree 

structure, which only uses the data of the running example.

The range index consists of  three interlinked leaf pages (sequence set), 

each of them is totally filled and contains one date and the reference to the 

according email. On top of the leaf pages are three branch pages, which link 

to two other pages at most (fanout) and which contain the minimum value 

of the part tree containing the larger values (in case of branch node V there 

is no such part tree, so there is no minimum value). Branch page I is the 

root of the tree and the starting point of any insert, delete or retrieve query.

Page ID Page Content

I II <3> V

II III <2> IV

III <1> [A] IV

IV <2> [B] VI

V VI

VI <3> [C]

Table 8: Sample Range Index in a Table 
Representation

This tree structure is mapped to a table, where every row represents a page 

of the tree and the first column expresses its identification and the second 

column its content. For the sample range index the according representation 

is shown in Table 8.

The page ids in the content column represent references to other pages, 

values in <> brackets are index keys (in this case dates) and values in [] 

brackets represent the indexed data (here references to the according email 

nodes).

 3.4.4 Algorithms

A range index is a complex and dynamic data structure and therefore requires a set of 

algorithms to allow insert, delete, update and retrieve operations. First of all there are 

algorithms concerned with the distribution and balancing of data in pages, in case an 

overflow or underflow occurs. The merge algorithm takes two pages (of the same type) 

Figure 14: Sample Range Index
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as input and combines their content in one page. On the other hand, the split algorithm 

equally distributes the content of one page among two pages. The redistribute algorithm 

balances the content of two pages, which equals performing a merge first that is then 

followed by a split.

The  insertion  algorithm,  visualized  in  Figure  15,  is  used  to  create  and  update  the 

structure  of  the  range  index.  At  first  the  passed  search  configuration  needs  to  be 

processed to determine the key, where to insert the passed nodes. Starting from the root 

page the tree is traversed to locate the relevant leaf page for insertion. This traversal 

equals the one performed by any regular B-Tree. In a next step the nodes and the key 

are inserted into the page, or the nodes are added in case the key already exists.

If the updated page outgrows the maximum page size, a split needs to be performed and 

the parent page needs to add the reference to the newly created page. In case the 

parent page also overflows and splits, this procedure is repeated until there are no more 

overflows. An overflow of a branch page is checked against the fan-out parameter. In 

case the root page splits, a new root page is created, linking to the old root page and its 

split page and consequently increasing the height of the tree by one.

The reverse algorithm is the deletion algorithm (depicted in Figure 16) that can be used 

to update a range index in case nodes are deleted or updated and that also manipulates 

the tree structure. The first steps resemble the one of the insertion algorithm, however 

the located leaf page is used for deletion. In case the page belonging to the concerned 

key does not exist, the algorithm returns. Otherwise the nodes are deleted from the 

page. Then the leaf page is checked for an underflow, meaning that the total leaf size has 

become smaller than the minimum page size parameter.

In case an underflow occurs, a sibling page (sharing the same parent node) needs to be 

retrieved. If there are multiple candidates the left sibling (containing data belonging to 

smaller keys) is used. Three possible situations can occur:

1. No sibling page exists, which is the case when there is only the root page and one 

leaf page left. In case the page is empty, it is deleted, otherwise nothing happens.

Figure 15: Range Index - Insertion Algorithm
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2. The  summed  up  sizes  of  the  page  and  the  sibling  page  is  smaller  than  the 

maximum page size. Consequently the two pages can be combined (merged) into 

one and the sibling is deleted.

3. The summed up sizes of the page and the sibling is greater than the maximum 

page  size.  As  the  pages  cannot  be  combined,  their  content  is  equally 

redistributed.

In the next step modified pages need to be saved and in case a merge or redistribution 

occurred the parent  page needs  to  be updated.  A  merge leads  to  the deletion  of  a 

reference in the parent page, which may lead to further underflows thus repeating the 

process of handling underflows. A redistribution changes the minimum value of the sub-

trees, consequently reference information in parent pages needs to be updated to keep 

the tree valid. Due to multiple merges it is possible that the root page only holds one 

reference to a child page. In this case this child page becomes the new root page.

The retrieval algorithm (depicted in Figure 17) can be used to execute range queries on a 

range  index.  Again  the  first  steps  resemble  the  ones  described  in  the  deletion  and 

insertion  algorithms.  Further  information  is  extracted  from  the  search  configuration 

(upper and lower bounds and indicators if these bounds shall be included in the query).

Figure 16: Range Index - Deletion Algorithm
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As the leaf  pages are linked together  in  a  sequence set,  every  range query can be 

processed in the same way. At first the leaf fitting to the lower bound is retrieved and 

then the following leaf pages are retrieved as long as the upper bound is not violated.

When a leaf page has been located, all keys satisfying the bounds are selected. These 

results are then aggregated and combined with results from further leaf pages. When the 

first  key violating the upper bound is found,  or  there are no further leaf pages, the 

aggregated result set is returned.

Due  to  the  interlinked  tree  structure  a  range  index  can  be  deleted  easily,  without 

knowledge  of  the indexed data.  Starting  from the root  node  the whole  tree can be 

traversed until every page has been deleted.

Query 3 asks for all emails whose dates are smaller than 3. First the leaf 

page with the minimum key is searched. Starting with the root, page II is 

loaded next, that directs to leaf III. Leaf III contains the first entry within 

the bounds, but as the upper bound is still not matched, the next leaf (IV) is 

loaded. It  is  not necessary to traverse the tree more than once, as the 

required information is contained in the according leaf. Leaf IV contains the 

next match but the upper bound is still not violated, therefore the next leaf 

is loaded. However, leaf VI does not contain any more relevant data and its 

key violates the upper bound (there are no more results in following pages), 

therefore Emails A and B are returned.

Query 4 is looking for all emails whose date is greater than 1, but smaller 

than 3. Again the retrieval starts at the root page I, with the aim to find the 

lower bound page first and then to select all  relevant leaf pages till  the 

Figure 17: Range Index - Retrieval Algorithm
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upper bound is violated. So at first branch page II is examined that directs 

to leaf page IV. Here the first valid element (Email B) is found and the next 

leaf page is loaded. Leaf VI does not contain any more relevant data and 

violates the upper bound, so only Email B is returned.

 3.4.5 Security

In its concepts the range index in SemCrypt resembles the secure trees presented in 

Chapter  2.6. By the use of pages the tree structure is mapped to a table that can be 

stored as encrypted key-value pairs at the storage provider. When traversing the tree, 

the identification of the root node must be known, so that it can be accessed. The root 

page is then evaluated and additional pages are loaded as they are required. Therefore a 

range index can be accessed by multiple clients at the same time (if there is additional 

concurrency control in place) and the tree structure is hidden from the storage provider.

As discussed in Chapter  2.6 (and identified by Lin and Candan  [LiCa04]), the frequent 

accesses of the root page and pages that are located near the root in general can be a 

security problem. In the SemCrypt setting this problem is less critical, because an index 

is stored together with the primary data (and other index structures) and cannot be 

distinguished from them. Furthermore SemCrypt caches frequent accesses, so that the 

performance can be increased, while frequently visited pages (like the root page) are 

accessed less often at the storage provider. Consequently the concepts of node swapping 

and  access  redundancy  proposed  by  the  authors,  which  would  reduce  performance 

drastically, need not be applied to attain a similar level of security.

 3.5 Text Index

The text index is an extension of the range index and can be used for indexing textual 

information. It resembles the prefix B+Tree discussed in Chapter 2.3.2 and makes use of 

key-compression techniques. Compared to other structures used for information retrieval 

(like Patricia tries), a prefix B+Tree is balanced.

The text index enables simple keyword match and prefix match functionality required by 

SemCrypt. The internal structure equals the one used by the range index and also the 

algorithms  are  similar.  The  advantages,  disadvantages  and  security  concerns  are 

identical to the ones described for the range index, therefore only the differences will be 

outlined.
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As mentioned before the text index is more specific than the range index, as it indexes 

just keywords. The leaf pages are identical,  however the branch pages are different, 

because they do not  contain the full  key for  distinguishing sub-trees,  but  a minimal 

prefix.  As  described  in  Chapter  2.3.2 this  enables  prefix  search  (the  retrieval  of  all 

keywords starting with a specific set of letters) and compresses the keys. 

The text index cannot efficiently answer boolean queries on a set of keywords, does not 

provide  any  similarity  measure  (like  ranking  mechanisms)  and  does  not  support 

advanced  pattern  matching  (like  regular  expressions).  Boolean  queries  need  to  be 

executed by accessing the index several times and then merging the results.

 3.5.1 Definition

The text index supports keyword (exact match) and prefix match queries on the indexed 

text data. Therefore the search configuration contains a text match variable on the index 

key, defined in the index definition. This text match variable consists of the keyword or 

the prefix that shall be looked for and an indicator telling whether prefix or exact match 

shall be performed.

The queries 5 and 6 can be supported by text indices based on the Text and 

the Subject of an Email. We define index 3 with:

//Email[.//Text/text()=$var1keyword]

and index 4 with:

//Email[.//Subject/text()=$var2keyword]

The text match variable to search for the keyword “message” in index 3 

(query 5) is:

$var1keyword := “message”

and the text match variable to search for every subject line starting with 

“RE” in index 4 (query 6) is:

$var2keyword := startsWith(“Re”)

This information can be transformed into a range query that can be executed by the 

prefix B+Tree. In case of a keyword search, the keyword represents both the upper and 

lower bound of the search.
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The search for “message” (query 5) leads to the range query:

[“message” .. “message”]

In case of a prefix search, the prefix indicates the lower bound of the range, yet the 

upper bound needs to be calculated and is the first letter combination that does not 

satisfy the prefix.

Consequently the search for all keywords starting with “Re” (query 6) can 

be expressed with [“Re” ..  “Re”+x[,  where x is  a virtual  letter  with the 

characteristic  that  it  is  larger  than  any  other  letter  indexed 

∀ l , l∈IndexedLetters lx .

 3.5.2 Algorithms

Before text can be indexed by a text index, the text needs to be prepared. This process is 

similar to the one used in general information retrieval and usually independent of the 

index structure. As depicted in  Figure 18 information retrieval can be represented as a 

twofold process. The first one prepares the text and builds up the index, while the second 

process targets on the retrieval (returning a result to a certain query) [GoHa05].

The analyser prepares the text to be indexed. It performs the tasks of tokenizing the text 

fragment (splitting it into keywords), stop-word removal (removing articles, punctuation 

and other not expressive information), stemming (reducing words and verbs to their root 

form)  and  lower  casing.  The  resulting  keywords  are  then  passed  to  the  index  for 

indexing. The text index then performs insertion or deletion of nodes for each individual 

keyword. Therefore the analyser acts as a kind of filter, preprocessing the input for the 

index. The analyser is independent of the retrieval process, as queries are directly posed 

at the index itself.

Index 3

In a first step the index needs to be created. For this purpose the texts of 

the emails are passed to the analyser, which creates keywords that are then 

indexed. The resulting tree is depicted in  Figure 19, with a fanout of two 

Figure 18: Information Retrieval Processes
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and a maximum page size of three.

Stop words like “this”, “the”, “is” or “a” have been removed by the analyser 

and are not included in the tree structure. The prefix compression is shown 

by the branch pages I, II and V, as one letter is sufficient to distinguish the 

sub-trees.

When looking for the keyword “message”, the traversal starts at the root 

page. The comparison directs to page V, but as “message” is smaller than 

“t”  page V directs to leaf page VI. The keyword is  found there and the 

occurrences, Email A and C, are returned.

Index 4

When creating index 4, we first need to build up the index using the subject 

lines. We assume that the lines are indexed as a whole, so we neglect the 

analyser. The resulting prefix B+Tree resembles Figure 20, with a fanout of 

two and a maximum page size of one.

As can easily be seen, the structure is identical with the one of a regular 

range index, however the branch pages (their keys) are slightly different, as 

they always represent the minimal prefix required to distinguish two sub-

trees. Two special cases are shown here. Branch page II requires a maximal 

prefix, as the two subject lines differ only in the last letter. In the root page 

Figure 20: Example Text Index - Index 4
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the letter R is sufficient to distinguish “Test 2” from “Re: Test 1”.

Query 6 looks for all emails containing the prefix “Re” in their subject line. 

Therefore the root page is examined first. The comparison of “R” with “Re” 

directs  to  branch  page  V  which  directs  to  leaf  page  VI.  The  contained 

subject line satisfies the prefix and as there are no further leaf nodes, Email 

B is returned.

 3.6 Hierarchic Index

The hierarchic index is a very special index that satisfies the need to deal with hierarchic 

data. By using the hierarchic index it is possible to speed up structural queries that are 

based on a hierarchic structure contained in an XML document. Similar to the object-

oriented  indices  it  is  sufficient  to  maintain  one  index  for  the  whole  hierarchy.  This 

ensures that a set of indices can be replaced by one hierarchic index, which increases the 

search for part  trees of  a hierarchy (as only one index is  queried).  Furthermore the 

hierarchic index presented here is capable to deal with dynamic hierarchies and as shown 

later  (Chapter  3.7)  can  be  used  with  any  other  index  to  provide  an  additional 

segmentation  according  to  the  relevant  hierarchy  [Grün06a].  Regarding  security  the 

same considerations pointed out  with the range index can be applied.  Therefore the 

subsection security is omitted.

Kim et al. [KDD89] introduced the basic idea with their CH tree that segments the leaf 

pages of a B-Tree according to a class hierarchy. This concept is generalized, as the 

hierarchy not only segments according to a static class structure, but according to an 

arbitrary  dynamic  hierarchy.  Furthermore  it  provides  a  dynamic  overflow  and  split 

mechanism, which moves whole sub-trees of the hierarchy to sub-hierarchy pages.

If used in combination with another index, it resembles the content aware data guides 

proposed by Weigel et al. [WMB+04]. Likewise a hierarchic index can be used to either 

achieve content centric, or structure centric indexing (see chapter 2.5.2). However, the 

hierarchic  index  is  not  limited  to  the  document  structure,  but  can  be  used  for  any 

hierarchic structure.

 3.6.1 Definition

The hierarchic index supports structural queries on hierarchic data, which in SemCrypt 

occurs in several ways:
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● Type hierarchies: a family of types that are interlinked in a hierarchic relationship.

An example  is  the  Email  Type and  its  subtypes  ReveivedEmailType and 

SentEmail Type:

Email

- ReceivedEmailType

- SentEmailType

● Path hierarchies: a hierarchy, which arises from the XML document structure.

The running example defines folders that contain emails. Every folder can 

be seen as a sub-tree containing a set of emails. The super hierarchy is the 

Mailbox, whereas every folder creates a sub-hierarchy and so does every 

Email.

Mailbox

- Folder “InBox”

- Email A

- Email C

- Folder “Sent”

- Email B

● Document hierarchies: a hierarchy that is the result of bundling a set of similar 

XML documents to a collection. The collection is the super hierarchy, every XML 

document a sub-hierarchy. A complex hierarchy can be created by further nesting 

collections using sub-collections.

In case there are several Mailboxes (documents), these could be structured 

using collections. For example:

Collection “Peter's Mailboxes”

- Document “Mailbox 1”

- Document “Mailbox 2”

It  is  possible  to  abstract  from these  various  representations,  as  there  is  always  an 

underlying hierarchy, which contains certain hierarchic-relationships. We further specify 

that only leaves in a hierarchy (do not contain any sub-hierarchies) may contain values. 

With the generation of additional leaves, every hierarchy can be transformed into such a 

representation.  Consequently  the hierarchic  index does not  need to  care about what 

hierarchy it is based on, as long as operators for dealing with the hierarchic data exist.
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When a hierarchic index is queried, a specific hierarchy is passed and the index returns 

all data that satisfies this hierarchy, meaning that it either belongs to this hierarchy or 

one of its sub-hierarchies.

Index 5

In order to support queries 7 and 9 we define a hierarchic index on the type 

of Email. The used variable indicates that the type of the email is indexed 

using a index capable to deal with structural information.

//element(Email, $var1structure)

Query 7 is looking for all Emails that have been sent (SentEmailType). The 

according search variable is:

$var1structure :=  SentEmailType

Index 6

If we want to create a hierarchic index on path hierarchies, for example to 

support query 8, the index can be defined as:

$var2structure//Addressee/@Address

As one Address may be contained multiple times (in case it is contained in 

several emails) also the index is going to return duplicates.

The search variable can now be defined as any path selecting a specific 

node, which contains Addressees (this is the case for MailBox, Folder, Email 

and Header).  The following search variable looks for  all  email  addresses 

contained in the Folder named “InBox”:

$var2structure := //Folder[@name="InBox"]

If  we  want  to  retrieve  all  email  addresses,  we  can  set  the  variable  to 

MailBox or leave it empty:

$var2structure := MailBox

It is also possible to retrieve the email addresses for a specific Email (in this 

case the first email in the folder “InBox”) with index 6:

$var2structure := //Folder[@name="InBox"]/Email[1]
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 3.6.2 Data Structure

A hierarchic index represents a certain element of the hierarchy with a hierarchy bucket. 

The hierarchic index only needs to store the hierarchies (buckets) that contain nodes, 

which is done by the leaf buckets depicted in Figure 21. They contain the hierarchy-key 

determining the hierarchy of the according nodes.

A hierarchic page that is retrieved from the storage provider may contain several of these 

leaf buckets. This would be sufficient in case there is no splitting behaviour, but as a 

page will split in case it exceeds a certain size, two additional constructs are necessary.

The traditional overflow concept is extended in a way that an overflow page contains 

structured data. We are going to call these kind of pages sub-hierarchy pages, as they 

contain a sub-tree of the primary hierarchy. This sub-hierarchy is extracted from the 

overflowing page and transferred to the sub-hierarchy page.

In case a page splits, the new sub-hierarchy page needs to be referenced. So a reference 

bucket links to the sub-hierarchy page. The hierarchy-key of these reference buckets 

needs to be a hierarchy, which contains all hierarchy-keys in the referenced page.

For  example,  in  case  a  reference  bucket  links  to  a  page  that  contains 

sentEmailType and  receivedEmailType, the reference bucket hierarchy-key 

is emailType, which contains the two other types.

Hierarchic pages that contain both leaf buckets (data) and reference buckets (references 

to sub-hierarchy pages) are called hierarchic root pages. In addition to the functionality 

of a regular hierarchy page (splitting the page and retrieving all  contained data to a 

specific hierarchy), they provide functionality to merge an sub-hierarchy page back into 

the hierarchic root page.

Figure 21: Hierarchic Index - Pages and Buckets
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The sample hierarchic index (index 5) is depicted in Figure 22. It consists of 

one hierarchic root page, which contains two leaf buckets (SentEmailType 

and  ReceivedEmailType).  Each  of  these  buckets  contains  the  according 

references to the emails.

Index 6 is depicted in Figure 23. It also consists of one hierarchic root page 

and contains  nine  leaf  buckets,  one  for  every  addressee.  An  Addressee 

represents the next hierarchy regarding a specific Address. In this special 

case an Addressee-hierarchy only contains one Address. Therefore each leaf 

bucket  contains the reference to the according Address attribute (so A1 

points to the node containing michael@maier.de, B1 to the node containing 

peter@lasinger.at, etc).

The fine  granularity  of  the hierarchies  (only  one entry per  hierarchy) is 

chosen to demonstrate the dynamic split behaviour later on.

 3.6.3 Configuration

A Hierarchic Index needs additional  information to allow dynamic splitting behaviour, 

which can be expressed by two parameters:

 A minimum page size that defines the minimum size of a Hierarchic Page. In case 

a HierarchicPage becomes smaller it will be merged with the Hierarchic Root Page.

 A  maximum page size that defines the maximum size of a Hierarchic Page. In 

case a HierarchicPage becomes larger it will be split.

Figure 22: Sample 
Hierarchic Index - Index 5

ReceivedEmail

SentEmail

C

B

A
Hierarchic Root Page

Figure 23: Sample Hierarchic Index - Index 6
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 3.6.4 Algorithms

Splits and merges can occur when inserting or deleting nodes from the index. In case a 

hierarchy page outgrows the defined maximum size,  there will  be a split.  In case it 

becomes smaller than the minimum size, it will merge with the parent hierarchy page.

As splits are performed in a way that clusters according to hierarchies, efficient queries 

are assured. The hierarchy-sub-tree is determined and then moved to a new hierarchy 

page (sub-hierarchy page). The root page adds a reference to the newly created sub-

hierarchy page and remembers the associated hierarchy. In case the hierarchic index is 

queried it is able to determine every required sub-hierarchy page by just evaluating the 

root page.

In order to create, maintain and query a hierarchic index, three operators are required, 

which ensure that the index is able to deal with the hierarchic information:

1. Equals Comparator [ = ] that is used to determine if two hierarchies equals are 

identical.

2. IsA Comparator [ ⊆ ],  which is  used to determine if  a hierarchy equals the 

other hierarchy or if it is a sub-hierarchy of the other hierarchy.

sentEmailType ⊆ emailType --> TRUE

sentEmailType ⊆ sentEmailType --> TRUE

sentEmailType ⊆ receivedEmailType  --> FALSE

3. GetSuper Operator [  ], which is used to determine the super hierarchy of a 

hierarchy.

 sentEmailType --> emailType

 emailType --> ALL (there is no parent for emailType)

The  insertion algorithm is depicted in  Figure 24. At first the hierarchy that is used for 

insertion is extracted from the search configuration passed to the index. Then the root 

page is  processed to  locate  the according hierarchy bucket.  If  a  reference bucket  is 

found,  this indicates that  the requested leaf bucket  resides at a sub-hierarchy page. 

Consequently the according sub-hierarchy page is loaded. When no bucket exists, it is 

created.

The  nodes  are  then  added  to  the  bucket  and  the  affected  page  is  checked  for  an 

overflow. In case the page overflows, it is split and the root page is updated with the 
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reference to the created sub-hierarchy page. Finally the changed pages are saved.

The deletion algorithm removes nodes from the hierarchic index and is depicted in Figure

25.  At  first  the  hierarchy  for  deletion  is  determined  and  the  page  containing  the 

according hierarchy bucket is located. If the bucket resides at a sub-hierarchy page, this 

page is loaded. If the bucket does not exist, the algorithm terminates.

Figure 24: Hierarchic Index - Insertion Algorithm

Figure 25: Hierarchic Index - Deletion Algorithm
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The nodes are deleted from the hierarchy bucket and it is determined if the belonging 

page overflowed. If the affected page is the root page and it does not contain any more 

data, a sub-hierarchy page is merged back into the root page. If no such sub-hierarchy 

page exists, the root page can be deleted. In case the affected page is a sub-hierarchy 

page, it is merged into the root page (and deleted). As this may lead to an overflow of 

the root page, the root page needs to be examined. Finally the root page is saved.

Queries on a hierarchic index are answered with the retrieval algorithm depicted in Figure

26. After the hierarchy has been determined, all pages that contain hierarchy buckets, 

which  satisfy  the isA relationship  ( hierarchybucket⊆hierarchy searched )  are  retrieved.  In 

case the buckets reside in sub-hierarchy pages, these pages are loaded. Nodes from 

buckets satisfying the isA relationship are aggregated and returned.

The uniqueness of  the hierarchic  index lies  in  its  dynamic splitting behaviour,  which 

ensures that sub-trees of the hierarchy are moved to sub-hierarchy pages. As the root 

page contains all information (references) to the sub-hierarchy pages, it is possible to 

access every leaf hierarchy with at most two page accesses (root page and one sub-

hierarchy page). In case hierarchies containing several sub-hierarchies are queried, a 

minimal amount of pages needs to be loaded, as data belonging together (in a hierarchic 

relationship)  is  moved together to  a  sub-hierarchy page by the  page split  algorithm 

depicted in Figure 27.

To split the root page or a sub-hierarchy page, a sub-tree of the hierarchy is located, 

which contains more data than the defined minimum page size. An additional constraint 

is that also the remaining page needs to be larger than the defined minimum page size. 

A fitting sub-tree is located in the following way:

Until the sub-tree has been located, for every leaf bucket contained in a page the parent 

hierarchy  is  determined  (  )  and  all  other  leaf  buckets  belonging  to  this  parent 

hierarchy are added. This can be seen as rebuilding the hierarchy. If there is no parent 

Figure 26: Hierarchic Index - Retrieval Algorithm
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hierarchy (which is the case for the root hierarchy), the next leaf bucket is processed.

When a hierarchy is found whose size is greater than the defined minimum page size 

(and the remaining page size is also greater than the minimum page size) the split is 

processed. Otherwise the split is not performed and another candidate is searched. If it is 

not possible to determine a fitting candidate,  the page is  not  split  and consequently 

becomes larger than the defined maximum page size.

After  a  candidate  hierarchy  has  been  located,  this  hierarchy  and  all  belonging  leaf 

buckets are moved to a sub-hierarchy page. The root page is updated and the changed 

pages are saved. 

If we assume a maximum page size of 2 and a minimum page size of 1, 

index 5 splits. The resulting index is depicted in  Figure 28. The root page 

contains  one  reference  bucket,  which  points  to  the  sub-hierarchy  page 

containing the relevant leaf bucket.

Query 7 is looking for all Emails of the type SentEmailType. As the root 

page  already contains  the  required data,  email  B  is  returned.  The  sub-

hierarchy page needs not  be loaded,  thus reducing the amount  of  data 

transferred.

Figure 27: Hierarchic Index - Page Split Algorithm

Figure 28: Hierarchic Index 5 - After Split
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In case we assume a maximum page size of 4 and a minimum page size of 

2, the first split of index 6 is depicted in Figure 29. The root page holds a 

reference to the sub-hierarchy page. Interesting is  the hierarchy (Folder 

“InBox”) of the reference bucket, which is the common parent hierarchy of 

all leaf buckets contained in the sub-hierarchy page.

The result of the second split (sub-hierarchy page) is depicted in Figure 30. 

The original sub-hierarchy page is split into two sub-hierarchy pages and 

the  reference  in  the  root  page  is  updated.  As  the  newly  created  sub-

hierarchy page contains all addressees of one email, the reference buckets 

indicate the relevant email (this can be seen as a path-expression).

If  we  execute  query  8  on  this  hierarchic  index  (looking  for  all  email-

addresses in the folder “InBox”), at first the root page is processed. The isA 

comparisons of the requested hierarchy with all  buckets contained in the 

hierarchic root  page return the reference bucket  with the hierarchic key 

Folder “InBox” and the reference bucket with the hierarchic key  Email C. 

The leaf buckets of the root page do not satisfy the isA comparison.

The  two  sub-hierarchy  pages  are  loaded  and  processed  using  the  isA 

Figure 30: Hierarchic Index 6 - After Second Split
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Figure 29: Hierarchic Index 6 - After First Split

Hierarchic Root Page Addressee A1

Addressee A2

A1

A2

Addressee A3 A3

Addressee A4 A4

Addressee C1

Addressee C2

C1

C2

Addressee B1 B1

Addressee B2 B2

Addressee B3 B3

Sub-Hierarchy Page

Folder „InBox“



54 Indexing Encrypted XML Documents in the SemCrypt DBMS

comparison, which returns all leaf buckets of these pages. Consequently the 

email addresses A1, A2, A3, A4 (from Email A) and C1, C2 (from Email C) 

are returned.

 3.7 Nesting Index Structures

The SemCrypt DBMS manages XML documents, which additionally to value information 

contain structural information. Therefore index structures should be capable to support 

queries regarding this structural information. A commonly used approach in previous XML 

databases is  to  use an additional  index for  the structural  information.  However,  this 

requires  the  management  and  traversal  of  two  separate  index  structures.  A  better 

approach is to combine structural and value indices, which can be achieved by nesting 

according index structures.  Therefore index nesting is  a  core element  of  SemCrypt's 

index processing approach [Grün06a].

Nested indices combine indexing capabilities from different index structures and can be 

used to simulate multidimensional index structures. The idea emerged from the need of 

an index capable of dealing with hierarchic data. The main concept is adapted from the 

CH Tree developed by Kim et al. [KDD89] as the authors structure the leaf-pages of a B-

tree according to classes and consequently create a simple nested index (see Chapter 

2.4).

This idea can be generalized, combining different kind of index structures while sharing a 

general access interface. One major requirement is that every index supporting nesting 

uses pages and that these pages can be nested. Consequently pages may contain pages 

of other (nested) index structures. Another requirement is that every index structures 

needs to adopt its algorithms, so that they are able to deal with nested pages and to 

perform forwarding of queries to the nested index.

 3.7.1 Definition

The definition of a nested index resembles the definition of a multidimensional index as 

multiple keys are defined. The difference is that the order of the definitions defines the 

order  of  the  nesting.  This  nesting  order  defines  in  which  order  the  nested  index 

structures  segment  the  indexed  data  (in  a  multidimensional  index  the  segmentation 

happens simultaneously). The advantage of this general definition is that the same index 

definition  can  be  used  for  a  nested  or  a  multidimensional  index.  The  definition  is 

independent from the implementation. Consequently a nested index behaves like a single 
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index, which is a major benefit, as various indices can be handled in the same way.

An  optimal  nesting  solution  depends  on  the  data  and  the  queries  that  need  to  be 

supported. As a rule of thumb and based on experiences described by Kim et al. [KDD89] 

and Ooi et al.  [Ooi+96] the more selective index should be put higher in the nesting 

hierarchy. This ensures that the possible result is narrowed down faster and the nested 

index structures become smaller in size.

Not every index structure can be nested. More precisely only index structures that can be 

initialized using a root page can be used, which is the case for all tree-like structures. 

Hash-based index structures are not nestable, as one key (which is also the identifier of 

the page) may occur several times, violating the segmentation that has been created by 

the superior index.

Query 9 queries for two keys, the date of an email and its type. One could 

use two index structures, index 2 for the date and index 5 for the type, to 

answer this query. But this requires a join of the results, which is inefficient 

for larger data. A solution is to nest the two indices together and to define a 

new nested index 7 (first approach):

//element(Email, $var1structure)[Header/Date =$var2range ]

As  mentioned  before,  when  nesting  index  structures  there  are  always 

different possibilities on how to combine the indices. The second approach 

for index 7 is:

//element(Email, $var2structure)[Header/Date =$var1range ]

The two possibilities are shown in Figure 31. The first approach resembles a 

structure centric approach, as the structure is regarded first, followed by 

the value. This resembles a content aware data guide (see Chapter 2.5.2).

The second approach resembles a value centric approach, at first the value 

(Date) is regarded and then the type structure (this resembles the approach 

Figure 31: Index Nesting Alternatives Example
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taken in the CH-tree).

Query 9 can be expressed by setting two variables (first approach):

$var1hierarchy = ReceivedEmailType $var2range = [1 .. 1 ]

 3.7.2 Data Structure

The data structure of the nested indices stays the same. However index pages need to be 

nested. A superior index needs to include initialization pages for the nested index and 

consequently stores these initialization pages in its own pages, replacing the indexed 

data. When a superior index is traversed it does not find the indexed data, but a nested 

initialization page. This page and the retrieval  or manipulation task is  passed to the 

nested index, which then retrieves or manipulates the required data.

The  first approach for index 7 is depicted in  Figure 32 (the fanout of the 

range index is 2, the minimum and maximum page size is 1. The minimum 

page size of the hierarchic index is 1 and the maximum page size is 2).

The leaf buckets of the hierarchic index do not contain data, but a root 

(initialization) page of the nested range index. This can be used to perform 

a further search with the range index.

The second approach for index 7 is depicted in Figure 33 (same parameter 

Figure 32: Nested Index 7 - 1st Approach
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settings). Every leaf page of the range index contains a nested root page of 

the hierarchic index.

 3.7.3 Algorithms

The algorithms of index structures that support nesting need to be adopted. The general 

process when a nested index is queried is outlined in Figure 34. At first the super index 

selects  and retrieves  the relevant  page  (super  index page)  according to  the  passed 

search configuration. This page contains a set of keys and the according initialization 

pages for the nested index. The page is selected and set as the initialization page in the 

nested index. Thereafter the super index forwards the query to the nested index.

The nested index starts traversal from the set initialization page, selects a page fitting to 

the search configuration, manipulates that page or returns the results to the super index. 

During this process the initialization page may have been updated (or deleted), therefore 

the super index retrieves the changed page and updates its own page (or removes the 

initialization page from its own page).

In case more index structures are nested, this process is repeated. It is important to 

mentioned that the super index does not need to know the type of the nested index, as 

long  as  it  is  nestable  and  supports  the  setting  and  getting  of  initialization  pages. 

Furthermore the super index does not need to care about the structure of the nested 

Figure 34: Nested Index Processing Process
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initialization pages.

Consequently every nestable index can operate in two modes, one being an independent 

or super index and one being a nested index. In the first mode, the index needs to load 

and save the initialization page itself, in the second mode this is done by the super index. 

We use index 7 (first approach), which is depicted in Figure 32, to answer 

the sample query 9. At first the hierarchic root page is processed. The first 

search variable tells us to look for all received emails, consequently the sub-

hierarchy page is loaded and the nested initialization page (III) is retrieved.

This initialization page is passed to the nested index, which looks for the 

date 1, as specified by the second search variable. The tree is traversed and 

email A is returned to the superior (hierarchic) index.

The  hierarchic  index  aggregates  the  results  (in  this  case  this  is  not 

necessary,  as  only  one  initialization  page  has  been  retrieved  by  the 

hierarchic index) and returns email A.
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Chapter four first introduces the SemCrypt architecture, which acts as a framework for 

the index processing architecture. The focus is on the components which manage and 

access index structures as well as on the interaction of index processing components with 

other  components  of  SemCrypt.  A  concept  for  unifying  index  structures  on  an 

architectural level is presented, which regards index structures from a logical, internal 

and physical perspective. Then the logical and internal data models of index structures in 

the SemCrypt indexing framework are outlined. Also the physical representation of index 

structures is briefly discussed. This is followed by a structural explanation of the index 

processing  components,  their  tasks  and  interactions  with  other  SemCrypt  DBMS 

components.

 4.1 SemCrypt Architecture

The overall SemCrypt Architecture [GrKa06a] follows a layered approach, distinguishing 

four levels of abstraction (depicted in  figure 35). The physical layer processes physical 

data and encapsulates storage, encryption and basic transaction capabilities  [Dorn05]. 

The internal layer accesses and manipulates data with the help of the SemCrypt labelling 

scheme [GKSch05] and SemCrypt specific query and index processing techniques. The 

logical  layer  abstracts  from  internal  representations  and  performs  managing  tasks. 

Finally the external layer provides a command interface and representation to the user.
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Each layer consists of multiple components that encapsulate SemCrypt functionality and 

interacts  with  other  components  of  the  same  layer,  use  functionality  of  lower  level 

components or provide functionality to upper level components. Components accept and 

return  data  of  their  level  of  abstraction.  In  case  they  require  functionality  of  the 

underlying layer, the data first needs to be converted into the according representation. 

(Every layer has its own independent model, which abstracts from the model used in the 

underlying layer.)

The SemCrypt Service resides in the external layer and consists different of  parsers, 

which  transform  external  information  transmitted  by  the  user  into  the  logical 

representation.

Components on the logical  and internal layer are grouped in pairs according to their 

functional  focus.  The  Query  Engine  (see  [KaGr06b])  evaluates  and  optimizes  logical 

queries and creates internal queries  that are executed by the Execution Engine (see 

[KaGr06c]). The Index Manager deals with the creation, removal and management of 

index  structures  while  the  Index  Engine  creates,  updates  and  traverses  the  index 

structures  and  provides  an  interface  for  accessing  index  structures.  The  Document 

Manager manipulates XML documents in their logical representation and transforms them 

into  internal  documents,  which  are  used,  stored,  retrieved  and  manipulated  by  the 

Document  Engine.  The  Schema Manager  provides  access  to  the  logical  schema and 

creates the internal schema that is used by the Schema Engine.

An exception is the Metadata Manager, which provides access to meta-data on all four 

layers. This is due to the fact that all components of the SemCrypt DBMS produce and 

require meta data (like available documents, schemas or index definitions). For more 

details on the Metadata Manager refer to Karlinger and Grün [KaGr06a].

The Storage Engine resides on the physical layer and handles database access, basic 

transaction  management,  serialization  and  encryption  [Dorn05].  To  enable  parallel 

access to index structures in SemCrypt, advanced locking mechanisms and extended 

figure 35: SemCrypt Architecture
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transactions (like nested transactions, as analysed by Härder and Rothermel [HäRo93]) 

are required.

 4.2 Logical Index

A logical index is independent from the type of the implemented index structure. This 

abstraction yields several benefits. A logical index provides a consistent data model for 

index structures that can be used independently of the implemented index structures. In 

case new index structures are implemented or existing index structures are changed, the 

logical index stays the same. This means that a logical index can be defined by telling 

what data to index and what data to return, without worrying which index (or set of 

indices) is going to be used internally to accomplish this task. Besides that a logical index 

also eases the selection of an appropriate index to support a specific query, as all logical 

indices are defined in a common way and can therefore be compared.

On the logical layer an index represents an access structure that can be used to retrieve 

certain  data  when  provided  with  certain  constraints  (the  keys  of  the  index).  This 

definition resembles the one presented in Chapter  2.1 and hides the internal structure 

and configuration of the associated index. A logical index also provides information about 

the retrieval costs associated with such an request. This cost model (which may be part 

of a later SemCrypt prototype) can be used by the Query Engine to select the fastest 

index if there are several suitable indices to choose from.

Additional meta-data defines the type of index to be used for indexing and the kind of 

nesting, when using multiple nested index structures. This meta data is specified in a 

logical index configuration, which is used to transform the logical index into an internal 

index (or a set of nested internal indices).

The following sub-sections explain the sub-elements of a logical index in more detail. At 

first index variables are introduced, which can be used to define an index. The chapter 

index  definition  describes  how  a  logical  index  is  defined.  Then  the  logical  index 

configuration  used  to  contain  additional  information  that  is  required  for  the 

transformation  of  a  logical  index  into  an  internal  index  is  explained.  Finally  search 

configurations, which can be derived from the index definition and which are used to 

query an index, are explained in more detail.

 4.2.1 Index Variables

Index  variables  define  the  possible  search  parameters  of  an  index  and  indicate  the 

supported data and kind of look-up type (see Chapter  2.1.2) that is supported by the 

index. They are used to define an index by indicating what data is indexed by an index 
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(compare to Chapter 3.2.1). When index variables are assigned to a specific value, they 

can be used to query an index.

The XML documents contain value and structural information. Therefore we distinguish 

two  main  categories  of  index  variables,  value  variables  and  hierarchic  variables 

[Grün06b]. As value variables may be used in different kind of lookup-functions we refine 

them regarding the supported look-up type. This leads to the following five types of index 

variables:

● Value Variables, representing values belonging to nodes. These value variables 

can be further differentiated according to the supported comparison operations, 

which depend on the type of value that can be contained in the variable.

 Match Variables that support an equals comparison on the contained value.

 Range Variables, which support ordering and can be compared using smaller, 

greater and equals comparisons.

 Text Variables, which contain keywords that can be compared using match 

and prefix comparisons.

● Hierarchic  Variables,  representing structural  information.  These  can be further 

differentiated regarding the kind of hierarchic information expressed.

 Id Variables,  representing pointers to specific  nodes in  a  document.  These 

variables support hierarchic comparisons (isA and equals). They can be used 

to express the document structure of an XML document (path hierarchies), in 

the way it is demonstrated in Chapter 3.6.1.

 Type Variables, indicating the type of a node. Like Id Variables, Type Variables 

are settled in a hierarchic structure and support isA and equals comparisons. 

Therefore they can be used to represent type hierarchies.

 4.2.2 Index Definition

The  index  definition  is  independent  of  the  implementation  and  type  of  the  index 

structures  and  only  describes  the  access  interface of  index structures.  This  is  a  big 

advantage, since the index definition is independent from the index structure and the 

Query Engine is able to compare and select indices comparing their index definitions. 

When  new  index  structures  are  implemented  the  Query  Engine  does  not  need  be 

changed, as the structure of an index definition stays the same.

The index definition defines which part of an XML document is indexed and what output 

is provided by an index. It determines the index interface explained in Chapter 2.1 and 
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specifies the lookup function of the associated index. The index definition is represented 

by logical operator graph that defines the index variables, which represent the key of an 

index. The return is determined by the output generated from the logical operator graph, 

which corresponds to the logical query graph (see [GrKa06b]).

 4.2.3 Index Configuration

The index definition is not sufficient to define a logical index, as it misses information on 

which index structures to use when transforming a logical index into an internal one. In 

the case of nested index structures also the information on the nesting order is missing. 

Therefore a index configuration contains information on:

● The type of index to be used internally.

● The nesting order, when multiple internal indices are used to implement a logical 

index.

For example the index configuration for index 1 looks like:

[1] $var1match --> Exact Match Index

This means that the index, indexing $var1 is implemented with an exact 

match  index.  The  assigned  index  must  be  able  to  support  the  relevant 

comparisons, in this case exact match capabilities.

The index configuration of  index 7 demonstrates the use of multiple keys 

and index nesting. The nesting order is $var1 --> $var2

[1] $var1structure --> Hierarchic Index

[2] $var2range --> Range Index

If the nesting order $var1 --> $var2 is chosen, the index configuration is:

[1] $var2range --> Range Index

[2] $var1structure --> Hierarchic Index

In case a multidimensional index (which may be implemented at a later 

point of time) is used the configuration looks like:

[1] $var1structure , $var2range --> Multidimensional Index

 4.2.4 Search Configuration

To query an index it is necessary to restrict the variables, defined in the index definition, 

to certain values. This information is encapsulated in the search configuration, which 
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maps the variables defined in the index definition to certain values, ranges or hierarchies. 

An advantage of search configurations in SemCrypt DBMS is that a search configuration 

corresponds to an index definition and therefore is independent from the realization of 

the index.

For example an exact match index variable ($varmatch) only encapsulates a 

value. However, a range match variable ($varrange) defines an upper and 

lower bound and parameters that determine if the bounds are included.

A search configuration allows querying nested indices by passing a set of index variables. 

Every  index picks the index variables  that  match its  keys,  processes the query  and 

passes the search configuration to its nested index structure.

To  demonstrate  the concept,  we  transform three sample  queries  of  the 

running example into search configurations for the index structures defined 

above.

Query 1 @ Index 1: $var1match  := “michael@maier.de”

The first search configuration just takes the values that are searched for.

Query 7 @ Index 7: $var1structure := SentEmailType

 $var2range  := ]..[

Query 9 @ Index 7: $var1structure  := ReceivedEmailType

$var2range = [1 .. 1]

Search configurations 7 and 9 are more complex, as they contain two index 

variables. The first one defines the hierarchy of the email type, the second 

defines the time frame of emails to be searched for (range on the date). 

Search  configuration  7  defines  the  whole  range  for  variable  2,  while  in 

search configuration 9 an exact match is expressed via the range variable.

 4.3 Internal Index

The internal index is an abstraction of a variety of indices and their implementations and 

algorithms. It ensures that the Index Engine can access all internal index structures in a 

similar way, especially when updating, deleting or retrieving information. Furthermore it 

defines the basic capabilities indices must fulfil to allow index nesting.
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The elements of an internal index are depicted in Figure 36. The internal index definition 

is the pendant to the logical index definition and can be used to determine what the 

index is indexing, which is essential to decide if an index is affected by updated data 

(index update).  The  index  configuration  holds  relevant  configuration  parameters  and 

meta-data required by the internal index. The data of the index is stored in pages that 

are written to and read from the Storage Engine at once. An internal index also provides 

internal  costs  that  are  calculated  from  relevant  internal  meta-data  regarding  the 

characteristics of the index and that are used to determine logical costs.

As depicted in Figure 36 an internal index may have a nestable index underneath, thus 

realizing the index nesting concept. Every nestable index has the same elements as a 

regular internal index and may have an additional nestable index. This allows chains of 

nested index structures.

In the following subsections the elements of an internal index are explained in more 

detail. The search configuration and index variables are not considered, as they have 

already been discussed in detail in Chapter 4.2.

 4.3.1 Internal Index Definition

The internal index definition is required to represent an index on the internal layer. Like 

the logical index definition it defines what parts of an XML document are indexed (the 

keys)  and  what  is  returned.  This  information  is  essential  to  determine  which  index 

structures are affected by changes of the primary data and to retrieve the necessary data 

to create or delete an index on an existing document (retrieve all the data to create or 

delete the index structure).

As  the  internal  index  definition  contains  the  same  information  as  the  logical  index 

definition, only the form of representation is different. In the SemCrypt DBMS an internal 

operator graph is going to be used for this purpose. This operator graph corresponds to 

an  internal  query  graph  (see  [KaGr06c]).  More  information  on  the  internal  index 

Figure 36: Internal Index Elements
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definition and its use for the index update problem is given by Grün [Grün06b].

 4.3.2 Internal Index Configuration

Most index structures require certain meta-information or configuration parameters (like 

fan-out  parameters  or  split  sizes).  This  information is  collected in  the internal  index 

configuration, that is stored as meta data. Consequently an internal index configuration 

is more specific than a logical index configuration, as it contains parameters relevant to a 

specific type of index structure.

An internal index needs to be able to retrieve pages that belong to it. Therefore every 

internal  index  configuration  contains  the  internal  index  definition  of  the  associated 

internal index. When internal indices are nested, every single index has its own index 

configuration, which contains the according identifier.

When an internal index is queried, a search configuration is passed to it (to the highest 

index in the nesting hierarchy). An index needs to determine, which index variables to 

regard  (there  may  be  multiple  index  variables  in  case  indices  are  nested  or  a 

multidimensional index is used). Therefore the internal index configuration contains the 

identifiers of the index variables that can be processed by an index, so that an index can 

determine and extract the relevant index variables from a search configuration. 

The amount of index variables and configuration parameters is dependent on the type of 

index structure. Consequently every internal index must provide an according internal 

index configuration.

 4.4 Physical Index Representation

The physical representation of an index is the same as for primary data in SemCrypt. 

Every index is stored as encrypted id-value pairs on the not trusted storage provider. 

One id-value pair resembles a serialized (encrypted) index page and its page identifier. 

The content of this page is the value, the page identifier the key. The identifier of an 

index page only needs to be unique in the domain of index structures, as the Storage 

Engine ensures that these keys are extended in a way that they are unique in the overall 

domain.

The id is encrypted using a cryptographic hash function, while the value is enciphered 

using a encryption function. Consequently regarding the physical data it is not possible to 

tell, if the encrypted value contains primary data or index data, nor which index structure 

is  retrieving which  information.   This  is  a  core  characteristic  of  SemCrypt's  security 
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mechanism, as no information is leaked to the storage provider.  More details on the 

physical representation of data is given by Dorninger [Dorn05].

 4.5 Index Processing Components

According  to  the  SemCrypt  Architecture  the  processing  and  management  of  index 

structures  occurs  on  four  layers  of  abstraction  that  are  represented  by  different 

components  [Grün06a].  As  the  physical  representation  of  information  is  uniformly 

managed by the Storage Engine, there exist two core components relevant for index 

processing  (Index  Manager  and  Index  Engine).  However,  further  components  are 

involved, either accessing the index components or providing necessary functionality.

The whole index processing architecture is depicted in  Figure 37. The components are 

depicted as rectangles and the arrows indicate a dependence relationship, meaning that 

one component uses functionality of another component. The SemCrypt Service depicted 

on the top is  the interface to  the user  (external  layer),  which  controls  and initiates 

components  of  the logical  layer.  Regarding indices the SemCrypt Service will  create, 

remove and alter indices via the Index Manager.

In  the  following  subchapters  the  Index  Manager  and  Index  Engine  components  are 

explained in more detail, also regarding their interactions with other components.

Figure 37: Index Processing Architecture and Component Dependencies
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 4.5.1 Index Manager

The Index Manager abstracts from the internal representations of index structures and 

performs the tasks of index management and administration. It can be used by other 

components  to  gain  access  to  index  structures,  determining  which  index  structures 

currently exist and what they are based on. The Query Engine uses the Index Manager to 

retrieve meta-data, which is necessary to select appropriate index structures for query 

execution.

The Index Manager adds and removes indices, manages the logical meta data (like a cost 

model and index definitions) and reacts on changes in the document collection hierarchy, 

which may lead to changed index structures.

Index Creation and Deletion

The  process  of  adding  index  structures  is  initiated  by  the  SemCrypt  Service,  which 

transforms the external user input into the logical data model. It passes a logical index 

definition, a logical index configuration and an identifier to the Index Manager. The Index 

Manager  stores  this  information  in  the  meta-data  and  transforms  the  logical  index 

definition into an internal index definition (via the Query Engine), which can be processed 

by the Index Engine. It then forwards the creation to the Index Engine and provides the 

Index Engine with the logical  index identifier,  the logical  index configuration and the 

internal index definition. When removing an index it is sufficient to remove the according 

meta-data and to forward the logical index identifier, such that the Index Engine can 

delete the internal index.

Handling Indices on Multiple Documents

Sometimes  it  is  desirable  to  define  indices  for  a  set  of  documents.  Therefore  the 

SemCrypt indexing framework supports the definition of indices on document collections 

(set  of  similar  documents)  and  collection  hierarchies  (documents  structured  in  a 

collection hierarchy). The Index Manager executes the transformation of these extended 

index definitions and forwards them to the Index Engine, so that the Index Engine is able 

to rebuild the affected indices and change its update routines.

In case a document is deleted and there are still indices existing for this document the 

Index Manager ensures that these indices are also deleted. If an index is defined on a 

collection of documents and a further document is added to this collection, the Index 

Manager directs the Index Engine to expand the existing index to this new document.
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 4.5.2 Index Engine

The Index Engine is a core component for index processing, as it updates and traverses 

the internal index structures described in Chapter 3. It accesses the Storage Engine and 

the Metadata Manager, so that index structures can permanently store index pages and 

access required meta-data. The Index Engine manages meta-data that is required to 

create and maintain internal index structures.

Index Creation and Deletion

One  main  task  of  the  index  engine  is  the  addition  and  removal  of  internal  index 

structures. When an index is added the internal meta-data of this index is written and 

the index is built.  If  an index is  created on an existing document, the Index Engine 

retrieves the relevant data from the execution engine and creates the index structure. 

When an index is removed the Index Engine deletes the meta-data and ensures that all 

index pages belonging to that index are removed via the Storage Engine.

Index Update

The second important task of the Index Engine is to keep the index structures consistent 

with the primary data.  Therefore index structures need to be incrementally updated. 

Index update is a twofold process. The first step is to determine the indices affected by 

changing data and to pass the appropriate data to these indices. The second step is the 

update of the index structure itself,  through rebuilding or incrementally changing the 

index. The first step is not regarded in this thesis, while the second step is described for 

each index structure.

The Execution Engine notifies the Index Engine in case primary data is changing. The 

Index Engine then decides which indices are affected by the update. In case additional 

data is  required for  updating an index,  the Index Engine retrieves this  data via  the 

Execution Engine. Afterwards the affected indices are updated. The detailed process of 

how to determine the affected indices is described by Grün [Grün06b].

Index Traversal

The third task of the Index Engine is the loading and traversal of indices to perform 

queries. When a specific index is queried or updated, the Index Engine loads the relevant 

index (including potentially nested indices) and forwards the task to the specific index. 

Thereafter the index (the according main memory object) is unloaded. This ensures that 

minimum resources  are  required  at  the  SemCrypt  client.  If  locking and  concurrency 

controls are added at a later point of time, this allows the distributed access to index 

structures in case several SemCrypt clients share storage provider and meta-data.
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The Index Engine is closely coupled with the Execution Engine. The Index Engine and its 

internal index structures make use of the operators provided by the Execution Engine to 

manipulate and compare data. This ensures that in case the Execution Engine is able to 

work with a new kind of  data (by extending the operators),  all  index structures are 

capable to index this data as well. Index structures become independent of the type of 

data they index.
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Chapter five outlines implementation specific decisions and describes how the concepts 

described earlier have been implemented in the SemCrypt prototype. Details on utilized 

software and libraries can be found in Appendix A.

At first implementation details concerning the logical layer are outlined. This is followed 

by the discussion of the internal layer,  focusing on the developed framework and its 

functionality.  Finally  the  specific  implementations  of  index  structures  are  presented, 

describing implementation decisions and algorithmic details.

 5.1 Logical Layer

The logical  layer of the SemCrypt indexing framework consists of the Index Manager 

component and the logical index with all its associated meta-data. An according class 

diagram is depicted in  Figure 38. The Index Manager manipulates and manages logical 

indices  and  saves  the  meta-data  contained  in  the  Index  Configuration  and  Index 

Definition at the Metadata Manager. The logical index consists of an index identifier (a 

unique String), the Index Definition and the Index Configuration.



72 Indexing Encrypted XML Documents in the SemCrypt DBMS

In the following the implementation of  the logical  index and its elements (definition, 

configuration  and  costs)  are  described.  Thereafter  the  implementation  of  the  Index 

Manager component is outlined. We start with the implementation of the index variable 

concept,  which  is  essential  for  the  implementation  of  the  index  definition  and 

configuration.

 5.1.1 Index Variables

The concept of index variables has been introduced in Chapter 4.2.1. The implementation 

strategy is depicted as a class diagram in Figure 39.

At  the  very  top  resides  the  abstract  class  Index  Variable,  which  defines  the  basic 

capabilities of every index variable – a unique id. Basically, there are two types of index 

variables, hierarchic and value variables.

The hierarchic information can be further classified into type variables, which contain a 

type (expressed in a Schema Label) and the id variables, which contain a node identifier 

Figure 38: Logical Layer Implementation

Figure 39: Index Variables
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(expressed in an Instance Label). Details about how structural information is encoded in 

labels in SemCrypt can be found in [GKSch05]

The Value Variable is further divided according to the supported comparison operations. 

The Match Variable just contains the value, which can be compared for equality. The 

Range Match Variable contains a range that is defined with an upper and lower bound 

and two indicators, telling if these bounds are included. Finally the Text Match Variable 

contains a value (keyword) and an indicator defining if the contained keyword is matched 

via a prefix comparison or equals comparison.

 5.1.2 Logical Index

As depicted in  Figure 40 a logical index consists of an Index Definition and an Index 

Configuration. The logical index itself is identified by a unique index identifier, which can 

be retrieved with  the getIndexId method and which  can be set  with  the  setIndexId 

method.

The  logical  index  also  provides  a  method  getCosts,  to  retrieve  a  cost  object  – 

representing  the  query  costs  of  the  index.  By  now  a  cost  model  has  not  been 

implemented, however the logical cost model will make use of the internal costs provided 

by an internal index. In future implementations additional parameters may be necessary 

to retrieve the index costs.

Index Definition

The Index Definition contains the operator-graph defining the index and a set of Index 

Variables (see Chapter  4.2.1) that specify the type of query that can be posed at the 

index. The Index Variables are associated with an operator and specify the kind of data 

and type of query that can be performed. Due to the pending structure of the operator-

graph the index definition has not been implemented yet.

Figure 40: Logical Index
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Index Configuration

The Index Configuration defines the inner structure of a logical index. For this purpose it 

contains an array of Internal Index Types that describe the specific index to be used. In 

case the array contains more than one type, the order of the Internal Index Types in the 

array specifies the nesting order of the internal index structures. It also contains a two 

dimensional  array  of  Index  Variable  Identifiers  (so  that  multidimensional  index 

structures,  with more than one Index Variable, can be modelled). These provide the 

index variables for each internal index.

For example the Index Configuration of index 1 is:

Internal Index Type array: [Exact Match Index]

Index Variables array: { [1] }

Index 1 is implemented by an Exact Match Index, which is based on the 

index variable with id #1.

The more complex Index Configuration of the nested index 7 is:

Internal Index Type array: [Range Index, Hierarchic Index]

Index Variables array: { [1], [2] }

The  super  index is  the  Range  Index  and  the  nested index a  Hierarchic 

Index. The Range Index indices variable is  #1 and the Hierarchic  Index 

variable is #2.

The same configuration for a multidimensional index would be:

Internal Index Type array: [Multidimensional Index]

Index Variables array: { [1, 2] }

 5.1.3 Index Manager

The  index  manager  extends  the  Component  interface  to  provide  basic  initialization 

capabilities that are required by the SemCrypt prototype to deal with components.

Before explaining the methods in detail, some general concepts need to be introduced. 

As can be seen in Figure 41 every method has a transaction parameter, which is required 

to allow user defined transactions in  the SemCrypt DBMS.  This  transaction  object  is 

passed  to  all  methods  that  manipulate  persistent  meta  data.  Therefore  it  can  be 

determined what data has been manipulated in a certain transaction.
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Also the handling of meta-data is similar to all components in the SemCrypt DBMS and 

therefore briefly presented here. Every component stores its meta-data via the Metadata 

Manager  component,  in  a  XML  document  defined  by  the  component.  The  Metadata 

Manager operates like an independent XML database and can be queried with XPath 

statements  (see  [KaGr06a]).  When  a  component  is  initialized  and  no  meta-data 

document exists a new one is created.

The XML schema for meta-data stored by the Index Manager and example data related to 

the  running  example  can  be  found  in  Appendix  C.  This  schema  contains  an  XML 

representation of the logical index identifier, the index definition and index configuration.

The following excerpt demonstrates the structure of the logical meta-data:

Every logical index has a unique logical identifier (ID), in this case Index1. 

It then contains a Definition and a Configuration. The definition contains an 

XML representation of the operator graph and associated Index Variables 

representing the keys of the index. The Index Variable is of the type SIMPLE 

(for simple queries) and has the id 1.

The configuration contains additional information, needed for translating a 

logical  index  into  an  internal  index.  It  specifies  the  index-type 

(EXACT_MATCH index) and the ids of index variables associated with this 

internal index (id 1).

Figure 41: Index Manager

<Index ID="Index1">
<Definition>

<Operator OperatorId="1">
<IndexVariable VariableType="SIMPLE" VariableId="1"/>

</Operator>
</Definition>
<Configuration>

<InternalIndex Type="EXACT_MATCH">
<VariableId>1</VariableId>

</InternalIndex>
</Configuration>

</Index>
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Add Index

A logical  index and a transaction is  passed to  the Index Manager  by the SemCrypt 

Service. The index manager validates that the requested index identifier does not exist 

yet and then saves the previously mentioned meta-data. The logical index definition is 

transformed into an internal one by the Query Engine.

The Index Manager then orders the Index Engine to create the internal index, by passing 

the logical id, the internal index definition and the logical index configuration.

Remove Index

After proofing that the requested index exists, the Index Manager tells the Index Engine 

to remove the according internal index (by passing the logical id). Then the logical meta-

data is removed.

Notify Methods

These  methods  inform the  Index  Manager,  when  collections  are  changing.  As  index 

structures  may be  based on  collections,  the  Index Manager  needs  to  issue relevant 

commands at the Index Engine to update or rebuild the affected index structures. This 

functionality is not implemented in the prototype and can be added at a later point of 

time.

Getter Methods

The Index Manager also provides methods to retrieve a certain logical index (in case it 

exists) or to retrieve all logical indices currently existing. These methods are used by the 

Query Engine to retrieve the existing indices and to use the Index Definitions and Costs 

to select an index (the Index Definition is also used to create a search configuration for a 

specific index).

 5.2 Internal Layer

The internal layer of  the SemCrypt indexing framework consists of  the Index Engine 

component (including some helper factory and adaptor classes) and the internal index, 

whose implementations contain the index specific algorithms. While the Index Engine 

performs  management,  creation  and  update  tasks  the  internal  indices  perform  the 

indexing, structuring and traversal of indexed data. The main classes of the internal layer 

are depicted in Figure 42.
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The Index Engine stores internal meta data (Internal Index Definition and Internal Index 

Configuration)  and  accesses  or  manipulates  the  Internal  Indices,  by  passing  Search 

Configurations. The Internal Index contains pages and an optional nestable index. It also 

provides  Internal  Costs.  Every  Internal  Index  is  configured  by  its  Internal  Index 

Configuration. In the following subsections the elements are explained in detail.

 5.2.1 Internal Index

The  internal  index  abstracts  from specific  index structures  and  defines  the  common 

interaction  interface  for  processing  index structures  in  SemCrypt.  The  internal  index 

interface  determines  the  functionality,  which  each  index  needs  to  support  to  be 

integrable in query and update processing. A class diagram of the internal index and the 

classes related to it are depicted in Figure 43.

The internal index uses an index configuration to access index specific parameters and 

information. It provides internal costs, which can be used in a cost model to select index 

structures on the logical layer. Every internal index stores its data in pages, which must 

be  serializable,  so  that  they  can  be  physically  stored.  Optionally  an  internal  index 

Figure 42: Internal Layer Implementation

Figure 43: Internal Index
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contains a nestable index.

The context information that needs to be passed to the internal index when manipulating 

or querying the index is required for being able to use the index operators provided by 

the Execution Engine (for example to compare values). This context specifies information 

that is needed by the operators (like schema information). Every internal index must 

provide the following four basic methods for interaction:

● insert: Inserts a set of nodes into the index. The keys for the insertion are defined 

by the passed search configuration. Also context information for the nodes and a 

transaction is passed. The implementing index needs to update its structure with 

the passed nodes.

● delete: The reverse action to the insert method. A set of nodes is removed. The 

passed information resembles the one of the insert method.

● retrieve: Queries the index with a certain search configuration. The index returns 

a set of nodes satisfying the query.

● deleteIndex: In case an index is deleted it is inefficient to remove all of its content 

via  the  delete  method.  To  fasten  this  process  an  index  structure  provides  a 

deleteIndex method. Using the passed set of keys, an index is able to fully delete 

itself. If  an index does not require this set of keys (for example a tree-based 

index  can delete  itself,  when it  knows its  root),  an  index can  implement  the 

Deleteable interface. The Index Engine will then choose this more efficient method 

in case the interface is implemented.

Index Configuration

The internal index is parametrized by its index configuration, which contains the internal 

id of the index, the identifiers of the associated index variables, configuration parameters 

and additional index specific meta-data that is required for the processing of an index. 

The kind of  parameters and additional meta-data depends on the implemented index 

structures.  The  identifiers  of  the  associated  index  variables  are  used  to  extract  the 

relevant index variables from a search configuration passed to the index.

Pages

The  physical  data  is  stored  by  using  implementations  of  the  Page  interface,  which 

ensures that the pages can be serialized by the Storage Engine and that they provide a 

size method that is essential for index nesting and dynamic split behaviour.
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Internal Costs

Every  internal  index  is  able  to  provide  an  Internal  Costs  object,  which  contains 

information to determine the expected amount of  index accesses for  retrieval.  These 

costs are calculated by the indices regarding their inner structure and current state (like 

the depth of an tree).

 5.2.2 Nestable Internal Index

An internal index can contain a nested index, which needs to implement the Nestable 

Internal Index interface. This interface ensures that initialization pages of the nested 

index can be set and get  and that  it  provides a deletion routine.  The complexity  of 

nestable  indices can be reduced by using the Abstract  Nestable Internal  Index class 

(depicted in  Figure  44), which hides a lot  of  the complexity related to nested index 

structures.

Abstract Nestable Internal Index provides the basic capability to use a nestable index in 

two settings, as an independent index or as a nested index.

The current state can be accessed using the isNested method. Abstract Nestable Internal 

Index implements the set and get page methods that are called by the super index to set 

and retrieve the initialization (root) pages and defines a set of abstract methods that 

must  be  implemented  by  nestable  index  structures  to  make  use  of  the  provided 

abstraction. These methods are:

● getRootPage, which retrieves the current root page of the nested index.

● setRootPage, which sets the root page of the nested index.

● createNewRootPage that tells the nested index to create a new root page using 

Figure 44: Abstract Nestable Internal Index
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the passed page identifier.

The Abstract Nestable Internal Index defines a default page id for the root page, in case 

the index needs to retrieve the initialization page on its own (independent mode).

Index 7 consists of two internal index structures that are both nestable and 

therefore  extend  the  Abstract  Nestable  Internal  Index  class.  The  range 

index is the super index, thus operating in an independent mode while the 

hierarchic index is nested and operates in a nested mode.

If index 7 is loaded it needs to retrieve its initialization page (root page) on 

its  own,  and  uses  the  default  root  page  id.  When  the  range  index  is 

traversed it locates nested pages in its leaves. These pages are initialization 

pages of the hierarchic index. The initialization page is set by the range 

index and the hierarchic index is traversed.

In the case of insert the problem occurs that an initialization page for the nested index 

may  not  exist.  In  this  case  the  super  index  initializes  the  nested  index  with 

setPage(NULL). This notifies the nested index to create a new root page. After the insert 

operation the super index retrieves the new created root page and saves it as a nested 

initialization page in its own page.

A similar difficulty arises when deleting data from a nested index. After the deletion the 

affected part of the nested index may be empty and the root page can be deleted. This is 

indicated by the nested index by returning NULL in case the super index retrieves the 

initialization  page  after  a  delete  operation.  The  super  index  then  removes  the 

initialization page from its own page.

Another  problem is  the interplay of  different  split  algorithms used by the super  and 

nested index. Therefore it is possible that the nested index splits when inserting data, 

which could require the super index to merge. Generally one thinks that an index can 

only grow when inserting data, but in this case the nested index performs a split, and the 

initialization page can shrink. The super index needs to regard this  characteristic  by 

testing the size of the nested page after every insert or delete operation.

If a nested index is deleted, the super index needs to delete all segments of the nested 

index. Therefore it passes all existing initialization pages to the nested index and calls its 

deleteIndex method.
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 5.2.3 Access to Persistent Data for Internal Indices

Internal indices need to persist two kinds of data, the indexed data using pages and 

meta-data that  is  accessed via the Internal  Index Configuration. However,  the Index 

Engine is the only component in the internal layer, which has access to this data. As 

internal index structures only require limited access and have specific requirements on 

the kind of data to save, this functionality is encapsulated by adaptor classes.

This allows the simplification of the communication interfaces, as transaction complexity 

is hidden from the index structures. Besides that the adaptor classes are able to provide 

buffering and caching functionality, specifically suited for indices (for example to build an 

index locally and to upload all data to the storage provider at once).

As depicted in Figure 45 there are two adaptor classes, the Storage Engine Adaptor that 

enables the internal index to get, set and remove pages (using the Storage Engine) and 

the Metadata Adaptor,  which allows the Internal  Index Configuration to get,  set  and 

remove meta-data (using the Metadata Manager).

Storage Engine Adaptor

The storage engine adaptor provides the following methods to an internal index:

● getPage: Retrieves a certain page identified by the index identifier and a page 

identifier.

● setPage:  Stores  a  certain  page  belonging  to  the  index  identifier  and  a  page 

identifier. In case a page belonging to the index id and page id already exists, it is 

overwritten.

● removePage: Removes the page belonging to an index id and page id.

In case a new index needs to be created it is extremely inefficient to incrementally build 

an  index  (transferring  every  single  page  on  its  own).  Furthermore  pages  might  be 

updated  repetitively.  This  would  require  fetching  and  writing  pages  multiple  times, 

creating a lot of overhead.

Figure 45: Storage Engine and Metadata Adaptors
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Therefore the storage engine adaptor provides a write buffer functionality, which enables 

the bulk creation of indices. This mode can be activated via the setWriteBufferEnabled 

method. From this moment, every set page is stored locally in main memory. In case a 

written  page  is  retrieved,  it  is  directly  returned  without  the  need  of  additional 

communication, encryption or serialization. After the index is fully built, the write buffer 

is disabled, which initializes the bulk transfer of all pages contained in the buffer.

The current implementation does not regard main memory constraints, which means that 

data is written to the buffer until it is disabled (the data is then transferred). Therefore 

the Index Engine needs to decide when to activate and when to commit the buffer. A 

future extension may automate this process.

For tree structures this strategy reduces the creation time 6x – 17x (range index with 

encryption). Even the creation time of an exact match index can be split 3x-5x.

Meta Data Adaptor

The internal index configuration contains all the meta-data that is required by an internal 

index. This meta-data can be accessed via the meta data adaptor, which provides the 

setting (setVariable) and getting (getVariable) of key-value pairs (especially suitable for 

setting and retrieving parameters).

Due  to  the  missing  implementation  of  the  Metadata  Manager  at  the  time  of 

implementation, the first version of the meta data adaptor saves its data in property 

files. However, it can be easily changed to save the data using any other data-source 

(the  next  version  is  going  to  use  the  Metadata  Manager).  Furthermore  no  index 

configuration or index structure needs to be changed, as the Meta Data Adaptor hides the 

data source and provides a consistent behaviour.

 5.2.4 Index Engine

Like the Index Manager the Index Engine extends the Component interface, to allow for a 

common creation  and interaction  of  the  various  components  in  the SemCrypt  DBMS 

prototype. The Index Engine provides methods for creating and deleting internal indices, 

for  updating  indices  and  for  posing  queries  at  specific  indices.  It  also  provides 

functionality that can be used to retrieve a specific index (getIndex) or to determine 

which indices are currently existing (getAllIndices). A class diagram of the Index Engine 

and its helper classes is depicted in Figure 46.



Implementation 83

Create Index

The Index Manager passes the logical index identifier, the logical index configuration and 

the internal index definition to the Index Engine. The Index Engine inspects the logical 

index  configuration  and  creates  according  internal  index  configurations.  Thereby  the 

logical index identifier is mapped to a set of internal index identifiers (in case the logical 

index configuration defines a set of nested indices).

The  Index  Engine  then  saves  the  index  identifier  mapping,  the  internal  index 

configurations and the internal  index definition via the Metadata Manager.  When the 

index update is implemented at a later point of time, also update patterns will be created 

using the internal index definition (see [Grün06b]).

In case the index is created on an existing document the index needs to be created. The 

relevant nodes can be retrieved by passing the internal index definition to the Execution 

Engine.

The creation of internal indices is a twofold process. Initially an internal index is created 

with the definition of its internal meta-data. However, at this point of time no index 

object is created. Index objects are created dynamically when operations need to be 

performed on a specific index. This process is performed by the Internal Index Factory, 

which provides methods to create internal indices from the meta data. The Internal Index 

Factory also  supports  creating internal  index configurations that  are  required for  the 

Figure 46: Index Engine
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definition of internal index structures.

Creating an internal index object from internal meta-data is a complex task, as internal 

index structures may be nested. By encoding additional type information into the internal 

index identifiers, the Internal Index Factory is able to create the internal indices from an 

array of internal index identifiers.

The  Internal  Index  Type  enumeration,  which  is  also  used  in  the  (logical)  Index 

Configuration, is used to define the type of index to be used. An internal index identifier 

(4 bytes integer) has the following conceptual structure:

● The first byte of the internal index identifier is the type id, expressing the Internal 

Index Type.

● The remaining three bytes can be used to create a unique identifier.

This allows the definition of  28 (256) different index types, and 224 (over 16 million) 

indices per index type. By using the type information, the Internal Index Factory is able 

to create the according index. The index identifier is also used to retrieve the relevant 

Internal Index Configuration, which is required by every index. (The mapping can be 

determined by using the getTypePrefix and getTypeFromId methods from the Internal 

Index Type enumeration.)

We  assume  that  index  7  has  been  created  and  its  logical  identifier  is 

“INDEX_7”. This identifier is mapped to internal index identifiers (two, as 

there are two indices that are nested). The first byte of the index identifier 

contains the index type.

RANGE has the type id 1

HIERARCHIC INDEX has the type id 2

The other three bytes can be used to create a unique id. So exemplary the 

following two internal ids are created: [1]001 and [2]001. Every number 

represents one byte, while the first byte in brackets is the Internal Index 

Type id.

When the Internal Index Factory is passed these two ids, it is able to load 

the relevant Internal Index Configurations, to determine the type of index 

and the nesting order. The created index can then be accessed by the Index 

Engine.
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Delete Index

When an index is deleted, the index engine first delegates the deletion to the internal 

index. An internal index can either be able to delete itself without additional information, 

or  requires the indexed keys (exact  match index).  In case an index implements the 

Deletable  interface,  the  first,  more  efficient  method  is  chosen.  Otherwise  the  Index 

Engine determines the indexed keys and then passes these keys to the internal index.

After the internal index has been deleted, the Index Engine removes the internal meta 

data (Index Definition, Index Configurations,  update pattern and the mapping of the 

logical index id to the internal index ids).

Retrieve

The retrieve method is essential for the Execution Engine, as it allows posing a query at a 

specific index. This query is expressed using a Search Configuration, which contains all 

required index variables for the index (as defined in the index definition). Values are 

assigned to  these index variables  that  are  used to  direct  the search and return the 

requested information.

The Index Engine determines the affected index using the logical index identifier and 

uses the Internal Index Factory to create an instance of the required index (or set of 

nested indices).  The Search Configuration is  forwarded to the internal index and the 

results are returned. Afterwards the internal index is unloaded. This means that the main 

memory index object is destroyed. Therefore index structures only require memory and 

processing time,  when there are actively used. Besides that all  data regarding index 

structures is permanently saved.

Notification Methods

The notify methods are used by the Execution Engine to inform the Index Engine when 

data  is  changing.  The  Index  Engine  determines  the  affected  index  structures  and 

performs the  required  updates.  This  index update  functionality  is  described by  Grün 

[Grün06b] and its implementation was not part of this thesis.

The add- and remove document to index methods are relevant for index structures that 

are defined on collections. The Index Manager uses these methods to instruct the Index 

Engine to add or remove a document to or from an index. Due to the missing support for 

collections in the current prototype these methods have not been implemented.
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 5.3 Index Specific Details

After  the general  mechanisms have been outlined we now explain the index specific 

implementation  details.  The  core  algorithms  are  not  considered  as  they  have  been 

presented in Chapter 3.

At first an additional access structure is presented, which is used to abstract from the 

indexed data and from the problem that one key in a secondary index might contain 

multiple values. It makes use of the index nesting capabilities and therefore can be used 

by every index structure. Then implementation details  of  the exact match index, the 

range index, the text index and the hierarchic index are explained.

 5.3.1 Sequential Access Structure

The need to index different kind of data, together with the situation that there might by 

multiple nodes belonging to one key formed the idea of a simple access structure that is 

able to encapsulate this complexity from other index structures. The sequential access 

structure is the result of these considerations and has the positive side effect that in 

future  it  can  implement  additional  functionality,  like  maximum  page  sizes,  data 

compression or determining whether index structures are allowed to contain duplicated 

data.

The sequential access structure is nestable and can be used by every other index. In a 

nesting hierarchy it is always situated at the lowest level. The sequential access structure 

itself does not read or write any pages itself, but provides its sequential pages for other 

indices to nest.

Currently the sequential access structures only maps a key to a sequence of nodes. It 

does  not  regard  page  size  restrictions  nor  an  order  of  the  contained  nodes.  This 

functionality  may  be  added  in  later  implementations.  A  sequential  page  contains  a 

sequence of indexed data and resembles a record. This means that data belonging to one 

index key is aggregated in a sequential page, allowing a superior index to deal with this 

data in a way it would with one entry.

The sequential access structure does not have a configuration nor an internal id and is 

not able to store data by itself. As the insert, delete and retrieve algorithms are trivial 

they are not outlined (adding, removing and retrieving nodes in a linked list).

 5.3.2 Exact Match Index

The exact match index is the implementation of a simple inverted file in the SemCrypt 

indexing  framework.  It  cannot  be  used  as  a  nested  index,  due  to  the  kind  of 
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segmentation (key = page identifier) and requires a list of index variables containing the 

indexed keys for deletion.

Configuration

The  exact  match  index  stores  its  meta-data  in  a  Exact  Match  Index  Configuration 

(depicted in Figure 47). The configuration only contains the identifier of the exact match 

variable, specifying the key of the index. No additional parameters are required.

Pages

The exact  match index makes  use of  the  sequential  pages  of  the sequential  access 

structure to store its data.

Methods

To determine the page id belonging to a certain key, the exact match index uses the 

serialized  representation  of  the  key,  as  this  ensures  that  the  equals  condition  is 

preserved.

The estimated costs (calculated by the calculateIndexRetrievalCosts method) are always 

one, as the exact match index only requires one page access to retrieve the desired 

information.

 5.3.3 Range Index

The range index can be used as a nestable index and therefore extends the Abstract 

Nestable Internal Index class. Being a tree-based index structure the range index is able 

to delete itself and therefore implements the Deletable Interface.

Figure 47: Exact Match Index Implementation

Figure 48: Range Index Implementation
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Configuration

The Range Index Configuration contains different  parameters  (specified in the Range 

Index Configuration Parameters enumeration) required by the range index (see  Figure

48):

● INDEX_VARIABLE_ID, the identifier of the Range Match Variable supported by the 

range index.

● FANOUT, defining the branching of the tree and the maximum size of a branch 

page. Indirectly also the minimum branch page size is determined, as for the 

adopted B+tree it is half the fanout.

● MINSIZE, specifying the minimum size of a leaf-page.

● MAXSIZE, specifying the maximum size of a leaf page.

● RUNNING_NR a running number that is used to generate unique page identifiers 

in combination with the internal index identifier.

Pages

The range index uses two types of pages the Leaf Page, containing the data and the 

Branch Page creating the tree structure. These are generalized by the Btree Page class, 

which contains a page identifier and an array of index keys (see Figure 49). It extends 

the Page interface and ensures serialization capabilities.  Besides that  the Btree Page 

ensures  that  Branch  Pages  and  Leaf  Pages  implement  split,  merge  and  redistribute 

methods.

Figure 49: Range Index Pages
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A Leaf Page contains an additional array of nested pages and the page identifier of the 

next Leaf Page (that is null in case there is no next leaf). The Branch Page contains an 

array of page identifiers indicating the children pages of this branch page.

Methods

The expected retrieval costs of the range index equal the height of the tree, which can be 

estimated using the current RUNNING_NR and the FANOUT value.

A core method of the range index is the findLowerBoundLeafPage method that traverses 

the index and returns the leaf page fitting to the lower bound. This helps locating the 

right leaf page for deletion, insertion and retrieval. The deleteIndex method traverses the 

whole index and removes every encountered page.

The split, merge and redistribute methods are used in case a Btee Page is split or merged 

and copy the relevant data. The split routine returns an index key that indicates the 

value which can be used to separate the two pages. In case of a Branch Page this is the 

minimum value of the part-tree, which contains the greater values.

The redistribute method is used in case one page underflows but cannot be merged with 

another page (as the new page would overflow). This operation can be expressed by a 

merge followed by a split

 5.3.4 Text Index

As depicted in  Figure 50 the text index is based on the range index and extends it. It 

overwrites the insert, delete and retrieve methods to transform the passed text match 

variable into a range representation and to pre-process text using the Text Analyzer (see 

Chapter 3.5). Algorithms and index configuration correspond to the range index.

Methods

The prefix operations needed for key compression are performed by a separate operator, 

which provides one method to determine the minimal prefix of two Strings and a second 

method to create the next higher prefix for a prefix.

Figure 50: Text Index Implementation
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In case the minimal prefix of “integrating” and “index” is calculated at first 

the two strings are sorted: “index” --> “integrating”. Then starting from the 

beginning a new string is created, till a difference is found: i --> n --> d/t 

The letter of the larger keyword is used and the prefix “int” is returned.

The next higher prefix for “int” is lim  'int'x= 'inu' . This is implemented 

by adding the character '~' to the string (“int~”), which does not occur in 

keywords and which satisfies this condition.

Text Analyser

The Text  Analyzer  provides  the tokenizing  capabilities  required  by  the  text  index to 

prepare text. For this purpose it uses the Lucene library. The Text Analyzer provides the 

method tokenize, which takes a string as input. This string is cleaned from punctuations, 

is tokenized into keywords and stemmed (executed by the Standard Analyzer class of 

Lucene). An example is provided in Chapter 3.5. The resulting keywords are then indexed 

in a range index manner.

In case other languages than English need to be regarded the underlying analyser can 

easily be changed.

 5.3.5 Hierarchic Index

The hierarchic index can be used as a nested index and extends the Abstract Nestable 

Internal Index class. It provides the indexing of hierarchic data, while providing dynamic 

split behaviour. The hierarchic index and its index configuration is depicted in Figure 51.

Index Configuration

The  hierarchic  index makes  use  of  an  internal  index configuration  that  contains  the 

following meta-data:

● INDEX_VARIABLE_ID, the identifier of the Hierarchic Variable supported by the 

Figure 51: Hierarchic Index Implementation
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hierarchic index.

● MINSIZE, specifying the minimum size of a hierarchic page.

● MAXSIZE, specifying the maximum size of a hierarchic page.

● RUNNING_NR a running number that is used to generate unique page identifiers 

in combination with the internal index identifier.

Pages

The  hierarchic  index  consists  of  Hierarchic  Pages  and  Hierarchic  Root  Pages,  which 

contain the data segmented into  hierarchies  using Hierarchy Buckets.  As depicted in 

Figure 52, a Hierarchic Page only contains Leaf Buckets, which consist of a hierarchy key 

(representing the hierarchy) and a nested page. The Hierarchic Root Page additionally 

contains Reference Buckets that contain the page identifier of another Hierarchic Page 

that is used as a sub-hierarchy page.

The  class  Hierarchic  Page  provides  methods  for  splitting  the  page  (split)  and  for 

retrieving all nested pages that belong to a certain hierarchy key. The Hierarchic Root 

Page provides  an additional  method to  merge with  a  sub-hierarchy page (Hierarchic 

Page) in case of an underflow.

Methods

The split algorithm (visualized in Figure 27 on page 52) is the most complex part of the 

hierarchic index and makes use of the Split Bucket class, which is used as a helper class. 

The findSplitCandidate method determines the Split Bucket that can be used to split a 

Hierarchic Page. A Spit  Bucket  represents a part-tree of  the hierarchic structure and 

Figure 52: Hierarchic Index Pages
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contains all Leaf Buckets that belong to this part-tree.

Recursively Split Buckets are created (by rebuilding the hierarchic tree from bottom-up), 

until one is found that satisfies the split conditions (greater than the minimum page size, 

while the remaining page is also greater than the minimum page size). The Split Bucket 

then  provides  methods  that  allow  the  creation  of  a  sub-hierarchy  page 

(createOverflowPage).

If a sub-hierarchy page splits, reference buckets that are in a sub-hierarchy relationship 

with existing reference buckets are created. This leads to a decision problem in case of a 

future insert, as multiple reference buckets (and the according sub-hierarchy pages) may 

contain the data. This problem is solved by always choosing the reference bucket, which 

is closer (in the hierarchic tree) to the hierarchy of the data to be inserted.

Using the example that has been discussed earlier (depicted in  Figure 30) 

and that is shown again in Figure 53, we can see that in case we insert a 

new email address belonging to the hierarchy Email C, the Hierarchic Root 

Page provides us with two possibilities: the hierarchy Folder “InBox” (which 

contains the  Email C hierarchy) and the hierarchy  Email C. The algorithm 

chooses the hierarchy closer to the affected hierarchy, in this case Email C. 

Consequently the new email address is correctly added to the second sub-

hierarchy page.

Figure 53: Hierarchic Index 6 - After Second Split
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This chapter evaluates the implemented index structures using qualitative comparison 

and quantitative measures. Thereafter the thesis is concluded and an outlook on future 

research work and possible extensions of the developed concepts and the implementation 

is given.

 6.1 Evaluation

It  is  important  to  evaluate  the  implemented  index  structures  to  determine  if  the 

requirements  have  been  met  and  to  analyse  the  core  characteristics  of  the  index 

structures and the developed framework. Therefore at first criteria are outlined that are 

then applied to the index structures.

 6.1.1 Criteria

Zobel et al.  [ZMR95] provide a set of  guidelines for  evaluating and comparing index 

structures and describe a set of criteria, which are modified and extended for SemCrypt:

1. Applicability, the class of queries supported by an index.

2. Extensibility,  the  ease  to  modify  and extend  an existing  index  to  operate  on 

different data or to support additional queries.

3. Security,  the  level  of  security  that  is  provided  by  an  index  and  potential 

weaknesses  (this  criterion  is  missing  in  [ZMR95],  but  highly  relevant  for  the 

SemCrypt DBMS).
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4. Storage and Memory Consumption, the disk space consumed by an index and the 

required  memory  during  manipulation  and  retrievals  (combining  the  criteria 

outlined in [ZMR95]).

5. Index Creation Performance, the ability of an index to update itself in case data is 

inserted, modified or deleted.

6. Index Retrieval Performance, the ability of an index to identify answers to queries 

in a reasonable time.

Transaction and communication costs to the storage provider and the overhead created 

by encryption are not considered for index structures, as they are dependent on the 

Storage Engine and the used encryption algorithms and transmission protocols. These 

parameters highly influence the performance of index structures in SemCrypt, but they 

are not specific to indices and also apply to primary data. The implications of the index 

structures for concurrency, transactions and recoverability are not considered, as the 

current SemCrypt prototype interacts in a stand alone environment.

In  the  following  chapters  we  apply  the  outlined  criteria  to  the  implemented  index 

structures. The scalability of index structures is regarded together with query evaluation 

speed and index update  speed.  Also  the implications  of  different  index configuration 

parameters are considered.

 6.1.2 Applicability

The kind of queries to be supported by index structures were outlined in the objectives 

(Chapter  1.5) and further detailed in  Chapter  3.1.1.  We now determine which index 

structures are able to support these queries and how well they support them.

Table 9 shows the correlation of query classes to index structures. The first line shows 

the  different  queries  while  the  first  column issues  the  index structures.  The  cells  in 

between  rate  how  well  an  index  supports  a  certain  query,  or  using  a  different 

perspective, which index structure can be chosen to support a certain type of query.

Rating:

+ The support is strong and the index is  an ideal candidate for  supporting the 

corresponding query type.

о The query class can be supported using the index, but there are better choices.

- The query cannot be supported using the index structure.

As shown in Table 9 every required query class is efficiently supported. The range and 

text index also support simple lookups, but are less efficient than the exact match index.
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Query Type
Index

Simple 
Query

Range 
Query

Text 
Query

Structural 
Query

Exact Match Index + - - -

Range Index о + - -

Text Index о - + -

Hierarchic Index - - - +

Table 9: Applicability of Implemented Index Structures

By the use of nested index structures more complex queries can be supported. It makes 

sense to combine the exact match, the range and the text index with the hierarchic index 

to add support for structural queries. When a multidimensional index is not available it 

makes sense to combine an exact match index with a range or text index to emulate a 

multidimensional index. However, nesting two range or text indices is hardly useful, as 

the combined tree structures segment the two-dimensional data in an inefficient way.

Query Type
Index Class

Simple Range Text Structural C

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Exact Match Index 1 √ √ - - - - - - -

Range Index 2 - - √ √ - - - - *

Text
Index 3 - - - - √ - - - -

Index 4 - - - - - √ - - -

Hierarchic
Index 5 - - - - - - √ - -

Index 6 - - - - - - - √ *

Nested Index 7 - - √ √ - - - √ √

Table 10: Running Example Queries and Index Support

Table  10 shows the nine sample queries defined in the running example 

(Chapter  1.4) and visualizes, which of the sample indices (Chapter  3) can 

be used to support a query (√), which indices partly support a query (*) 

and which indices cannot be used to support a query (-). On the left side 

the according index class is stated and the top indicates the query class (C 

stands for complex query).

 6.1.3 Extensibility

Extensibility is defined as the ability of index structures to support different types of data 

and the ability to support new index structures or the combination of existing ones.

Table 4 (Chapter 2.1.1) defined the different domains that can be indexed in SemCrypt. 

We focus on the three core domains in SemCrypt, which are shown in the first row of 

Table  11.  The  three  core  domains  are  values  and  hierarchies,  expressed  through 
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identifiers (nodes) and types. The first column names the different index structures and 

the cells in between show if a domain is supported (+) or not (-).

Domain (key)
Index

Values Identifiers Types

Exact Match Index + + +

Range Index +1 +3 +3

Text Index +2 - -

Hierarchic Index - + +

1  if values can be ranked (linear order)
2  if values are Strings (chain of characters)
3  in case the hierarchies follow a linear order (in-order tree traversal)

Table 11: Extensibility of Implemented Index Structures

The  exact  match  index  can  index  all  three  domains,  however  only  supports  simple 

queries. The range index supports values as long as values of the domain can be ranked 

in a linear order and the text index supports values that consist of character chains. The 

hierarchic index supports identifiers and types, regarding their hierarchic structure.

While the data indexed in SemCrypt are nodes of a document, the implemented index 

structures are independent of this data and only limited by the domains that can be used 

as index keys.

The presented index framework is very generic and due to the introduced abstraction can 

be easily expanded. As soon as the implementation classes and required meta-data are 

added to the framework, the new index structures can be used for indexing. To add an 

additional  index,  the  internal  index  and  internal  configuration  interface  need  to  be 

implemented and the internal index factory needs to be extended. If new data types 

need to be indexed, it is sufficient to extend the relevant operators of the Execution 

Engine. The indexing of new domains requires more adoptions, as new index variables 

need to be declared and the components dealing with index variables (Query Engine, 

Execution Engine) need to be changed to accommodate the new type of index variable.

 6.1.4 Security

Security  is  a  very  important  requirement  for  SemCrypt.  The use of  index structures 

creates the following two major risks:

● Detecting Index Structure: An index structure has a certain structure. This risk 

describes the possibility that an intruder is  able to identify an index structure 

(separate it from other index structures and the primary data) and can rebuild the 

structure  of  the  index.  This  may  be  done  by  using  frequency  analyses  to 

determine the root nodes of a tree-based structure.
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● Detecting  Content:  Index  structures  duplicate  data.  This  risk  describes  the 

possibility that an attacker is able to relate the content of index structures to the 

primary data. For example by monitoring changes in the primary data and the 

index structures and by using this information to group potential similar values. 

The  worst  case  scenario  is  that  an  attacker  can  extract  probabilities  of 

occurrences of certain values.

As these two risks seem to be related to the kind of operation executed on the index 

structure, we divide them into risks when updating the index and risks when accessing 

the index structure. Potential risks are symbolized by +, no risk by – in Table 12.

Security Issue
Index

Detecting Index Structure Detecting Content

U R U R

Exact Match Index - - + -

Range Index - + - -

Text Index - + - -

Hierarchic Index + + - -

U .. Issue when updating the index structure.
R .. Issue when retrieving via the index structure.

Table 12: Index-Security Risk Matrix

The exact match index creates a risk regarding the detection of content, when updating 

(as described in Chapter 3.3.4). The tree based structures have very similar risk profiles 

(which is an indication that the risk is depending on the structure of an index) that is 

related to the detection of  the tree structure using frequency analyses (see Chapter 

3.4.5). While there is little risk for performing frequency analyses when updating the 

range and text index (due to splits the root page changes), the root of the hierarchic 

index stays the same.

The  risk  of  detecting  the  index  structure  can  be  overcome  by  using  the  algorithms 

described in chapter  2.6 (node swapping and access redundancy) or  with the use of 

caching to buffer frequent accesses. The SemCrypt DBMS uses the latter approach.

The risk of detecting content cannot be entirely overcome, but is highly dependent on the 

encryption used and how updates are performed via the Storage Engine. On the other 

hand  index  structures  reduce  the  chance  to  reveal  content  during  retrieval,  as  the 

primary data is not accessed and information regarding occurrences of values is hidden.

More details on encryption and security in SemCrypt are given by Scharinger [Scha06].

 6.1.5 Storage and Memory Consumption

It makes little sense to compare the storage requirements of index structures to the 



98 Indexing Encrypted XML Documents in the SemCrypt DBMS

primary data, as this ratio is highly dependent on the structure of  the data and the 

definition of the index (which part of the data to index). A far better understanding of the 

storage overhead created by an index structure can be gained by comparing the data 

passed to an index for indexing to the total amount of data consumed by an index.

A sample set of data is used to create the index structures (10,000 keys and every key is 

assigned 81 bytes of data). The key domain used for value based index structures are 

integers (4 bytes), for hierarchic index node identifiers (labels) with an average size of 

41 bytes size. The total storage consumption is compared to the indexed data, whereby 

determining the overhead created by index structures regarding storage consumption. As 

the overhead is primarily sensitive to the leaf page size, only this parameter and the 

occurring overheads are depicted in Table 13.

Leaf Page Size (#keys)
Index

5-10 10-25 25-50 50-100

Exact Match Index 5% 5% 5% 5%

Range Index 32% 24% 22% 21%

Hierarchic Index 7% 7% 6,5% 6%

Nested: Range-Hierarchy 25% 24% 23% 23%

Nested: Hierarchy-Range 14% 11% 10% 9%

Table 13: Storage Overhead of Index Structures regarding Leaf Page Sizes

The  two  nested  indices  are  a  combination  of  the  range  and  the  hierarchic  index. 

Depending on the nesting order the created overhead varies (the range index creates 

more overhead, however is more selective). In general the overhead of a nested index is 

in between the overhead of the indices it is consisting of, whereby the overhead is highly 

dependent on the kind of indexed data. The text index is not explicitly shown, as the 

overhead resembles the one of the Range Index. The additional storage required for 

storing strings as keys can be compensated by the prefix key-compression.

A second important  measure is  the main memory requirement  during retrievals  and 

updates.  Index structures  are  not  kept in  main memory,  only  when accessing index 

structures a part of the structure is rebuilt. Therefore the required main memory is the 

product of an average page size with the required pages (one for the exact match index, 

two for the hierarchic index and the tree-height for the range index): Memory required≈

Sizeaverage page⋅required pages Storage footprint  of  tree-based structures can be kept 

small by reducing the fanout parameter. However, performance is negatively correlated.

In case an index structure is  built  from scratch, it  is  preferable to create the whole 

structure locally and then to transfer it to the storage provider. The resulting memory 

requirement can be estimated by multiplying the amount of data to be indexed with the 

relevant overhead from Table 12: Size Index=SizeData⋅1Overhead Index
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 6.1.6 Index Creation Performance

We conducted some experiments  on the  index  structures  to  determine  their  update 

performance and to identify the influence of index parameters. We use different amount 

of data to test the scalability and also compare the results achieved in main memory with 

results  using  the  Storage  Engine.  The  Storage  Engine  has  been  configured  to 

communicate with a local storage provider and with disabled cache (however, preserving 

the communication overhead required for remote storage providers). For the test using 

encryption DES is used. The tests are executed on a Mobile Intel Pentium with 1,4 GHz 

and 512 MB RAM, running Windows XP Service Pack 2.

The results for the exact match index are depicted in  Figure 54. The creation time per 

indexed key stays constant with increasing amounts of data, therefore the creation of an 

exact match index is linear to the amount of data to be indexed.

The performance results for the hierarchic index are depicted in Figure 55, which like the 

exact match index scales linearly to the indexed data. Index creation performance can be 

increased by choosing larger page sizes,  in our tests the best performance could be 

achieved with a page size of 100 nodes that allowed the creation of one key in 1.8 ms. 

However, little changes when choosing with maximum page sizes greater than 50 nodes. 

The creation times of the exact match index cannot be directly compared to the creation 

times of the hierarchic index. Both test data contained 10,000 nodes, but the test data 

for the hierarchic index comprised 3 keys (hierarchies), while the exact match index was 

built on 10,000 different keys (values).

Regarding the range index we experimented, choosing various fanout and maximum leaf 

size values. As shown in Figure 56 the index scales well. While using the Storage Engine 

the speed (per indexed key) did even increase, which can be explained by the bundled 

and consequently more efficient upload. The main memory curve shows the expected 

result of a logarithmic increase with rising amounts of data (more branch pages).

Figure 55: Creation Performance - 
Hierarchic Index

Figure 54: Creation Performance - Exact 
Match Index
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The optimal parameter settings and the implications for creation time can be extracted 

from Figure 57, Figure 58 and Figure 59. A maximum leaf size of 100 and a fanout of 10 

provides the best creation performance. Especially in the unencrypted environment and 

when choosing a maximum leaf page size of 10, the fanout value has a huge impact on 

the overall creation performance. This may be caused by an optimal page size, which 

reduces the transmission overhead.

All  parameters  heavily  influence  retrieval  performance,  so  the  creation  performance 

needs to be considered regarding the results of the next chapter.

The evaluation of  index nesting is  performed by combining a range and a hierarchic 

index. For the range index we defined a fanout of 50 and for the hierarchic index a 

minimum page size of 5 and a maximum page size of 10. The maximum page size of the 

range index was varied. The comparison of the two nesting possibilities is depicted in 

Figure 60 (range index as a super index, with a nested hierarchic index) and Figure 61 

Figure 56: Creation Scalability - Range 
Index

Figure 57: Creation Performance – Main 
Memory - Range Index

Figure 58: Creation Performance - 
Unencrypted - Range Index

Figure 59: Creation Performance – 
Encrypted - Range Index



Evaluation, Conclusion and Outlook 101

(hierarchic index with a nested range index). We added data for 500 different value keys 

and 2 different hierarchies. For every value key 20 entries were created.

The best results, especially in the encrypted environment, were achieved using a leaf 

page size of 50 for the range index.

 6.1.7 Index Retrieval Performance

Similar  experiments  to  the  one  conducted  in  Chapter  6.1.6 for  index  updates  are 

executed to identify the retrieval performance of index structures. Likewise scalability 

and  different  parameters  are  tested,  using  main  memory  storage  and  the  Storage 

Engine. The testing system and used data is the same as before.

The experiments with the exact match index proved the independence of retrieval time 

and amount of indexed data. The average retrieval times in the different environments is 

depicted in  Figure  62 and did not  change with  increasing amounts of  indexed keys. 

Consequently the exact match index is by far the fastest index and very scalable as well.

The results for the hierarchic index are shown in Figure 63. Retrieval time is depending 

on the maximum page size and has an optimum of 50 nodes in both the unencrypted and 

Figure 60: Creation Performance – 
Nesting Range-->Hierarchy

Figure 61: Creation Performance – 
Nesting Hierarchy --> Range

Figure 63: Retrieval Performance - 
Hierarchic Index

Figure 62: Retrieval Performance - 
Exact Match Index



102 Indexing Encrypted XML Documents in the SemCrypt DBMS

encrypted environment.

As expected the retrieval performance of the range index is logarithmic to the indexed 

data (see Figure 64). Concerning the setting of the index parameters, when used in main 

memory (Figure 65), a maximum leaf page size of 25 combined with a fanout of 10 

proved fastest.

When using the range index with the Storage Engine, larger parameters for the fanout 

and  page  size  resulted  in  better  performance,  as  the  encryption  and  transmission 

overhead can be reduced. The results for different parameter settings in an unencrypted 

environment are depicted in  Figure 66. A maximum page size of 100 combined with a 

fanout  of  50  enabled  the  fastest  retrieval  results.  The  results  for  the  encrypted 

environment are shown in Figure 67, where the optimum was reached using a maximum 

page size of 100 and a fanout of 10. The retrieval in an unencrypted setting are an 

average 5-10% faster.

Figure 65: Retrieval Performance – Main 
Memory - Range Index

Figure 67: Retrieval Performance - Encrypted 
- Range Index

Figure 66: Retrieval Performance - 
Unencrypted - Range Index

Figure 64: Retrieval Scalability - Range 
Index
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Interestingly  the  performance  of  the  range  index  (when  using  a  storage  provider) 

decreased  with  growing  fanout  values.  A  possible  interpretation  is  that  due  to  the 

increasing  size  of  the  branch  pages,  the  amount  of  transferred  unnecessary  data 

increases. Due to the expensive transfer (and encryption) it  is favourable to transfer 

more smaller branch pages and to accept a higher tree size.

The retrieval times per key depend very much on the kind of query. The depicted results 

were retrieved with a set of average queries. In case larger range queries are executed, 

the retrieval  time decreases with larger leaf sizes (as more data can be retrieved at 

once). However, exact match queries (or small ranges) become slower, as unnecessary 

data is fetched from the storage provider.

Index nesting enables the retrieval regarding multiple keys. We tested the combination 

of a range (value key) with a hierarchic (structure key) index performing queries on a 

data base of 500 value keys and two hierarchic keys. The average performance of the 

two nested indices depicted in  Figure 68 and Figure 69 are pretty much the same. But 

the range-->hierarchy combination performs better on queries restricting the value (and 

not the hierarchy) and the hierarchy-->range combination is faster when not restricting 

the  value.  Consequently  the  kind  of  supported  query  influences  the  nesting  order 

decision.

A comparison to queries without the support of indices could not be performed with the 

current prototype, as this functionality is not implemented yet. However, we expect that 

the presented index structures can substantially increase the overall performance of the 

SemCrypt DBMS.

Figure 68: Retrieval Performance – 
Nesting Range-->Hierarchy

Figure 69: Retrieval Performance – 
Nesting Hierarchy --> Range
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 6.2 Conclusion

Storing encrypted XML data remotely  on an untrusted storage provider  in  SemCrypt 

created the necessity to enable faster access to outsourced data. This problem has been 

solved by the use of index structures that have been adopted and implemented in this 

thesis.

The requirement of flexible and extensible index management lead to a concept that 

generalizes  various  index  structures  by  considering  them  as  access  structures. 

Consequently index structures can be defined, managed and accessed in a similar way. 

The concept has been implemented by the described index processing architecture.

As no index structure is able to support all kind of queries, different index structures 

have  been  adopted  and  implemented.  While  indices  in  general  DBMS  focus  on  the 

indexing of values, XML data contains additional structural information and is more likely 

to  contain  larger  amount  of  textual  information.  The  implemented  index  structures 

support value based queries (for equality, ranges and text) and structural queries. 

A B-Tree variant has been adopted to support text queries. Compared to the inverted 

files, which are used regularly in information retrieval, the prefix B-Tree is balanced and 

supports  prefix  searches.  A  new  index  structure  capable  of  dynamically  indexing 

hierarchic data has been presented and implemented that is able to split regarding the 

inner structure of the indexed data.

Combined with  the concept  of  nesting  various  index structures,  value and structural 

queries can be supported by a combined index and multidimensional index structures can 

be emulated. The physical representation of index structures as id-value pairs makes 

data belonging to index structures indistinguishable from primary data. In combination 

with caching strategies this ensures and increases the overall security of the system.

The  implementation  of  an  indexing  framework  and  several  index  structures  for  the 

SemCrypt DBMS has been described and its characteristics, strengths and weaknesses 

have been outlined in an extensive evaluation.

 6.3 Outlook

During  the  development  of  the  presented  concepts  and  the  implementation  of  the 

architecture  and  index  structures,  various  new  challenging  problems  and  areas  for 

improvement have been determined. Due to the focus of the thesis on index structures, 

interesting related areas, like information retrieval and the index update and selection 

problem have only been briefly touched.
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Concerning the implementation, several optimizations and additional functionality can be 

added. While a general bulk loading mechanism for index structures, based on a write 

buffer  has  been  implemented,  pipelining  (for  index  updates  and  retrievals)  is  not 

supported. Future extensions may also add compression of indexed data, as data that is 

part  of  the  index  definition  needs  not  be  saved.  The  index  update  mechanism and 

support for indices based on collections has been regarded in the architecture, but is not 

implemented.

While index nesting supports queries on multiple keys and is suitable to combine values 

with hierarchic information, it  is  inefficient  for multidimensional data.  Consequently  a 

multidimensional index may be added in future versions and due to the general index 

framework these new index structures can be integrated easily.

Regarding information retrieval, the implemented text index supports keyword and prefix 

search. Future work can expand these capabilities to support boolean queries (regarding 

multiple keywords at once) and advanced pattern search.

Security and privacy regarding index structures is a very new area of research and there 

are few concepts  (presented in Chapter  2.6) that  can be used and analysed.  Future 

research work may focus on this problem, analysing the index structures described and 

implemented in this thesis and developing new approaches to enable the secure access 

to  data  using  index  structures.  Also  an  extended  security  analysis  based  on  the 

implemented index structures may be performed.

The challenges of authorization and concurrency have not been regarded in this thesis. 

Authorization  is  of  major  importance  for  the  SemCrypt  project,  however  ensuring 

authorization  when  using  index  structures,  which  index  data  across  authorization 

domains, is a complex and unexplored problem. For example, a user is only authorized to 

view a specific fragment of an XML document, but may use index structures defined on 

the  whole  document.  Consequently  a  transmitted  (and decrypted)  index page  might 

contain data, which must not be accessible to the user. As an index page is the finest 

granularity  of  transferred  (encrypted)  index  data,  the  data  cannot  be  filtered 

preliminarily. Possible solutions to this problem are:

● Use multiple encryption keys and a hierarchic encryption concept according to the 

authorization domains.

● Only define index structures within the authorization domains.

Finally the developed concepts may also be relevant to other contexts, for example the 

generalization of index structures can be used in other database management systems 

and the presented methods for storing and traversing index structures may be used in 

distributed environments.
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Appendix

A) Utilized Software and Libraries

When developing software it makes sense to build on the experiences of other software 

developers and to reuse proven solutions and program code (libraries) and to make use 

of development frameworks. Although no suitable libraries exist for the task of index 

processing that could have been adopted for SemCrypt, some Java open source libraries 

have been used to  ease and enhance  development.  Also  one  library  for  information 

retrieval (Lucene) has been used to provide basic information retrieval functionality for 

the text index.

Development Tools

Eclipse is an open source IDE (integrated development environment), which is especially 

suitable for developing Java software. For the development of the index structures and 

index management framework  Eclipse  version 3.1.2 and  Java version 1.5 have been 

used. To ease development two plug-ins were used:

● Subclipse version 1.0.1, to enable version control functionality via Subversion and 

to create a shared development environment.

● TPTP framework version 4.1.0, a test and profiling framework to gather detailed 

runtime information on storage utilization and processing times.

During the design process and for the UML figures depicted in this thesis,  the freely 

available community edition of the UML tool JUDE version 2.5.1 has been used.

Java Libraries

JUnit is an open source library to write and execute unit tests for Java classes. Unit tests 

are written and tested using JUnit version 3.8.1.

In order to gather detailed information at runtime, to determine errors and to easier 

locate bugs a logging mechanism is required. For this purpose the open source library 

Log4J version 1.2.13 has been used.

In order to make use of basic information retrieval techniques, required and described in 

Chapter 2.3.2 (text index) the analysis package of the open source Lucene library version 

1.9.1 has been used. This package provides all needed functionality to process texts and 

to transform them into a representation that  can be used with the text index.  More 



114 Indexing Encrypted XML Documents in the SemCrypt DBMS

details on the integration of Lucene in the text index is given in Chapter 5.3.4 and the 

Lucene  project  and  functionality  is  described  in  detail  by  Gospodnetic  and  Hatcher 

[GoHa05].

B) Running Example

Appendix  B contains the XML schema used for  the running example.  The schema is 

followed by the sample XML data used.

XML Schema

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:simpleType name="emailAddress">
<xs:restriction base="xs:string">

<xs:pattern value="(.*)@(.*)\.(.*)"/>
</xs:restriction>

</xs:simpleType>
<xs:simpleType name="statusReceived">

<xs:restriction base="xs:string">
<xs:enumeration value="unread"/>
<xs:enumeration value="read"/>
<xs:enumeration value="answered"/>
<xs:enumeration value="forwarded"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="addresseeModifier">

<xs:restriction base="xs:string">
<xs:enumeration value="from"/>
<xs:enumeration value="to"/>
<xs:enumeration value="cc"/>
<xs:enumeration value="bcc"/>

</xs:restriction>
</xs:simpleType>
<xs:complexType name="FolderType">

<xs:sequence>
<xs:element name="Email" type="EmailType" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>
<xs:complexType name="EmailType" abstract="true">

<xs:sequence>
<xs:element name="Header" type="HeaderType"/>
<xs:element name="Body" type="BodyType"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="SentEmailType">

<xs:complexContent>
<xs:extension base="EmailType"/>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="ReceivedEmailType">

http://www.w3.org/2001/XMLSchema
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<xs:complexContent>
<xs:extension base="EmailType">

<xs:attribute name="Status" type="statusReceived" use="required"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="BodyType">

<xs:sequence>
<xs:element name="Text" type="xs:string"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="HeaderType">

<xs:sequence>
<xs:element name="Subject" type="xs:string"/>
<xs:element name="Date" type="xs:integer"/>
<xs:element name="Addressee" type="AddresseeType"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="AddresseeType">

<xs:attribute name="Modifier" type="addresseeModifier"
use="required"/>

<xs:attribute name="Address" type="emailAddress" use="required"/>
</xs:complexType>
<xs:element name="MailBox">

<xs:complexType>
<xs:sequence>

<xs:element name="Folder" type="FolderType" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Sample XML Data

<MailBox>
<Folder name="InBox">

<Email xsi:type="ReceivedEmailType" Status="answered">
<Header>

<Subject>Test 1</Subject>
<Date>200605080930</Date>
<Addressee Modifier="from" Address="michael@maier.de"/>
<Addressee Modifier="to" Address="peter@lasinger.at"/>
<Addressee Modifier="cc" Address="franz@mitterer.de"/>
<Addressee Modifier="cc" Address="julia@schnell.de"/>

</Header>
<Body>

<Text>This is a little test message.</Text>
</Body>

</Email>
<Email xsi:type="ReceivedEmailType" Status="unread">

<Header>
<Subject>Test 2</Subject>
<Date>200605091400</Date>
<Addressee Modifier="from" Address="julia@schnell.de"/>
<Addressee Modifier="to" Address="peter@lasinger.at"/>

</Header>
<Body>
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<Text>This is a second test message.</Text>
</Body>

</Email>
</Folder>
<Folder name="Sent">

<Email xsi:type="SentEmailType">
<Header>

<Subject>RE: Test 1</Subject>
<Date>200605081700</Date>
<Addressee Modifier="from" Address="peter@lasinger.at"/>
<Addressee Modifier="to" Address="michael@maier.de"/>
<Addressee Modifier="cc" Address="julia@schnell.de"/>

</Header>
<Body>

<Text>Thanks for the email. This is my answer.</Text>
</Body>

</Email>
</Folder>

</MailBox>

C) Logical Index Metadata

Appendix C contains the XML schema for logical meta data. After the schema definition, 

sample XML data used in the running example is outlined.

XML Schema

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="LogicalIndexMetaData">
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="Index" type="IndexType"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:complexType name="OperatorType">

<xs:sequence minOccurs="0">
<xs:element name="IndexVariable">

<xs:complexType>
<xs:attribute name="VariableId" type="xs:int" use="required"/>
<xs:attribute name="VariableType" type="xs:string"

use="required"/>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="OperatorId" type="xs:int" use="required"/>

</xs:complexType>
<xs:complexType name="ConfigurationType">

<xs:sequence maxOccurs="unbounded">
<xs:element name="InternalIndex">

<xs:complexType>
<xs:sequence maxOccurs="unbounded">
<xs:element name="VariableId" type="xs:int"/>
</xs:sequence>
<xs:attribute name="Type" type="xs:string" use="required"/>

</xs:complexType>

http://www.w3.org/2001/XMLSchema


Appendix 117

</xs:element>
</xs:sequence>

</xs:complexType>
<xs:complexType name="DefinitionType">

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="Operator" type="OperatorType"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="IndexType">

<xs:all>
<xs:element name="Definition" type="DefinitionType"/>
<xs:element name="Configuration" type="ConfigurationType"/>

</xs:all>
<xs:attribute name="ID" type="xs:ID" use="required"/>

</xs:complexType>
</xs:schema>

Sample Logical Metadata

<LogicalIndexMetaData>
<Index ID="Index1">

<Definition>
<Operator OperatorId="1">

<IndexVariable VariableType="SIMPLE" VariableId="1"/>
</Operator>

</Definition>
<Configuration>

<InternalIndex Type="EXACT_MATCH">
<VariableId>1</VariableId>

</InternalIndex>
</Configuration>

</Index>
<Index ID="Index2">
<Definition>

<Operator OperatorId="1">
<IndexVariable VariableType="RANGE" VariableId="1"/>

</Operator>
</Definition>
<Configuration>

<InternalIndex Type="RANGE">
<VariableId>1</VariableId>

</InternalIndex>
</Configuration>

</Index>
<Index ID="Index3">
<Definition>

<Operator OperatorId="1">
<IndexVariable VariableType="KEYWORD" VariableId="1"/>

</Operator>
</Definition>
<Configuration>

<InternalIndex Type="TEXT">
<VariableId>1</VariableId>

</InternalIndex>
</Configuration>

</Index>
<Index ID="Index4">

<Definition>
<Operator OperatorId="1">
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<IndexVariable VariableType="KEYWORD" VariableId="2"/>
</Operator>

</Definition>
<Configuration>

<InternalIndex Type="TEXT">
<VariableId>2</VariableId>

</InternalIndex>
</Configuration>

</Index>
<Index ID="Index5">

<Definition>
<Operator OperatorId="1">

<IndexVariable VariableType="TYPE" VariableId="1"/>
</Operator>

</Definition>
<Configuration>

<InternalIndex Type="HIERARCHIC">
<VariableId>1</VariableId>

</InternalIndex>
</Configuration>

</Index>
<Index ID="Index6">

<Definition>
<Operator OperatorId="1">

<IndexVariable VariableType="ID" VariableId="2"/>
</Operator>

</Definition>
<Configuration>

<InternalIndex Type="HIERARCHIC">
<VariableId>2</VariableId>

</InternalIndex>
</Configuration>

</Index>
<Index ID="Index7">

<Definition>
<Operator OperatorId="1">

<IndexVariable VariableType="RANGE" VariableId="1"/>
</Operator>
<Operator OperatorId="1">

<IndexVariable VariableType="ID" VariableId="1"/>
</Operator>

</Definition>
<Configuration>

<InternalIndex Type="VALUEBTREE">
<VariableId>0</VariableId>

</InternalIndex>
<InternalIndex Type="HIERARCHIC">

<VariableId>1</VariableId>
</InternalIndex>

</Configuration>
</Index>

</LogicalIndexMetaData>
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D) Internal Index Metadata

Appendix C contains the XML schema for internal meta data. After the schema definition, 

sample XML data used in the running example is outlined.

XML Schema

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="InternalIndexMetaData">
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="Index" type="IndexType"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:complexType name="IndexVariableType">

<xs:attribute name="VariableId" type="xs:int" use="required"/>
<xs:attribute name="VariableType" type="xs:string" use="required"/>

</xs:complexType>
<xs:complexType name="ParameterType">

<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Value" type="xs:int" use="required"/>

</xs:complexType>
<xs:complexType name="InternalIndexType">

<xs:all>
<xs:element name="IndexVariables">

<xs:complexType>
<xs:sequence maxOccurs="unbounded">
<xs:element name="VariableId" type="xs:int"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="Parameters">

<xs:complexType>
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="Parameter" type="ParameterType"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:all>
<xs:attribute name="InternalId" type="xs:int" use="required"/>
<xs:attribute name="InternalType" type="xs:string" use="required"/>

</xs:complexType>
<xs:complexType name="DefinitionType">

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="Operator" type="OperatorType"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="IndexType">

<xs:all>
<xs:element name="InternalIndices">

<xs:complexType>
<xs:sequence maxOccurs="unbounded">
<xs:element name="InternalIndex" type="InternalIndexType"/>
</xs:sequence>

</xs:complexType>
</xs:element>

http://www.w3.org/2001/XMLSchema
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<xs:element name="Definition" type="DefinitionType"/>
</xs:all>
<xs:attribute name="ID" type="xs:ID" use="required"/>

</xs:complexType>
<xs:complexType name="OperatorType">

<xs:sequence minOccurs="0">
<xs:element name="IndexVariable">

<xs:complexType>
<xs:attribute name="VariableId" type="xs:int" use="required"/>
<xs:attribute name="VariableType" type="xs:string" 

use="required"/>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="OperatorId" type="xs:int" use="required"/>

</xs:complexType>
</xs:schema>

Sample Internal MetaData

<InternalIndexMetaData>
<Index ID="Index1">

<InternalIndices>
<InternalIndex InternalId="1" InternalType="EXACT_MATCH">

<IndexVariables>
<VariableId>1</VariableId>

</IndexVariables>
<Parameters/>

</InternalIndex>
</InternalIndices>
<Definition/>

</Index>
<Index ID="Index2">

<InternalIndices>
<InternalIndex InternalId="2" InternalType="RANGE">

<IndexVariables>
<VariableId>1</VariableId>

</IndexVariables>
<Parameters>

<Parameter Name="Fanout" Value="2"/>
<Parameter Name="MinSize" Value="1"/>
<Parameter Name="MaxSize" Value="1"/>
<Parameter Name="RunningNr" Value="1"/>

</Parameters>
</InternalIndex>

</InternalIndices>
<Definition/>

</Index>
<Index ID="Index3">

<InternalIndices>
<InternalIndex InternalId="3" InternalType="TEXT">

<IndexVariables>
<VariableId>1</VariableId>

</IndexVariables>
<Parameters>

<Parameter Name="Fanout" Value="2"/>
<Parameter Name="MinSize" Value="1"/>
<Parameter Name="MaxSize" Value="3"/>
<Parameter Name="RunningNr" Value="1"/>
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</Parameters>
</InternalIndex>

</InternalIndices>
<Definition/>

</Index>
<Index ID="Index4">

<InternalIndices>
<InternalIndex InternalId="4" InternalType="TEXT">

<IndexVariables>
<VariableId>2</VariableId>

</IndexVariables>
<Parameters>

<Parameter Name="Fanout" Value="2"/>
<Parameter Name="MinSize" Value="1"/>
<Parameter Name="MaxSize" Value="1"/>
<Parameter Name="RunningNr" Value="1"/>

</Parameters>
</InternalIndex>

</InternalIndices>
<Definition/>

</Index>
<Index ID="Index5">

<InternalIndices>
<InternalIndex InternalId="5" InternalType="HIERARCHIC">

<IndexVariables>
<VariableId>1</VariableId>

</IndexVariables>
<Parameters>

<Parameter Name="MinSize" Value="1"/>
<Parameter Name="MaxSize" Value="2"/>
<Parameter Name="RunningNr" Value="1"/>

</Parameters>
</InternalIndex>

</InternalIndices>
<Definition/>

</Index>
<Index ID="Index6">

<InternalIndices>
<InternalIndex InternalId="6" InternalType="HIERARCHIC">

<IndexVariables>
<VariableId>2</VariableId>

</IndexVariables>
<Parameters>

<Parameter Name="MinSize" Value="2"/>
<Parameter Name="MaxSize" Value="4"/>
<Parameter Name="RunningNr" Value="1"/>

</Parameters>
</InternalIndex>

</InternalIndices>
<Definition/>

</Index>
<Index ID="Index7">

<InternalIndices>
<InternalIndex InternalId="7" InternalType="RANGE">

<IndexVariables>
<VariableId>0</VariableId>

</IndexVariables>
<Parameters>

<Parameter Name="Fanout" Value="2"/>
<Parameter Name="MinSize" Value="1"/>
<Parameter Name="MaxSize" Value="1"/>
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<Parameter Name="RunningNr" Value="1"/>
</Parameters>

</InternalIndex>
<InternalIndex InternalId="8" InternalType="HIERARCHIC">

<IndexVariables>
<VariableId>1</VariableId>

</IndexVariables>
<Parameters>

<Parameter Name="MinSize" Value="2"/>
<Parameter Name="MaxSize" Value="1"/>
<Parameter Name="RunningNr" Value="1"/>

</Parameters>
</InternalIndex>

</InternalIndices>
<Definition/>

</Index>
</InternalIndexMetaData>
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